
1

CAP 4630

Artificial Intelligence

Instructor: Sam Ganzfried

sganzfri@cis.fiu.edu

2

• http://www.ultimateaiclass.com/

• https://moodle.cis.fiu.edu/

• HW1 was due on Tuesday 10/3

– Remember that you have up to 4 late days to use throughout

the semester.

• HW2 out last week, due 10/17

• Midterm on 10/19

– Covering search (uninformed, informed, local, adversarial,

CSP), logic, and optimization

– Review during half of class on 10/17

http://www.ultimateaiclass.com/

3

Upcoming lectures

• 10/5: Continue CSP

• 10/10: Wrap up CSP, start logic (propositional logic,

first-order logic)

• 10/12: Wrap-up logic (logical inference), start

optimization (integer, linear optimization)

• 10/17: Wrap up optimization (nonlinear optimization),

midterm review

• 10/19: Midterm

• Planning lecture will be after midterm on 10/26.

– Possible class cancellations on 10/24 and 11/7. May have TA

review exams and homeworks during these lectures.

4

HW1

• Will be back before midterm

• Received 29 on moodle (33 students enrolled)

• Will be lenient regarding late days for HW1 due to the

hurricane

5

HW2

• Out last week due 10/17

• Several exercises from textbook

• Logic puzzles that you must formulate models for as

search/optimization problems using two different

approaches (e.g., could be CSP, logical inference,

integer programming). You can solve them using built-

in Python solver libraries (e.g., for CSP and ILP) or

build your own solver (possibly for extra credit). Open-

ended question and many possible correct answers and

approaches.

• http://www.logic-puzzles.org/

6

Quizzle

7

Sudoku example

• The popular Sudoku puzzle has introduced

millions of people to constraint satisfaction

problems, although they may not recognize it. A

Sudoku board consists of 81squares, some of

which are initially filled with digits from 1 to 9.

The puzzle is to fill in all the remaining squares

such that no digit appears twice in any row,

column, or 3x3 box. A row, column, or box is

called a unit.

8

9

Sudoku example

• The Sudoku puzzles that are printed in newspapers and puzzle

books have the property that there is exactly one solution.

Although some can be tricky to solve by hand, taking tens of

minutes, even the hardest Sudoku problems yield to a CSP

solver in less than 0.1 second.

• A Sudoku puzzle can be considered a CSP with 81 variables,

one for each square. We use the variable names A1 through A9

for the top row (left or right), down to I1 through I9 for the

bottom row. The empty squares have the domain

{1,2,3,4,5,6,7,8,9} and the prefilled squares have a domain

consisting of a single value. In addition, there are 27 different

Alldiff constraints: one for each row, column, and box of 9

squares.

10

Sudoku example

• Alldiff(A1,A2,A3,A4,A5,A6,A7,A8,A9)

• Alldiff(B1,B2,B3,B4,B5,B6,B7,B8,B9)

• …

• Alldiff(A1,B1,C1,D1,E1,F1,G1,H1,I1)

• Alldiff(A2,B2,C2,D2,E2,F2,G2,H2,I2)

• …

• Alldiff(A4,A5,A6,B4,B5,B6,C4,C5,C6)

• Alldiff(A4,A5,A6,B4,B5,B6,C4,C5,C6)

• …

11

Sudoku example
• Let us see how far arc consistency can take us. Assume that the

Alldiff constraints have been expanded into binary constraints

(such as A1 != A2) so that we can apply the AC-3 algorithm

directly. Consider the variable E6—the empty square between the

2 and the 8 in the middle box. From the constraints in the box, we

can remove not only 2 and 8 but also 1 and 7 from E6’s domain.

From the constraints in its column, we can eliminate 5, 6, 2, 8, 9,

and 3. This leaves E6 with a domain of {4}; in other words, we

know the answer for E6. Now consider I6. Applying arc

consistency in its column, we eliminate 5, 6, 2, 4 (since we now

know E6 must be 4), 8, 9, and 3. We eliminate 1 by arc

consistency with I5, and we are left with only the value 7 in the

domain of I6. Now there are 8 known values in column 6, so arc

consistency can infer that A6 must be 1. Inference continues along

these lines, and eventually, AC-3 can solve the entire puzzle.

12

Sudoku example

• Of course, Sudoku would soon lose its appeal of every puzzle

could be solved by a mechanical application of AC-3, and

indeed AC-3 works only for the easiest Sudoku puzzles. Slightly

harder ones can be solved by PC-2, but at a greater

computational cost: there are 255,960 different path constraints

to consider in a Sudoku puzzle. To solve the hardest puzzles and

to make efficient progress, we will have to be more clever.

13

Sudoku example

• Indeed, the appeal of Sudoku puzzles for the human solver is the

need to be resourceful in applying more complex inference

strategies. Aficionados give them colorful names, such as

“naked triples.” That strategy works as follows: in any unit

(row, column, or box), find three squares that each have a

domain that contains the same three numbers or a subset of

those numbers. For example, the three domains might be {1,8},

{3,8}, and {1,3,8}. From that we don’t know which square

contains 1, 3, or 8, but we do know that the three numbers must

be distributed among the three squares. Therefore we can

remove 1, 3, and 8 from the domains of every other square in

the unit.

14

Sudoku example

• It is interesting to note how far we can go without saying much

that is specific to Sudoku. We do of course have to say that there

are 81 variables, that their domains are the digits 1 to 9, and that

there are 27 Alldiff constraints. But beyond that, all the

strategies—arc consistency, path consistency, etc.—apply

generally to all CSPs, not just to Sudoku problems. Even naked

triples is really a strategy for enforcing consistency of Alldiff

constraints and has nothing to do with Sudoku per se. This is the

power of the CSP formalism: for each new problem area, we

only need to define the problem in terms of constraints; then the

general constraint-solving mechanisms can take over.

15

Backtracking search for CSPs

• Sudoku problems are designed to be solved by

inference over constraints. But many other CSPs

cannot be solved by inference alone; there comes a

time when we must search for a solution. In this

section we look at backtracking search algorithms that

work on partial assignments; next we will look at local

search algorithms over complete assignments.

16

Backtracking search for CSPs

• We could apply standard depth-limited search. A state

would be a partial assignment, and an action would be

adding var = value to the assignment. But for a CSP

with n variables of domain size d, we quickly notice

something terrible: the branching factor at the top level

is nd because any of d values can be assigned to any of

n variables. At the next level, the branching factor is

(n-1)d, and so on for n levels. We generate a tree with

n!*d^n leaves, even though there are only d^n possible

complete assignments!

17

Backtracking search for CSPs

• Our seemingly reasonable but naïve formulation ignores crucial

property common to all CSPs: commutativity. A problem is

commutative if the order of application of any given set of

actions has no effect on the outcome. CSPs are commutative

because when assigning values to variables, we reach the same

partial assignment regardless of order. Therefore, we need only

consider a single variable at each node in the search tree. For

example, at the root node of a search tree for coloring the map of

Australia, we might make a choice between SA=red, SA=green,

SA=blue, but we would never choose between SA=red and

WA=blue. With this restriction, the number of leaves is d^n, as

we would hope.

18

Backtracking search for CSPs

• The term backtracking search is used for a depth-first search

that chooses values for one variable at a time and backtracks

when a variable has no legal values left to assign. The algorithm

repeatedly chooses an unassigned variable, and then tries all

values in the domain of that variable in turn, trying to find a

solution. If an inconsistency is detected, then BACKTRACK

returns failure, causing the previous call to try another value.

Part of the search tree for the Australia problem is shown, where

we have assigned variables in the order WA, NT, Q,… Because

the representation of CSPs is standardized, there is no need to

supply BACKTRACKING-SEARCH with a domain-specific

initial state, action function, transition model, or goal test.

19

Backtracking search for CSPs

20

Backtracking search for CSPs

21

Backtracking search for CSPs

• Previously we improved poor performance of uninformed search

algorithms by supplying them with domain-specific heuristic

functions, derived from our knowledge of the problem. It turns

out that we can solve CSPs efficiently without such domain-

specific knowledge. Instead, we can add some sophistication to

the unspecified functions, using them to answer the following

questions:

1. Which variable should be assigned next (SELECT-UNASSIGNED-

VARIABLE), and in what order should its values be tried (ORDER-

DOMAIN-VALUES)?

2. What inferences should be performed at each step in the search

(INFERENCE)?

3. When the search arrives at an assignment that violates a constraint, can

the search avoid repeating this failure?

22

Variable and value ordering

• The backtracking algorithm contains the line:

– Var  SELECT-UNASSIGNED-VARIABLE(csp, assignment)

• The simplest strategy is to choose the next unassigned variable

in order, {X1,X2,…}. This static variable ordering seldom

results in the most efficient search. For example, after the

assignments for WA=red and NT =green, there is only one

possible value for SA, so it makes sense to assign SA=blue next

rather than assigning Q. In fact, after SA is assigned, the choices

for Q, NSW, and V are all forced. This intuitive idea—choosing

the variable with fewest “legal” values—is called the minimum-

remaining-values (MRV) heuristic. It also has been called the

“most constrained variable” or “fail-first” heuristic, the latter

because it picks a variable that is most likely to cause a failure

soon, thereby pruning the search tree.

23

Variable and value ordering

• If some variable X has no legal values left, the MRV

heuristic will select X and failure will be detected

immediately—avoiding pointless searches through

other variables. The MRV heuristic usually performs

better than a random or static ordering, sometimes by a

factor of 1,000 or more, although the results vary

widely depending on the problem.

24

Variable and value ordering

• The MRV heuristic doesn’t help at all in choosing the first

region to color in Australia, because initially every region has

three legal colors. In this case, the degree heuristic comes in

handy. It attempts to reduce the branching factor on future

choices by selecting the variable that is involved in the largest

number of constraints on other unassigned variables. For the

Australia map, SA is the variable with highest degree, 5; the

other variables have degree 2 or 3, except for T, which has

degree 0. In fact, once SA is chosen, applying the degree

heuristic solves the problem without any false steps—you can

choose any consistent color at each choice point and still arrive

at a solution with no backtracking. The minimum-remaining

values heuristic is usually a more powerful guide, but the degree

heuristic can be useful as a tie-breaker.

25

Constraint graph

26

Variable and value ordering

• Once a variable has been selected, the algorithm must decide on

the order in which to examine its values. For this, the least-

constraining-value heuristic can be effective in some cases. It

prefers the value that rules out the fewest choices for the

neighboring variables in the constraint graph. For example,

suppose that we have generated the partial assignment with

WA=red and NT=green and that our next choice is for Q. Blue

would be a bad choice because it eliminates the last legal value

left for Q’s neighbor, SA. The least-constraining-value heuristic

therefore prefers red to blue. In general, the heuristic is trying to

leave the maximum flexibility for subsequent variable

assignments. Of course, if we are trying to find all the solutions

to a problem, not just the first one, then the ordering does not

matter because we have to consider every value anyway. The

same holds if there are no solutions to the problem.

27

Variable and value ordering

• Why should variable selection be fail-first, but value

selection be fail-last? It turns out that, for a wide

variety of problems, a variable ordering that chooses a

variable with the minimum number of remaining

values helps minimize the number of nodes in the

search tree by pruning larger parts of the tree earlier.

For value ordering, the trick is that we only need one

solution; therefore it makes sense to look for the most

likely values first. If we wanted to enumerate all

solutions rather than just find one, then value ordering

would be irrelevant.

28

Interleaving search and inference

• We have seen how AC-3 can infer reductions in the domain of

variables before the search. But inference can be even more

powerful in the course of a search: every time we make a choice

of a value for a variable, we have a brand-new opportunity to

infer new domain reductions on the neighboring variables.

• One of the simplest forms of inference is called forward

checking. Whenever a variable X is assigned, the forward

checking procedure establishes arc consistency for it: for each

unassigned variable Y that is connected to X by a constraint,

delete from Y’s domain any value that is inconsistent with the

value chosen for X. Because forward checking only does arc

consistency inferences, there is no reason to do forward

checking if we have already done arc consistency as a

preprocessing step.

29

Interleaving search and inference

• Figure shows the progress of backtracking search on the

Australia CSP with forward checking. There are two important

points to notice about this example. First, notice that after

WA=red and Q = green are assigned, the domains of NT and SA

are reduced to a single value; we have eliminated branching on

these variables altogether by propagating information from WA

and Q. A second point to notice is that after V = blue, the

domain of SA is empty. Hence, forward checking has detected

that the partial assignment {WA=red,Q=green,V=blue} is

inconsistent with the constraints of the problem, and the

algorithm will therefore backtrack immediately.

30

Interleaving search and inference

31

Interleaving search and inference

• For many problems the search will be more effective if we

combine the MRV heuristic with forward checking. Consider

after assigning {WA=red}. Intuitively, it seems that that

assignment constrains its neighbors, NT and SA, so we should

handle those variables next, and then all the other variables will

fall into place. That’s exactly what happens with MRV: NT and

SA have two values, so one of them is chosen first, then the

other, then Q, NSW, and V in order. Finally T still has three

values, and any one of them works. We can view forward

checking as an efficient way to incrementally compute the

information that the MRV heuristic needs to do its job.

32

Interleaving search and inference

• Although forward checking detects many inconsistencies, it

does not detect all of them. The problem is that it makes the

current variable arc-consistent, but doesn’t look ahead and make

all the other variables arc-consistent. For example, consider the

third row. It shows that when WA is red and Q is green, both

NT and SA are forced to be blue. Forward checking does not

look far enough ahead to notice that this is an inconsistency: NT

and SA are adjacent and so cannot have the same value.

33

Interleaving search and inference

• The algorithm called MAC (Maintaining Arc Consistency)

detects this inconsistency. After a variable Xi is assigned a

value, the INFERENCE procedure calls AC-3, but instead of a

queue of all arcs in the CSP, we start with only the arcs (Xj,Xi)

for all Xj that are unassigned variables that are neighbors of Xi.

From there, AC-3 does constraint propagation in the usual way,

and if any variable has its domain reduced to the empty set, the

call to AC-3 fails and we know to backtrack immediately. We

can see that MAC is strictly more powerful than forward

checking because forward checking does the same thing as

MAC on the initial arcs in MAC’s queue; but unlike MAC,

forward checking does not recursively propagate constraints

when changes are made to the domains of variables.

34

Intelligent backtracking

• The BACKTRACKING-SEARCH algorithm has a very simple

policy for what to do when a branch of the search fails: back up

the preceding variable and try a different value for it. This is

called chronological backtracking because the most recent

decision point is revisited.

• Consider what happens when we apply this with a fixed variable

ordering Q, NSW, V, T, SA, WA, NT. Suppose we have

generate the partial assignment {Q = red, NSW = green, V=blue,

T=red}. When we try the next variable SA, we see that every

value violates a constraint. We back up to T and try a new color

for Tasmania! Obviously this is silly—recoloring Tasmania

cannot possibly resolve the problem with South Australia.

35

Intelligent backtracking

• A more intelligent approach to backtracking is to backtrack to a

variable that might fix the problem—a variable that was

responsible for making one of the possible values of SA

impossible. To do this, we will keep track of a set of

assignments that are in conflict with some value for SA. The set

(in this case {Q=red, NSW=green, V =blue}) is called the

conflict set for SA. The backjumping method backtracks to the

most recent assignment in the conflict set; in this case,

backjumping would jump over Tasmania and try a new value for

V. This method is easily implemented by a modification to

BACKTRACK such that it accumulates the conflict set while

checking for a legal value to assign. If no legal value is found,

the algorithm should return the most recent element of the

conflict set along with the failure indicator.

36

• Consider again the partial assignment {WA=red,NSW=red}

(which is inconsistent). Suppose we try T=red next and then

assign NT, Q, V, SA, We know that no assignment can work for

these last four variables, so eventually we run out of values to

try at NT. Now the question is, where to backtrack?

Backjumping cannot work, because NT does have values

consistent with the preceding assigned variables-NT doesn’t

have a complete conflict set of preceding variables that caused it

to fail. We know, however, that the four variables NT, Q, V, and

SA, taken together, failed because of a set of preceding

variables, which must be those variables that directly conflict

with the four. This leads to a deeper notion of the conflict set for

a variable such as NT: it is that set of preceding variables that

caused NT, together with any subsequent variables, to have no

consistent solution. In this case, the set is WA and NSW, so the

algorithm should backtrack to NSW and skip over Tasmania. A

backjumping algorithm that uses conflict sets defined in this

way is called conflict-directed backjumping.

37

Local search for CSPs

• Local search algorithms turn out to be effective in solving many

CSPs. They use a complete-state formulation: the initial state

assigns a value to every variable, and the search changes the

value of one variable at a time. For example, in the 8-queens

problem, the initial state might be a random configuration of 8

queens in 8 columns, and each step moves a single queen to a

new position in its column. Typically, the initial guess violates

several constraints. The point of local search is to eliminate the

violated constraints. In choosing a new value for a variable, the

most obvious heuristic is to select the value that results in the

minimum number of conflicts with other variables—the min-

conflicts heuristic.

38

Local search for CSPs

39

Local search for CSPs

40

Local search for CSPs

• Min-conflicts is surprisingly effective for many CSPs.

Amazingly, on the n-queens problem, if you don’t count the

initial placement of queens, the run time of min-conflicts is

roughly independent of problem size. It solves even the million-

queens problem in an average of 50 steps (after the initial

assignment). This remarkable observation was the stimulus

leading to a great deal of research in the 1990s on local search

and the distinction between easy and hard problems. Roughly

speaking, n-queens is easy for local search because solutions are

densely distributed throughout the state space. Min-conflicts

also works well for hard problems. For example, it has been

used to schedule observations for the Hubble Space Telescope,

reducing the time taken to schedule a week of observations from

three weeks (!) to around 10 minutes.

41

CSP summary

• Constraint satisfaction problems represent a state with a set of variable-

value pairs and represent the conditions for a solution by a set of constraints

on the variables. Many real-world problems can be described as CSPs.

• A number of inference techniques use the constraints to infer which

variable/value pairs are consistent and which are not. These include node,

arc, path, and k-consistency.

• Backtracking search, a form of depth-first search, is commonly used for

solving CSPs. Inference can be interwoven with search.

• The minimum-remaining values and degree heuristics are domain-

independent methods for deciding which variable to choose next in a

backtracking search. The least-constraining value heuristic helps in

deciding which value to try first for a given variable. Backtracking occurs

when no legal assignment can be found for a variable. Conflict-directed

backjumping backtracks directly to the source of the problem.

• Local search using the min-conflicts heuristic has also been applied to

constraint satisfaction problems with great success.

42

Logical agents

• The problem-solving (search) agents “know things,” but only in

a very limited, inflexible sense. For example, the transition

model for the 8-puzzle—knowledge of what the actions do—is

hidden inside the domain-specific code of the RESULT

function. It can be used to predict the outcome of actions but not

to deduce that two tiles cannot occupy the same space or that

states with odd parity cannot be reached from states with even

parity, etc. The atomic representations used by problem-solving

agents are also very limiting. In a partially observable

environment, an agent’s only choice for representing what it

knows about the current state is to list all possible concrete

states—a hopeless prospect in large environments.

43

Logical agents

• Constraint satisfaction introduced the idea of representing states

as assignments of values to variables; this is a step in the right

direction, enabling some parts of the agent to work in a domain-

independent way and allowing for more efficient algorithms. We

now take this step to its logical conclusion—we develop logic as

a general class of representations to support knowledge-based

agents. Such agents can combine and recombine information to

suit myriad purposes. Often this process can be quite far

removed from the needs of the moment—as when a

mathematician proves a theorem or an astronomer calculates the

earth’s life expectancy. Knowledge-based agents can accept

new tasks in the form of explicitly-described goals; they can

achieve competence quickly by being told or learning new

knowledge about the environment; and they can adapt to

changes in the environment by updating the relevant knowledge.

44

Logical agents

• The wumpus world is a cave consisting of rooms

connected by passageways. Lurking somewhere in the

cave is the terrible wumpus, a beast that eats anyone

who enters its room. The wumpus can be shot by an

agent, but the agent has only one arrow. Some rooms

contain bottomless pits that will trap anyone who

wanders into these rooms (except for the wumpus,

which is too big to fall in). The only mitigating feature

of this bleak environment is the possibility of finding a

heap of gold. Although the wumpus world is rather

tame by modern computer game standards, it illustrates

some important points about intelligence.

45

Wumpus world

46

Wumpus world

• Performance measure: +1000 for climbing out of the

cave with the gold, -1000 for falling into a pit or being

eaten by the wumpus, -1 for each action taken and -10

for using up the arrow. The game ends either when the

agent dies or when the agent climbs out of the cave.

• Environment: A 4x4 grid of rooms. The agent always

starts in the square labeled [1,1], facing to the right. The

locations of the gold and the wumpus are chosen

randomly, with a uniform distribution, from the squares

other than the start square. In addition, each square

other than the start can be a pit, with probability 0.2.

47

Wumpus world

• Actuators: The agent can move Forward, TurnLeft by 90

degrees, or TurnRight by 90 degrees. The agent dies a miserable

death if it enters a square containing a pit or a live wumpus. (It

is safe, albeit smelly, to enter a square with a dead wumpus.) If

an agent tries to move forward and bumps into a wall, then the

agent does not move. The action Grab can be used to pick up

the gold if it is in the same square as the agent. The action Shoot

can be used to fire an arrow in a straight line in the direction the

agent is facing. The arrow continues until it either hits (and

hence kills) the wumpus or hits a wall. The agent has only one

arrow, so only the first Shoot action has any effect. Finally, the

action Climb can be used to climb out of the cave, but only from

square [1,1].

48

Wumpus world

• Sensors: The agent has five sensors, each of which gives a

single bit of information:

– In the square containing the wumpus and in the directly (not diagonally)

adjacent squares, the agent will perceive a Stench.

– In the squares directly adjacent to a pit, the agent will perceive a Breeze.

– In the square where the goal is, the agent will perceive a Glitter.

– When an agent walks into a wall, it will perceive a Bump.

– When the wumpus is killed, it emits a woeful Scream that can be

perceived anywhere in the cave.

• The percepts will be given to the agent program in the form of a

list of five symbols; for example, if there is a stench and a

breeze, but no glitter, bump, or scream, the agent program will

get [Stench, Breeze, None, None, None].

49

Wumpus world

• Consider a knowledge-based wumpus agent exploring

the environment in the next figure. We use an informal

knowledge representation language consisting of

writing down symbols in a grid. The agent’s initial

knowledge base contains the rules of the environment,

as described previously; in particular, it knows that it is

in [1,1] and that [1,1] is a safe square; we denote that

with an “A” and “OK,” respectively in square [1,1].

• The first percept is [None,None,None,None,None],

from which the agent can conclude that its neighboring

squares, [1,2] and [2,1], are free of dangers—they are

OK.

50

Wumpus world

51

Wumpus world

• A cautious agent will move only into a square that it knows to

be OK. Let us suppose the agent decides to move forward to

[2,1]. The agent perceives a breeze (denoted by “B”) in [2,1], so

there must be a pit in a neighboring square. The pit cannot be in

[1,1], by the rules of the game, so there must be a pit in [2,2] or

[3,1] or both. The notation “P?” indicates a possible pit in those

squares. At this point, there is only one known square that is OK

and that as not yet been visited. So the prudent agent will turn

around, go back to [1,1], and then proceed to [1,2].

52

Wumpus world

• The agent perceives a stench in [1,2], resulting in the state of

knowledge shown in 7.4a. The stench in [1,2], means that there

must be a wumpus nearby. But the wumpus cannot be in [1,1[,

by the rules of the game, and it cannot be in [2,2] (or the agent

would have detected a stench when it was in [2,1]). Therefore,

the agent can infer that the wumpus is in [1,3]. The notation W!

indicates this inference. Moreover, the lack of a breeze in [1,2]

implies that there is no pit in [2,2]. Yet the agent has already

inferred that there must be a pit in either [2,2] or [3,1], so this

means it must be in [3,1]. This is a fairly difficult inference,

because it combines knowledge gained at different times in

different places and relies on the lack of a percept to make one

crucial step.

53

Wumpus world

• The agent has now proved to itself that there is neither

a pit nor a wumpus in [2,2], so it is OK to move there.

We do not show the agent’s state of knowledge at

[2,2]; we just assume that the agent turns and moves to

[2,3], giving us 74b. In [2,3], the agent detects a glitter,

so it should grab the gold and then return home.

• Note that in each case for which the agent draws a

conclusion from the available information, that

conclusion is guaranteed to be correct if the available

information is correct. This is a fundamental property

of logical reasoning.

54

Logic

• Consider the situation in 7.3b: the agent has detected nothing in

[1,1] and a breeze in [2,1]. These percepts, combined with the

agent’s knowledge of the rules of the wumpus world, constitute

the knowledge base (KB). The agent is interested (among other

things) in whether the adjacent squares [1,2], [2,2], and [3,1]

contain pits. Each of the three squares might or might not

contain a pit, so (for the purposes of this example) there are

2^3=8 possible models. These eight models are shown in 7.5.

55

56

Logical agents

• The KB can be thought of a set of sentences or as a single

sentence that asserts all the individual sentences. The KB is false

in models that contradict what the agent knows—for example,

the KB is false in any model in which [1,2] contains a pit,

because there is no breeze in [1,1]. There are in fact just three

models in which the KB is true, and these are shown surrounded

by a solid line in 7.5. Now let us consider two possible

conclusions:

– A1 = “There is no pit in [1,2]”

– A2 = “There is no pit in [2,2]”

• A1 and A2 are surrounded with dotted lines in 7.5a and 7.5b. By

inspection, we see the following:

– In every model in which KB is true, A1 is also true.

57

Logical agents

• Hence, KB |= A1; there is no pit in [1,2]. We

can also see that

– In some models in which KB is true, A2 is false.

• Hence, KB !|= A2; the agent cannot conclude

that there is no pit in [2,2]. (Nor can it conclude

that there is a pit in [2,2].)

58

Propositional logic

59

Wumpus world

60

Homework for next class

• Chapters 10 from Russel/Norvig

• HW1: out 9/5 was due on 10/3

• HW2: out last week due 10/17

