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CAP 4630

Artificial Intelligence

Instructor: Sam Ganzfried

sganzfri@cis.fiu.edu
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• http://www.ultimateaiclass.com/

• https://moodle.cis.fiu.edu/

• HW1 was due on Tuesday 10/3 

– Remember that you have up to 4 late days to use throughout 

the semester.

• HW2 out last week, due 10/17

• Midterm on 10/19

– Covering search (uninformed, informed, local, adversarial, 

CSP), logic, and optimization

– Review during half of class on 10/17

http://www.ultimateaiclass.com/
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Upcoming lectures

• 10/5: Continue CSP

• 10/10: Wrap up CSP, start logic (propositional logic, 

first-order logic) 

• 10/12: Wrap-up logic (logical inference), start 

optimization (integer, linear optimization)

• 10/17: Wrap up optimization (nonlinear optimization), 

midterm review 

• 10/19: Midterm

• Planning lecture will be after midterm on 10/26.

– Possible class cancellations on 10/24 and 11/7. May have TA 

review exams and homeworks during these lectures.
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HW1

• Will be back before midterm

• Received 29 on moodle (33 students enrolled)

• Will be lenient regarding late days for HW1 due to the 

hurricane
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HW2

• Out last week due 10/17

• Several exercises from textbook

• Logic puzzles that you must formulate models for as 

search/optimization problems using two different 

approaches (e.g., could be CSP, logical inference, 

integer programming). You can solve them using built-

in Python solver libraries (e.g., for CSP and ILP) or 

build your own solver (possibly for extra credit). Open-

ended question and many possible correct answers and 

approaches. 

• http://www.logic-puzzles.org/
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Quizzle
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Sudoku example

• The popular Sudoku puzzle has introduced 

millions of people to constraint satisfaction 

problems, although they may not recognize it. A 

Sudoku board consists of 81squares, some of 

which are initially filled with digits from 1 to 9. 

The puzzle is to fill in all the remaining squares 

such that no digit appears twice in any row, 

column, or 3x3 box. A row, column, or box is 

called a unit.
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Sudoku example

• The Sudoku puzzles that are printed in newspapers and puzzle 

books have the property that there is exactly one solution. 

Although some can be tricky to solve by hand, taking tens of 

minutes, even the hardest Sudoku problems yield to a CSP 

solver in less than 0.1 second.

• A Sudoku puzzle can be considered a CSP with 81 variables, 

one for each square. We use the variable names A1 through A9 

for the top row (left or right), down to I1 through I9 for the 

bottom row. The empty squares have the domain 

{1,2,3,4,5,6,7,8,9} and the prefilled squares have a domain 

consisting of a single value. In addition, there are 27 different 

Alldiff constraints: one for each row, column, and box of 9 

squares.
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Sudoku example

• Alldiff(A1,A2,A3,A4,A5,A6,A7,A8,A9)

• Alldiff(B1,B2,B3,B4,B5,B6,B7,B8,B9)

• …

• Alldiff(A1,B1,C1,D1,E1,F1,G1,H1,I1)

• Alldiff(A2,B2,C2,D2,E2,F2,G2,H2,I2)

• …

• Alldiff(A4,A5,A6,B4,B5,B6,C4,C5,C6)

• Alldiff(A4,A5,A6,B4,B5,B6,C4,C5,C6)

• …
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Sudoku example
• Let us see how far arc consistency can take us. Assume that the 

Alldiff constraints have been expanded into binary constraints 

(such as A1 != A2) so that we can apply the AC-3 algorithm 

directly. Consider the variable E6—the empty square between the 

2 and the 8 in the middle box. From the constraints in the box, we 

can remove not only 2 and 8 but also 1 and 7 from E6’s domain. 

From the constraints in its column, we can eliminate 5, 6, 2, 8, 9, 

and 3. This leaves E6 with a domain of {4}; in other words, we 

know the answer for E6. Now consider I6. Applying arc 

consistency in its column, we eliminate 5, 6, 2, 4 (since we now 

know E6 must be 4), 8, 9, and 3. We eliminate 1 by arc 

consistency with I5, and we are left with only the value 7 in the 

domain of I6. Now there are 8 known values in column 6, so arc 

consistency can infer that A6 must be 1. Inference continues along 

these lines, and eventually, AC-3 can solve the entire puzzle.
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Sudoku example

• Of course, Sudoku would soon lose its appeal of every puzzle 

could be solved by a mechanical application of AC-3, and 

indeed AC-3 works only for the easiest Sudoku puzzles. Slightly 

harder ones can be solved by PC-2, but at a greater 

computational cost: there are 255,960 different path constraints 

to consider in a Sudoku puzzle. To solve the hardest puzzles and 

to make efficient progress, we will have to be more clever. 
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Sudoku example

• Indeed, the appeal of Sudoku puzzles for the human solver is the 

need to be resourceful in applying more complex inference 

strategies. Aficionados give them colorful names, such as 

“naked triples.” That strategy works as follows: in any unit 

(row, column, or box), find three squares that each have a 

domain that contains the same three numbers or a subset of 

those numbers. For example, the three domains might be {1,8}, 

{3,8}, and {1,3,8}. From that we don’t know which square 

contains 1, 3, or 8, but we do know that the three numbers must 

be distributed among the three squares. Therefore we can 

remove 1, 3, and 8 from the domains of every other square in 

the unit.
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Sudoku example

• It is interesting to note how far we can go without saying much 

that is specific to Sudoku. We do of course have to say that there 

are 81 variables, that their domains are the digits 1 to 9, and that 

there are 27 Alldiff constraints. But beyond that, all the 

strategies—arc consistency, path consistency, etc.—apply 

generally to all CSPs, not just to Sudoku problems. Even naked 

triples is really a strategy for enforcing consistency of Alldiff

constraints and has nothing to do with Sudoku per se. This is the 

power of the CSP formalism: for each new problem area, we 

only need to define the problem in terms of constraints; then the 

general constraint-solving mechanisms can take over.
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Backtracking search for CSPs

• Sudoku problems are designed to be solved by 

inference over constraints. But many other CSPs 

cannot be solved by inference alone; there comes a 

time when we must search for a solution. In this 

section we look at backtracking search algorithms that 

work on partial assignments; next we will look at local 

search algorithms over complete assignments.
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Backtracking search for CSPs

• We could apply standard depth-limited search. A state 

would be a partial assignment, and an action would be 

adding var = value to the assignment. But for a CSP 

with n variables of domain size d, we quickly notice 

something terrible: the branching factor at the top level 

is nd because any of d values can be assigned to any of 

n variables. At the next level, the branching factor is 

(n-1)d, and so on for n levels. We generate a tree with 

n!*d^n leaves, even though there are only d^n possible 

complete assignments!
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Backtracking search for CSPs

• Our seemingly reasonable but naïve formulation ignores crucial 

property common to all CSPs: commutativity. A problem is 

commutative if the order of application of any given set of 

actions has no effect on the outcome. CSPs are commutative 

because when assigning values to variables, we reach the same 

partial assignment regardless of order. Therefore, we need only 

consider a single variable at each node in the search tree. For 

example, at the root node of a search tree for coloring the map of 

Australia, we might make a choice between SA=red, SA=green, 

SA=blue, but we would never choose between SA=red and 

WA=blue. With this restriction, the number of leaves is d^n, as 

we would hope.
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Backtracking search for CSPs

• The term backtracking search is used for a depth-first search 

that chooses values for one variable at a time and backtracks 

when a variable has no legal values left to assign. The algorithm 

repeatedly chooses an unassigned variable, and then tries all 

values in the domain of that variable in turn, trying to find a 

solution. If an inconsistency is detected, then BACKTRACK 

returns failure, causing the previous call to try another value. 

Part of the search tree for the Australia problem is shown, where 

we have assigned variables in the order WA, NT, Q,… Because 

the representation of CSPs is standardized, there is no need to 

supply BACKTRACKING-SEARCH with a domain-specific 

initial state, action function, transition model, or goal test.
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Backtracking search for CSPs
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Backtracking search for CSPs
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Backtracking search for CSPs

• Previously we improved poor performance of uninformed search 

algorithms by supplying them with domain-specific heuristic 

functions, derived from our knowledge of the problem. It turns 

out that we can solve CSPs efficiently without such domain-

specific knowledge. Instead, we can add some sophistication to 

the unspecified functions, using them to answer the following 

questions:

1. Which variable should be assigned next (SELECT-UNASSIGNED-

VARIABLE), and in what order should its values be tried (ORDER-

DOMAIN-VALUES)?

2. What inferences should be performed at each step in the search 

(INFERENCE)?

3. When the search arrives at an assignment that violates a constraint, can 

the search avoid repeating this failure?
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Variable and value ordering

• The backtracking algorithm contains the line:

– Var  SELECT-UNASSIGNED-VARIABLE(csp, assignment)

• The simplest strategy is to choose the next unassigned variable 

in order, {X1,X2,…}. This static variable ordering seldom 

results in the most efficient search. For example, after the 

assignments for WA=red and NT =green, there is only one 

possible value for SA, so it makes sense to assign SA=blue next 

rather than assigning Q. In fact, after SA is assigned, the choices 

for Q, NSW, and V are all forced. This intuitive idea—choosing 

the variable with fewest “legal” values—is called the minimum-

remaining-values (MRV) heuristic. It also has been called the 

“most constrained variable” or “fail-first” heuristic, the latter 

because it picks a variable that is most likely to cause a failure 

soon, thereby pruning the search tree.
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Variable and value ordering

• If some variable X has no legal values left, the MRV 

heuristic will select X and failure will be detected 

immediately—avoiding pointless searches through 

other variables. The MRV heuristic usually performs 

better than a random or static ordering, sometimes by a 

factor of 1,000 or more, although the results vary 

widely depending on the problem.
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Variable and value ordering

• The MRV heuristic doesn’t help at all in choosing the first 

region to color in Australia, because initially every region has 

three legal colors. In this case, the degree heuristic comes in 

handy. It attempts to reduce the branching factor on future 

choices by selecting the variable that is involved in the largest 

number of constraints on other unassigned variables. For the 

Australia map, SA is the variable with highest degree, 5; the 

other variables have degree 2 or 3, except for T, which has 

degree 0. In fact, once SA is chosen, applying the degree 

heuristic solves the problem without any false steps—you can 

choose any consistent color at each choice point and still arrive 

at a solution with no backtracking. The minimum-remaining 

values heuristic is usually a more powerful guide, but the degree 

heuristic can be useful as a tie-breaker.



25

Constraint graph
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Variable and value ordering

• Once a variable has been selected, the algorithm must decide on 

the order in which to examine its values. For this, the least-

constraining-value heuristic can be effective in some cases. It 

prefers the value that rules out the fewest choices for the 

neighboring variables in the constraint graph. For example, 

suppose that we have generated the partial assignment with 

WA=red and NT=green and that our next choice is for Q. Blue 

would be a bad choice because it eliminates the last legal value 

left for Q’s neighbor, SA. The least-constraining-value heuristic 

therefore prefers red to blue. In general, the heuristic is trying to 

leave the maximum flexibility for subsequent variable 

assignments. Of course, if we are trying to find all the solutions 

to a problem, not just the first one, then the ordering does not 

matter because we have to consider every value anyway. The 

same holds if there are no solutions to the problem.
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Variable and value ordering

• Why should variable selection be fail-first, but value 

selection be fail-last? It turns out that, for a wide 

variety of problems, a variable ordering that chooses a 

variable with the minimum number of remaining 

values helps minimize the number of nodes in the 

search tree by pruning larger parts of the tree earlier. 

For value ordering, the trick is that we only need one 

solution; therefore it makes sense to look for the most 

likely values first. If we wanted to enumerate all 

solutions rather than just find one, then value ordering 

would be irrelevant.
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Interleaving search and inference

• We have seen how AC-3 can infer reductions in the domain of 

variables before the search. But inference can be even more 

powerful in the course of a search: every time we make a choice 

of a value for a variable, we have a brand-new opportunity to 

infer new domain reductions on the neighboring variables.

• One of the simplest forms of inference is called forward 

checking. Whenever a variable X is assigned, the forward 

checking procedure establishes arc consistency for it: for each 

unassigned variable Y that is connected to X by a constraint, 

delete from Y’s domain any value that is inconsistent with the 

value chosen for X. Because forward checking only does arc 

consistency inferences, there is no reason to do forward 

checking if we have already done arc consistency as a 

preprocessing step. 
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Interleaving search and inference

• Figure shows the progress of backtracking search on the 

Australia CSP with forward checking. There are two important 

points to notice about this example. First, notice that after 

WA=red and Q = green are assigned, the domains of NT and SA 

are reduced to a single value; we have eliminated branching on 

these variables altogether by propagating information from WA 

and Q. A second point to notice is that after V = blue, the 

domain of SA is empty. Hence, forward checking has detected 

that the partial assignment {WA=red,Q=green,V=blue} is 

inconsistent with the constraints of the problem, and the 

algorithm will therefore backtrack immediately.
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Interleaving search and inference
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Interleaving search and inference

• For many problems the search will be more effective if we 

combine the MRV heuristic with forward checking. Consider 

after assigning {WA=red}. Intuitively, it seems that that 

assignment constrains its neighbors, NT and SA, so we should 

handle those variables next, and then all the other variables will 

fall into place. That’s exactly what happens with MRV: NT and 

SA have two values, so one of them is chosen first, then the 

other, then Q, NSW, and V in order. Finally T still has three 

values, and any one of them works. We can view forward 

checking as an efficient way to incrementally compute the 

information that the MRV heuristic needs to do its job.
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Interleaving search and inference

• Although forward checking detects many inconsistencies, it 

does not detect all of them. The problem is that it makes the 

current variable arc-consistent, but doesn’t look ahead and make 

all the other variables arc-consistent. For example, consider the 

third row. It shows that when WA is red and Q is green, both 

NT and SA are forced to be blue. Forward checking does not 

look far enough ahead to notice that this is an inconsistency: NT 

and SA are adjacent and so cannot have the same value.
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Interleaving search and inference

• The algorithm called MAC (Maintaining Arc Consistency) 

detects this inconsistency. After a variable Xi is assigned a 

value, the INFERENCE procedure calls AC-3, but instead of a 

queue of all arcs in the CSP, we start with only the arcs (Xj,Xi) 

for all Xj that are unassigned variables that are neighbors of Xi. 

From there, AC-3 does constraint propagation in the usual way, 

and if any variable has its domain reduced to the empty set, the 

call to AC-3 fails and we know to backtrack immediately. We 

can see that MAC is strictly more powerful than forward 

checking because forward checking does the same thing as 

MAC on the initial arcs in MAC’s queue; but unlike MAC, 

forward checking does not recursively propagate constraints 

when changes are made to the domains of variables.
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Intelligent backtracking

• The BACKTRACKING-SEARCH algorithm has a very simple 

policy for what to do when a branch of the search fails: back up 

the preceding variable and try a different value for it. This is 

called chronological backtracking because the most recent

decision point is revisited. 

• Consider what happens when we apply this with a fixed variable 

ordering Q, NSW, V, T, SA, WA, NT. Suppose we have 

generate the partial assignment {Q = red, NSW = green, V=blue, 

T=red}. When we try the next variable SA, we see that every 

value violates a constraint. We back up to T and try a new color 

for Tasmania! Obviously this is silly—recoloring Tasmania 

cannot possibly resolve the problem with South Australia.
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Intelligent backtracking

• A more intelligent approach to backtracking is to backtrack to a 

variable that might fix the problem—a variable that was 

responsible for making one of the possible values of SA 

impossible. To do this, we will keep track of a set of 

assignments that are in conflict with some value for SA. The set 

(in this case {Q=red, NSW=green, V =blue}) is called the 

conflict set for SA. The backjumping method backtracks to the 

most recent assignment in the conflict set; in this case, 

backjumping would jump over Tasmania and try a new value for 

V. This method is easily implemented by a modification to 

BACKTRACK such that it accumulates the conflict set while 

checking for a legal value to assign. If no legal value is found, 

the algorithm should return the most recent element of the 

conflict set along with the failure indicator.
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• Consider again the partial assignment {WA=red,NSW=red} 

(which is inconsistent). Suppose we try T=red next and then 

assign NT, Q, V, SA, We know that no assignment can work for 

these last four variables, so eventually we run out of values to 

try at NT. Now the question is, where to backtrack? 

Backjumping cannot work, because NT does have values 

consistent with the preceding assigned variables-NT doesn’t 

have a complete conflict set of preceding variables that caused it 

to fail. We know, however, that the four variables NT, Q, V, and 

SA, taken together, failed because of a set of preceding 

variables, which must be those variables that directly conflict 

with the four. This leads to a deeper notion of the conflict set for 

a variable such as NT: it is that set of preceding variables that 

caused NT, together with any subsequent variables, to have no 

consistent solution. In this case, the set is WA and NSW, so the 

algorithm should backtrack to NSW and skip over Tasmania. A 

backjumping algorithm that uses conflict sets defined in this 

way is called conflict-directed backjumping.
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Local search for CSPs

• Local search algorithms turn out to be effective in solving many 

CSPs. They use a complete-state formulation: the initial state 

assigns a value to every variable, and the search changes the 

value of one variable at a time. For example, in the 8-queens 

problem, the initial state might be a random configuration of 8 

queens in 8 columns, and each step moves a single queen to a 

new position in its column. Typically, the initial guess violates 

several constraints. The point of local search is to eliminate the 

violated constraints. In choosing a new value for a variable, the 

most obvious heuristic is to select the value that results in the 

minimum number of conflicts with other variables—the min-

conflicts heuristic. 



38

Local search for CSPs
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Local search for CSPs
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Local search for CSPs

• Min-conflicts is surprisingly effective for many CSPs. 

Amazingly, on the n-queens problem, if you don’t count the 

initial placement of queens, the run time of min-conflicts is 

roughly independent of problem size. It solves even the million-

queens problem in an average of 50 steps (after the initial 

assignment). This remarkable observation was the stimulus 

leading to a great deal of research in the 1990s on local search 

and the distinction between easy and hard problems. Roughly 

speaking, n-queens is easy for local search because solutions are 

densely distributed throughout the state space. Min-conflicts 

also works well for hard problems. For example, it has been 

used to schedule observations for the Hubble Space Telescope, 

reducing the time taken to schedule a week of observations from 

three weeks (!) to around 10 minutes.
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CSP summary

• Constraint satisfaction problems represent a state with a set of variable-

value pairs and represent the conditions for a solution by a set of constraints 

on the variables. Many real-world problems can be described as CSPs. 

• A number of inference techniques use the constraints to infer which 

variable/value pairs are consistent and which are not. These include node, 

arc, path, and k-consistency.

• Backtracking search, a form of depth-first search, is commonly used for 

solving CSPs. Inference can be interwoven with search.

• The minimum-remaining values and degree heuristics are domain-

independent methods for deciding which variable to choose next in a 

backtracking search. The least-constraining value heuristic helps in 

deciding which value to try first for a given variable. Backtracking occurs 

when no legal assignment can be found for a variable. Conflict-directed 

backjumping backtracks directly to the source of the problem.

• Local search using the min-conflicts heuristic has also been applied to 

constraint satisfaction problems with great success.
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Logical agents

• The problem-solving (search) agents “know things,” but only in 

a very limited, inflexible sense. For example, the transition 

model for the 8-puzzle—knowledge of what the actions do—is 

hidden inside the domain-specific code of the RESULT 

function. It can be used to predict the outcome of actions but not 

to deduce that two tiles cannot occupy the same space or that 

states with odd parity cannot be reached from states with even 

parity, etc. The atomic representations used by problem-solving 

agents are also very limiting. In a partially observable 

environment, an agent’s only choice for representing what it 

knows about the current state is to list all possible concrete 

states—a hopeless prospect in large environments. 
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Logical agents

• Constraint satisfaction introduced the idea of representing states 

as assignments of values to variables; this is a step in the right 

direction, enabling some parts of the agent to work in a domain-

independent way and allowing for more efficient algorithms. We 

now take this step to its logical conclusion—we develop logic as 

a general class of representations to support knowledge-based 

agents. Such agents can combine and recombine information to 

suit myriad purposes. Often this process can be quite far 

removed from the needs of the moment—as when a 

mathematician proves a theorem or an astronomer calculates the 

earth’s life expectancy. Knowledge-based agents can accept  

new tasks in the form  of explicitly-described goals; they can 

achieve competence quickly by being told or learning new 

knowledge about the environment; and they can adapt to 

changes in the environment by updating the relevant knowledge.
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Logical agents

• The wumpus world is a cave consisting of rooms 

connected by passageways. Lurking somewhere in the 

cave is the terrible wumpus, a beast that eats anyone 

who enters its room. The wumpus can be shot by an 

agent, but the agent has only one arrow. Some rooms 

contain bottomless pits that will trap anyone who 

wanders into these rooms (except for the wumpus, 

which is too big to fall in). The only mitigating feature 

of this bleak environment is the possibility of finding a 

heap of gold. Although the wumpus world is rather 

tame by modern computer game standards, it illustrates 

some important points about intelligence.
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Wumpus world
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Wumpus world

• Performance measure: +1000 for climbing out of the 

cave with the gold, -1000 for falling into a pit or being 

eaten by the wumpus, -1 for each action taken and -10 

for using up the arrow. The game ends either when the 

agent dies or when the agent climbs out of the cave.

• Environment: A 4x4 grid of rooms. The agent always 

starts in the square labeled [1,1], facing to the right. The 

locations of the gold and the wumpus are chosen 

randomly, with a uniform distribution, from the squares 

other than the start square. In addition, each square 

other than the start can be a pit, with probability 0.2.
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Wumpus world

• Actuators: The agent can move Forward, TurnLeft by 90 

degrees, or TurnRight by 90 degrees. The agent dies a miserable 

death if it enters a square containing a pit or a live wumpus. (It 

is safe, albeit smelly, to enter a square with a dead wumpus.) If 

an agent tries to move forward and bumps into a wall, then the 

agent does not move. The action Grab can be used to pick up 

the gold if it is in the same square as the agent. The action Shoot

can be used to fire an arrow in a straight line in the direction the 

agent is facing. The arrow continues until it either hits (and 

hence kills) the wumpus or hits a wall. The agent has only one 

arrow, so only the first Shoot action has any effect. Finally, the 

action Climb can be used to climb out of the cave, but only from 

square [1,1].
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Wumpus world

• Sensors: The agent has five sensors, each of which gives a 

single bit of information:

– In the square containing the wumpus and in the directly (not diagonally) 

adjacent squares, the agent will perceive a Stench. 

– In the squares directly adjacent to a pit, the agent will perceive a Breeze.

– In the square where the goal is, the agent will perceive a Glitter.

– When an agent walks into a wall, it will perceive a Bump.

– When the wumpus is killed, it emits a woeful Scream that can be 

perceived anywhere in the cave.

• The percepts will be given to the agent program in the form of a 

list of five symbols; for example, if there is a stench and a 

breeze, but no glitter, bump, or scream, the agent program will 

get [Stench, Breeze, None, None, None].
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Wumpus world

• Consider a knowledge-based wumpus agent exploring 

the environment in the next figure. We use an informal 

knowledge representation language consisting of 

writing down symbols in a grid. The agent’s initial 

knowledge base contains the rules of the environment, 

as described previously; in particular, it knows that it is 

in [1,1] and that [1,1] is a safe square; we denote that 

with an “A” and “OK,” respectively in square [1,1].

• The first percept is [None,None,None,None,None], 

from which the agent can conclude that its neighboring 

squares, [1,2] and [2,1], are free of dangers—they are 

OK. 
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Wumpus world
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Wumpus world

• A cautious agent will move only into a square that it knows to 

be OK. Let us suppose the agent decides to move forward to 

[2,1]. The agent perceives a breeze (denoted by “B”) in [2,1], so 

there must be a pit in a neighboring square. The pit cannot be in 

[1,1], by the rules of the game, so there must be a pit in [2,2] or 

[3,1] or both. The notation “P?” indicates a possible pit in those 

squares. At this point, there is only one known square that is OK 

and that as not yet been visited. So the prudent agent will turn 

around, go back to [1,1], and then proceed to [1,2].



52

Wumpus world

• The agent perceives a stench in [1,2], resulting in the state of 

knowledge shown in 7.4a. The stench in [1,2], means that there 

must be a wumpus nearby. But the wumpus cannot be in [1,1[, 

by the rules of the game, and it cannot be in [2,2] (or the agent 

would have detected a stench when it was in [2,1]). Therefore, 

the agent can infer that the wumpus is in [1,3]. The notation W! 

indicates this inference. Moreover, the lack of a breeze in [1,2] 

implies that there is no pit in [2,2]. Yet the agent has already 

inferred that there must be a pit in either [2,2] or [3,1], so this 

means it must be in [3,1]. This is a fairly difficult inference, 

because it combines knowledge gained at different times in 

different places and relies on the lack of a percept to make one 

crucial step.
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Wumpus world

• The agent has now proved to itself that there is neither 

a pit nor a wumpus in [2,2], so it is OK to move there. 

We do not show the agent’s state of knowledge at 

[2,2]; we just assume that the agent turns and moves to 

[2,3], giving us 74b. In [2,3], the agent detects a glitter, 

so it should grab the gold and then return home.

• Note that in each case for which the agent draws a 

conclusion from the available information, that 

conclusion is guaranteed to be correct if the available 

information is correct. This is a fundamental property 

of logical reasoning. 



54

Logic

• Consider the situation in 7.3b: the agent has detected nothing in 

[1,1] and a breeze in [2,1]. These percepts, combined with the 

agent’s knowledge of the rules of the wumpus world, constitute 

the knowledge base (KB). The agent is interested (among other 

things) in whether the adjacent squares [1,2], [2,2], and [3,1] 

contain pits. Each of the three squares might or might not 

contain a pit, so (for the purposes of this example) there are 

2^3=8 possible models. These eight models are shown in 7.5. 
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Logical agents

• The KB can be thought of a set of sentences or as a single 

sentence that asserts all the individual sentences. The KB is false 

in models that contradict what the agent knows—for example, 

the KB is false in any model in which [1,2] contains a pit, 

because there is no breeze in [1,1]. There are in fact just three 

models in which the KB is true, and these are shown surrounded 

by a solid line in 7.5. Now let us consider two possible 

conclusions:

– A1 = “There is no pit in [1,2]”

– A2 = “There is no pit in [2,2]”

• A1 and A2 are surrounded with dotted lines in 7.5a and 7.5b. By 

inspection, we see the following:

– In every model in which KB is true, A1 is also true.
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Logical agents

• Hence, KB |= A1; there is no pit in [1,2]. We 

can also see that

– In some models in which KB is true, A2 is false.

• Hence, KB !|= A2; the agent cannot conclude 

that there is no pit in [2,2]. (Nor can it conclude 

that there is a pit in [2,2].)
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Propositional logic



59

Wumpus world
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Homework for next class

• Chapters 10 from Russel/Norvig

• HW1: out 9/5 was due on 10/3

• HW2: out last week due 10/17


