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Scope and applicability of game theory

• Strategic multiagent interactions occur in all fields

– Economics and business: bidding in auctions, offers in 

negotiations

– Political science/law: fair division of resources, e.g., divorce 

settlements

– Biology/medicine: robust diabetes management (robustness 

against “adversarial” selection of parameters in MDP)

– Computer science: theory, AI, PL, systems; national security 

(e.g., deploying officers to protect ports), cybersecurity (e.g., 

determining optimal thresholds against phishing attacks), 

internet phenomena (e.g., ad auctions)
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Game theory background

• Players

• Actions (aka pure strategies)

• Strategy profile: e.g., (R,p)

• Utility function: e.g., u1(R,p) = -1, u2(R,p) = 1

rock paper scissors

Rock 0,0 -1, 1 1, -1

Paper 1,-1 0, 0 -1,1

Scissors -1,1 1,-1 0,0
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Zero-sum game

• Sum of payoffs is zero at each strategy profile: 

e.g., u1(R,p) + u2(R,p) = 0

• Models purely adversarial settings

rock paper scissors

Rock 0,0 -1, 1 1, -1

Paper 1,-1 0, 0 -1,1

Scissors -1,1 1,-1 0,0
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Mixed strategies

• Probability distributions over pure strategies

• E.g., R with prob. 0.6, P with prob. 0.3, S with 

prob. 0.1
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Best response (aka nemesis)

• Any strategy that maximizes payoff against 

opponent’s strategy

• If P2 plays (0.6, 0.3, 0.1) for r,p,s, then a best 

response for P1 is to play P with probability 1
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Nash equilibrium

• Strategy profile where all players 

simultaneously play a best response

• Standard solution concept in game theory

– Guaranteed to always exist in finite games [Nash 

1950]

• In Rock-Paper-Scissors, the unique equilibrium 

is for both players to select each pure strategy 

with probability 1/3 



12

Minimax Theorem

• Minimax theorem: For every two-player zero-sum 

game, there exists a value v* and a mixed strategy 

profile σ* such that:

a. P1 guarantees a payoff of at least v* in the worst case by 

playing σ*1 

b. P2 guarantees a payoff of at least -v* in the worst case by 

playing σ*2 

• v* (= v1) is the value of the game 

• All equilibrium strategies for player i guarantee at 

least vi in the worst case

• For RPS, v* = 0
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Exploitability

• Exploitability of a strategy is difference 

between value of the game and performance 

against a best response

– Every equilibrium has zero exploitability

• Always playing rock has exploitability 1

– Best response is to play paper with probability 1
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Nash equilibria in two-player zero-

sum games

• Zero exploitability – “unbeatable”

• Exchangeable

– If (a,b) and (c,d) are NE, then (a,d) and (c,b) are too

• Can be computed in polynomial time by a linear 

programming (LP) formulation
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Nash equilibria in multiplayer and 

non-zero-sum games
• None of the two-player zero-sum results hold

• There can exist multiple equilibria, each with different 

payoffs to the players

• If one player follows one equilibrium while other 

players follow a different equilibrium, overall profile is 

not guaranteed to be an equilibrium

• If one player plays an equilibrium, he could do worse if 

the opponents deviate from that equilibrium

• Computing an equilibrium is PPAD-hard
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Imperfect information

• In many important games, there is information 

that is private to only some agents and not 

available to other agents

– In auctions, each bidder may know his own 

valuation and only know the distribution from which 

other agents’ valuations are drawn

– In poker, players may not know private cards held 

by other players
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Extensive-form representation
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Extensive-form games

• Two-player zero-sum EFGs can be solved in 

polynomial time by linear programming

– Scales to games with up to 108 states

• Iterative algorithms (CFR and EGT) have been 

developed for computing an ε-equilibrium that scale to 

games with 1017 states

– CFR also applies to multiplayer and general sum games, 

though no significant guarantees in those classes

– (MC)CFR is self-play algorithm that samples actions down 

tree and updates regrets and average strategies stored at 

every information set 



19

Standard paradigm for solving large 

imperfect-information games

Nash equilibriumNash equilibrium

Original game

Abstracted game

Automated abstraction

Custom 

equilibrium-finding 

algorithm

Reverse mapping
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Texas hold ‘em poker

• Huge game of imperfect information

– Most studied imp-info game in AI community since 2006 

due to AAAI computer poker competition

– Most attention on 2-player variants (2-player zero-sum)

– Multi-billion dollar industry (not “frivolous”)

• Limit Texas hold ‘em – fixed betting size 

– ~1017 nodes in game tree

• No Limit Texas hold ‘em – unlimited bet size

– ~10165 nodes in game tree

– Most active domain in last several years

– Most popular variant for humans
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No-limit Texas hold ‘em poker

• Two players have stack and pay blinds (ante)

• Each player dealt two private cards

• Round of betting (preflop)

– Players can fold, call, bet (any amount up to stack)

• Three public cards dealt (flop) and a second round of 

betting

• One more public card and round of betting (turn)

• Final card and round of betting (river)

• Showdown
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Game abstraction

• Necessary for solving large games

– 2-player no-limit Texas hold ‘em has 10165 game states, 

while best solvers “only” scale to games with 1017 states

• Information abstraction: grouping information sets 

together

• Action abstraction: discretizing action space

– E.g., limit bids to be multiples of $10 or $100
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Information abstraction
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Potential-aware abstraction with EMD
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Potential-aware abstraction with EMD

• Equity distributions on the turn. Each point is EHS for given 

turn card assuming uniform random river and opponent hand

• EMD is 4.519 (vs. 0.559 using comparable units to river EMD)
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Algorithm for potential-aware imperfect-

recall abstraction with EMD

• Bottom-up pass of the information tree (assume an abstraction for 

final rounds has already been computed using arbitrary approach)

• For each round n

– Let mn+1
i denote mean of cluster i in An+1

– For each pair of round n+1 clusters (i,j), compute distance dn
i,j

between mn+1
i and mn+1

j using dn+1

– For each point xn, create histogram over clusters from An+1

– Compute abstraction An using EMD with dn
i,j as ground 

distance function

• Developed fast custom heuristic for approximating EMD in our 

multidimensional setting

• Best commercially-available algorithm was far too slow to compute 

abstractions in poker
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Standard paradigm for solving large 

extensive-form games

Nash equilibriumNash equilibrium

Original game

Abstracted game

Automated abstraction

Custom 

equilibrium-finding 

algorithm

Reverse mapping
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Hierarchical abstraction to enable 

distributed equilibrium computation
• On distributed architectures and supercomputers with 

high inter-blade memory access latency, 

straightforward MCCFR parallelization approaches 

lead to impractically slow runtimes 

– When a core does an update at an information set it needs to 

read and write memory with high latency

– Different cores working on same information set may need to 

lock memory, wait for each other, possibly over-write each 

others' parallel work, and work on out-of-sync inputs

• Our approach solves the former problem and also helps 

mitigate the latter issue
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High-level approach

• To obtain these benefits, our algorithm creates an 

information abstraction that allows us to assign disjoint 

components of the game tree to different blades so the 

trajectory of each sample only accesses information 

sets located on the same blade.

– First cluster public information at some early point in the 

game (public flop cards in poker), then cluster private 

information separately for each public cluster.

• Run modified version of external-sampling MCCFR

– Samples one pair of preflop hands per iteration. For the later 

betting rounds, each blade samples public cards from its 

public cluster and performs MCCFR within each cluster. 
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Hierarchical abstraction algorithm for 

distributed equilibrium computation

• For r = 1 to r*-1, cluster states at round r using Ar

– Ar is arbitrary abstraction algorithm

– E.g., for preflop round in poker

• Cluster public states at round r* into C buckets

– E.g., flop round in poker

• For r = r* to R, c = 1 to C, cluster states at round r that 

have public information states in public bucket c into 

Br buckets using abstraction algorithm Ar
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Algorithm for computing public 

information abstraction

• Construct transition table T

– T[p][b] stores how often public state p will lead to bucket b of the base 

abstraction A, aggregated over all possible states of private information.

• for i = 1 to M-1, j = i+1 to M (M is # of public states)

– si,j := 0

– for b = 1 to B

• si,j += min(T[i][b],T[j][b])

– di,j = (V- si,j)/V

• Cluster public states into C clusters using (custom) clustering 

algorithm L with distance function d

– di,j corresponds to fraction of private states not mapped to same bucket of 

A when paired with public info i and j
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Comparison to non-distributed approach
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Tartanian7: champion two-player 

no-limit Texas Hold ‘em agent

• Beat every opponent with statistical significance 

in 2014 AAAI computer poker competition
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Standard paradigm for solving large 

imperfect-information games

Nash equilibriumNash equilibrium

Original game

Abstracted game

Automated abstraction

Custom 

equilibrium-finding 

algorithm

Reverse mapping
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Reverse mapping

• Action translation mapping interprets opponents’ 

actions that have been omitted from action abstraction

– Natural approaches perform very poorly

– Developed new approach that has theoretical justification, 

outperforms prior approaches on several domains, satisfies 

natural axioms, adopted by most strong poker agents

• Further post-processing approaches

– Also important even if we do not perform any action 

abstraction
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Purification and thresholding

• Thresholding: round action probabilities below c down 

to 0 (then renormalize)

• Purification is extreme case where we play maximal-

probability action with probability 1
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Benefits of post-processing techniques

• 1) Failure of equilibrium-finding algorithm to 

fully converge

– Tartanian4 had exploitability of 800 mbb/hand even 

within its abstraction (always folding has 

exploitability of 750 mbb/hand!)
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Benefits of post-processing techniques

• 2) Combat overfitting of equilibrium to the abstraction
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Experiments on no-limit Texas hold ‘em

• Purification outperforms using a threshold of 

0.15

– Does better than it against all but one 2010 

competitor, beats it head-to-head, and won bankroll 

competition
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Worst-case exploitability

• We also compared worst-case exploitabilities of several variants 

submitted to the 2010 two-player limit Texas hold ‘em division

– Using algorithm of Johanson et al. IJCAI-11
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Purification and thresholding

• 4x4 two-player zero-sum matrix games with payoffs 
uniformly at random from [-1,1]

• Compute equilibrium F in full game

• Compute equilibrium A in abstracted game that omits 
last row and column

– essentially “random” abstractions

• Compare u1(A1, F2) to u1(pur(A1), F2) 

• Conclusion: Abstraction+purification outperforms 
just abstraction (against full equilibrium) at 95% 
confidence level
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Purification and thresholding

• Some conditions when they perform identically:

1. The abstract equilibrium A is a pure strategy profile

2. The support of A1 is a subset of the support of F1 

Purified average payoff -0.050987 +- 0.00042

Unpurified average payoff -0.054905 +- 0.00044

# games where purification led to 

improved performance

261569 (17.44 %)

# games where purification led to 

worse performance

172164 (11.48%)

# games where purification led to 

no change in performance

1066267 (71.08 %)
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Purification and thresholding

• Results depend crucially on the support of the full equilibrium

• If we only consider the set of games that have an equilibrium σ

with a given support, purification improves performance for 

each class except for the following, where the performance is 

statistically indistinguishable:

– σ is the pure strategy profile in which each player plays his 

fourth pure strategy

– σ is a mixed strategy profile in which player 1’s support 

contains his fourth pure strategy, and player 2’s support does 

not contain his fourth pure strategy
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New family of post-processing 

techniques
• 2 main ideas: 

– Bundle similar actions

– Add preference for conservative actions

• First separate actions into {fold, call, “bet”}

– If probability of folding exceeds a threshold parameter, fold 

with prob. 1

– Else, follow purification between fold, call, and “meta-

action” of “bet.”

– If “bet” is selected, then follow purification within the 

specific bet actions.

• Many variations: threshold parameter, bucketing of 

actions, thresholding value among buckets, etc.
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Post-processing experiments

Hyperborean.iro Slumbot Average Min

No Thresholding +30 ± 32 +10 ± 27 +20 +10

Purification +55 ± 27 +19 ± 22 +37 +19

Thresholding-0.15 +35 ± 30 +19 ± 25 +27 +19

New-0.2 +39 ± 26 +103 ± 21 +71 +39
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Brains vs. Artificial Intelligence

• April 24-May 8, 2015 at Rivers Casino in 

Pittsburgh, PA
– The competition was organized by Carnegie Mellon 

University Professor Tuomas Sandholm. Collaborators 

were Tuomas Sandholm and Noam Brown.

• 20,000 hands of two-player no-limit Texas 

hold ‘em between “Claudico” and Dong Kim, 

Jason Les, Bjorn Li, Doug Polk

– 80,000 hands in total

• Used “duplicate” scoring
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Brains
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Brains
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Brains
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Results

• Humans won by 732,713 chips, which 

corresponds to 9.16 big blinds per 100 hands 

(BB/100) (SB = 50, BB = 100)

– Statistically significant at 90% confidence level, but 

not 95% level

• Dong Kim beat Nick Frame by 13.87 BB/100 

– $103,992 over 15,000 hands with 25-50 blinds

• Doug Polk beat Ben Sulsky by 24.67 BB/100

– $740,000 over 15,000 hands with 100-200 blinds



51

Payoffs

• Prize pool of $100,000 distributed to the 

humans depending on their individual profits.
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I Limp!

• “Limping is for Losers. This is the most important 

fundamental in poker -- for every game, for every 

tournament, every stake: If you are the first player to 

voluntarily commit chips to the pot, open for a raise. 

Limping is inevitably a losing play. If you see a person 

at the table limping, you can be fairly sure he is a bad 

player. Bottom line: If your hand is worth playing, it is 

worth raising” [Phil Gordon’s Little Gold Book, 2011]

• Claudico limps close to 10% of its hands

– Based on humans’ analysis it profited overall from the limps

• Claudico makes many other unconventional plays (e.g., 

small bets of 10% pot and all-in bets for 40 times pot)
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Architecture

• Offline abstraction and equilibrium computation

– EC used Pittsburgh’s Blacklight supercomputer with 961 cores

• Action translation

• Post-processing

• Endgame solving
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Pseudo-harmonic mapping

• Maps opponent’s bet x to one of the nearest sizes in the 

abstraction A, B according to:

• f(x) = 
(𝐵−𝑥)(1+𝐴)

(𝐵−𝐴)(1+𝑥)

• f(x) is probability that x is mapped to A

• Example: suppose opponent bets 100 into pot of 500, 

and closest sizes are “check” (i.e., bet 0) or to bet 0.25 

pot. So A = 0, x = 0.2, B = 0.25. 

• Plugging these in gives f(x) = 1/6 = 0.167.



55

Endgame solving

• Doug Polk related to me in personal communication after the 

competition that he thought the river strategy of Claudico using 

the endgame solver was the strongest part of the agent.
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Problematic hands

1. We had A4s and folded preflop after putting in over half of our stack 

(human had 99).

– We only need to win 25% of time against opponent’s distribution for 

call to be profitable (we win 33% of time against 99). 

– Translation mapped opponent’s raise to smaller size, which caused us to 

look up strategy computed thinking that pot size was much smaller than 

it was (7,000 vs. 10,000)

2. We had KT and folded to an all-in bet on turn after putting in ¾ of our stack 

despite having top pair and a flush draw

– Human raised slightly below smallest size in our abstraction and we 

interpreted it as a call

– Both 1 and 2 due to “off-tree problem”

3. Large all-in bet of 19,000 into small pot of 1700 on river without “blocker”

– E.g., 3s2c better all-in bluff hand than 3c2c on JsTs4sKcQh

– Endgame information abstraction algorithm doesn’t fully account for 

“card removal”
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Lessons learned

• Two most important avenues for improvement

– Solving the “off-tree problem”

– Improved approach for information abstraction that better 

accounts for card removal/“blockers” 

• Improved theoretical understanding of endgame solving

– Works very well in practice despite lack of guarantees

– Newer decomposition approach with guarantees does worse

• Bridge abstraction gap

– Approaches with guarantees only scale to small games

• Diverse applications of equilibrium computation

• Action translation axioms

• Theoretical understanding of post-processing success
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Standard paradigm

Nash equilibriumNash equilibrium

Original game

Abstracted game

Automated abstraction

Custom 

equilibrium-finding 

algorithm

Reverse mapping
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New game-solving paradigms
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Endgame solving

Strategies for entire game 

computed offline

Endgame strategies 

computed in real time to 

greater degree of accuracy
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Incorporating qualitative models

Stronger

hand

Weaker

hand

BLUFF/CHECK BLUFF/CHECK

Player 1’s 

strategy

Player 2’s 

strategy
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Computing Nash equilibria in games 

with more than two players
• Developed new algorithms for computing ε-equilibrium 

strategies in multiplayer imperfect-information stochastic games

– Models multiplayer poker tournament endgames

• Most successful algorithm, called PI-FP, used a two-level 

iterative procedure

– Outer loop is variant of policy iteration

– Inner loop is an extension of fictitious play

• Proposition: If the sequence of strategies determined by 

iterations of PI-FP converges, then the final strategy profile is an 

equilibrium.

• We verified that our algorithms did in fact converge to ε-

equilibrium strategies for very small ε
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The need for opponent exploitation

• Game-solving approach produces unexploitable (i.e., 

“safe”) strategies in two-player zero-sum games

• But it has no guarantees in general-sum and 

multiplayer games

• Furthermore, even in two-player zero-sum games, a 

much higher payoff is achievable against weak 

opponents by learning and exploiting their mistakes
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Opponent exploitation challenges

• Needs prohibitively many repetitions to learn in large 

games (only 3000 hands per match in the poker 

competition, so only have observations at a minuscule 

fraction of information sets)

• Partial observability of opponent’s private information

• Often, there is no historical data on the specific opponent 

– Even if there is, it may be unlabelled or semi-labelled

• Recently, game-solving approach has significantly 

outperformed exploitation approaches in Texas hold ‘em
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Overview of our approach

• Start playing based on game theory approach

• As we learn opponent(s) deviate from equilibrium, adjust our 

strategy to exploit their weaknesses

– E.g., the equilibrium raises 90% of the time when first to act, but the 

opponent only raises 40% of the time

– Requires no prior knowledge about the opponent

• Find opponent’s strategy that is “closest” to a pre-computed 

approximate equilibrium strategy and consistent with our 

observations of his actions so far

• Compute and play an (approximate) best response to the 

opponent model.
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Deviation-Based Best Response algorithm
(generalizes to multi-player games)

• Compute an approximate equilibrium

• Maintain counters of opponent’s play throughout the match

• for n = 1 to |public histories|

– Compute posterior action probabilities at n (using a Dirichlet prior)

– Compute posterior bucket probabilities

– Compute model of opponent’s strategy at n

• return best response to the opponent model

Many ways to define opponent’s “best” strategy 

that is consistent with bucket probabilities
• L1 or L2 distance to equilibrium strategy

• Custom weight-shifting algorithm, …



67

Experiments on opponent exploitation

• Significantly outperforms game-theory-based base strategy in 2-

player limit Texas hold ‘em against 

– trivial opponents (e.g., one that always calls and one that plays randomly)

– weak opponents from AAAI computer poker competitions

• Don’t have to turn this on against strong opponents

Opponent: Always fold

Win 

rate

Opponent: Always raise Opponent: GUS2

1,000 3,000
#hands
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Exploitation-exploitability tradeoff



Full 
opponent 

exploitation

Nash 
equilibrium

????

Exploitability

Exploitation
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Safe opponent exploitation

• Definition. Safe strategy achieves at least the 

value of the (repeated) game in expectation

• Is safe exploitation possible (beyond selecting 

among equilibrium strategies in the one-shot 

game)?
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Rock-Paper-Scissors

• Suppose the opponent has played Rock in each of the 

first 10 iterations, while we have played the 

equilibrium σ*

• Can we exploit him by playing pure strategy Paper in 

the 11th iteration?

– Yes, but this would not be safe! 

• By similar reasoning, any deviation from σ* will be 

unsafe

• So safe exploitation is not possible in Rock-Paper-

Scissors
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Rock-Paper-Scissors-Toaster

• t is strictly dominated

– s does strictly better than t regardless of P1’s strategy

• Suppose we play NE in the first round, and he plays t

– Expected payoff of 10/3

• Then we can play R in the second round and guarantee at 
least 7/3 between the two rounds

• Safe exploitation is possible in RPST!

– Because of presence of ‘gift’ strategy t

rock paper scissors toaster

Rock 0,0 -1, 1 1, -1 4, -4

Paper 1,-1 0, 0 -1,1 3, -3

Scissors -1,1 1,-1 0,0 3, -3
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When can opponent be exploited safely?

• Opponent played an (iterated weakly) dominated strategy?

• Opponent played a strategy that isn’t in the support of any eq?

• Definition. We received a gift if opponent played a strategy such that we have 

an equilibrium strategy for which the opponent’s strategy isn’t a best response

• Theorem. Safe exploitation is possible iff the game has gifts

R is a gift 

but not iteratively weakly dominated

L M R

U 3 2 10

D 2 3 0

L R

U 0 0

D -2 1

R isn’t in the support of any equilibrium

but is also not a gift
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Exploitation algorithms

1. Risk what you’ve won so far

2. Risk what you’ve won so far in expectation (over nature’s & own 

randomization), i.e., risk the gifts received

– Assuming the opponent plays a nemesis in states we don’t observe

• Theorem. A strategy for a two-player zero-sum game is safe iff it 

never risks more than the gifts received according to #2

• Can be used to make any opponent model / exploitation algorithm 

safe

• No prior (non-eq) opponent exploitation algorithms are safe

• We developed several new algorithms that are safe

– Present analogous results and algorithms for extensive-form 

games of perfect and imperfect-information
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Risk What You’ve Won in Expectation 

(RWYWE)

• Set k1 = 0

• for t = 1 to T do

– Set πt
i to be kt-safe best response to M

– Play action at
i according to πt

i

– Update M with opponent’s action at
-i

– Set kt+1 = kt + ui(π
t
i, a-i) – v* 

74
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Experiments on Kuhn poker

• All the exploitative safe algorithms outperform Best Nash 

against the static opponents

• RWYWE did best against static opponents

– Outperformed several more conservative safe exploitation algs

• Against dynamic opponents, best response does much worse 

than value of the game

– Safe algorithms obtain payoff higher than the game value
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Recap

• Background

• New approaches for game solving within the 

standard paradigm

• New game-solving paradigms

• Opponent exploitation

• Challenges and directions
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Game solving challenges

• Nash equilibrium lacks theoretical justification in 

certain game classes

– E.g., games with more than two players

– Even in two-player zero-sum games, certain refinements are 

preferable

• Computing Nash equilibrium is PPAD-complete in 

certain classes

• Even approximating NE in 2p zero-sum games very 

challenging in practice for many interesting games

– Huge state spaces

• Robust exploitation is preferable



78

Frameworks and directions

• Standard paradigm

– Abstraction, equilibrium-finding, reverse mapping (action translation and 

post-processing)

• New paradigms

– Incorporating qualitative models (can be used to generate human-

understandable knowledge)

– Real-time endgame solving

• Domain-independent approaches

• Approaches are applicable to games with more than two players

– Direct: abstraction, translation, post-processing, endgame solving, 

qualitative models, exploitation algorithm

– Equilibrium algorithms also, but lose guarantees

– Safe exploitation, but guarantees maximin instead of value 
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• www.ganzfriedresearch.com

• http://forumserver.twoplustwo.com/29/news-views-gossip-

sponsored-online-poker-report/wcgrider-dong-kim-jason-les-

bjorn-li-play-against-new-hu-bot-1526750/

• https://www.youtube.com/watch?v=phRAyF1rq0I


