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Klein Geometry

l. Introduction

The Macdowell-Mansouri extension of first order gravity is, according to Derek Wise (arXiv
0611154), based on the Erlangen Program for geometry initiated by Felix Klein in the mid-
1800's. It would seem wise for me to understand the basics better. This is an attempt to do so
in my own language. It is mathematically unsophisticated, and based on working from specific
examples to generalities. | will look at the O(N+1)/O(N) sequence in particular, and specifically
on O(5)/0(4). It is big enough to exhibit general patterns, and small enough to be easily
manageable.

In Section Il we quickly review the O(5)/0(4) example for the obvious choice of spherical
coordinates. It exhibits a pattern for the nonvanishing connection coefficients A, which we
thereafter adopt in general. | call it the OTAC (one to a customer) pattern, because for a given
choice of gauge indices one and only one component (in spacetime) for the connection A turns
out to be nonvanishing.

Given the OTAC hypothesis, a more complicated pattern of nontrivial elements of the field
strength F emerges, thanks to the nonlinearity present in the relationship of A to F. If one
wishes to create maximally symmetric spacetimes, it is only necessary to set F = 0. However,
we will here choose to be a bit more general. In Sections Il - V we will not demand F = 0, but
only ask that the elements of F themselves exhibit an OTAC pattern very similar to that
possessed by the connection A . This constrains the elements of the gauge potential in an
interesting way.

However, we do not succeed in finding much of a generalization beyond the F =0 case. it
seems that only one component of F is allowed, at least in an easy way, to be nonvanishing,
unless the OTAC pattern is abandoned. So in the later sections of this note this attemptis
dropped. But it turns out that even the F =0 case yields an interesting pattern. The six degrees
of freedom which we end up characterizing the properties of the MM connection A organize
themselves into a symplectic structure, i.e. of the trajectory of a “particle” moving in 6-
dimensional phase space. Furthermore, as discussed in Section VI, the MacDowell-Mansouri
line element turns out to be trivial and related to the parameters of this symplectic structure.
All this deserves much more scrutiny. But that is beyond the scope of this exploratory note.



il The Maximally Symmetric Connection

Consider the O(5)/0(4) example, whgre the connection A is a synthesis of a vierbein e and an
0(4) connection W . We write the connection out in component form as follows:
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Here

St = am¥; Cc = Cos X;

We therefore recognize the choice of vierbein we have written down as appropriate for four
dimensional spherical coordinates, with the identifications
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Hindsight has also been used to dictate the choice of the connection coefficients. They lead to
the result
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This is a key property of the MM methodology: spacetlmes with maximal symmetry are

described in MM language as having flat connections. We will not here bother to demonstrate

that the choice of A made above leads to F = 0 ; we address the issue in more general terms in
the next section.



Another interesting case is a “Euclidean FRW metric”. We write
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5, = SmX, C, = tos X

The line element takes a rather unfamiliar form:
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But this choice leads to a nonvanishing, but constant, field strength F. Again, we defer detailed
examination of this case until later. The OTAC hypothesis is actually violated in this case,
because
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Such cases are of considerable interest, but do require special attention.



1R Not Quite Maximal Symmetry

In this section we will assume the OTAC property for the connection A, and work out its
consequences for the field strength F. Most of this will be done for the specific O(5)/0(4)
example, because | personally find the arguments easier to follow. Generalizations will for the
most part will rely on common sense. But it should not be difficult for the reader to complete

the general proofs of the assertions to be made. We write, with some hindsight regarding
notation
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Notice that a nonvanishing component of A requires at least two of the three indices to be
equal, and that .

The definition of the field strength, in component form, is
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Here we have marked the entries which are identically zero, given the OTAC assumption.
Nevertheless, there remain quite a few additional potentially nonvanishing entries. It is at this
point that we demand simplifications. In particular, we will require that the only nonvanishing
elements of F (for the cases within our range of consideration) are those which are starred. This
choice is of course not the most general that can be made, but it is considerably more general
than the maximally symmetric option leadingto F = 0. It also possesses a kind of OTAC
structure. However it now the components of the O(N) curvature which are analogous to the
vierbein (now a 6-bein!), while the coset components of the curvature are analogous to the
O(N) connection W (but with the roles of spacetime and internal indices interchanged).

So at this point we can concentrate on the constraints imposed by the assumed vanishing of the
unstarred components of F. These fall into two categories, as shown. Those marked with an X
are of the form 9 ik

= O
2%

They simply restrict the dependence of the connection coefficients on the spacetime

parameters. Simple computations, such as exhibited below, lead to the conclusions
l

F-lg - 9/\1 _% + A% IS:O

———? 2§: = O
Likewise, 'DXZ
?—@-‘ :?_g\- = (o /,a.__—e‘:’a_e’- =2_83 = O

X3 P, 0% IXe DXt

Consequently,
€ =6 (X,) €, = 87_()(:, ®u) €;= 83("195(7-)7‘?)

This result obviously generalizes.

€ = Cln, %)
In a similar way, one finds, for the remaining entries in this category, the constraints
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The remaining constraints, indicated by a check mark, are a little less trivial. For the special case

at hand, we simply write them all down:
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There is an obvious generalization:
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We can now see that the (N - 1) quantities p; are actually input parameters, while the
remaining @;,’s are determined by them (up to the “constants of integration” ¢, ,and/or the

choices of the lower limits of integration in the sundry integrals ).



With these results in hand, we can write down reasonably simple expressions for the
components of F which we do wish to retain for consideration. They are as follows:
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While these are reasonably simple, they are nevertheless still nontrivial. However, the
dependence of the field strengths F on the variables x; is strongly constrained.

Iv. The Coset Field Strengths

The field strengths containing the 5 index have a simple structure; they are linear in the
vierbein parameters. The simplest path forward toward manageable simplicity seems to be to
set all these field strengths to zero. The most direct way is by iteration. For example, we have
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Evidently this procedure generallzes, and produces the solution
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This can be checked from the general equation
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We can, if we wish, eliminate all the a k from the equations by expressing them in terms of
derivatives of the e's:
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This structure exhibits the content of this step. We seem to be demanding that the connection
be Levi-Civita, i.e. expressible in terms of Christoffel symbols. It seems to be this step that is
most responsible for connecting the Klein-geometry description to the usual Riemannian -
geometry description.

V. The Constant Curvature Hypothesis

We are left with the diagonal curvature terms. These are controlled by nonlinear equations
which link the components of F with the parameters e (or equivalently the p’s). Before
tackling the problem, it is instructive to take the maximally symmetric connection defined in
Section Il and to see how the condition F =0 gets satisfied. For our first example, direct
substitution gives the following results for the relevant six F's:
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We have chosen the ordering of these equations with an eye toward simplicity, and as a guide
for considering the general case to follow. We see thatindeed F = 0.




For the second “Euclidean FRW” example, we find, in passing,
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Consequently three of the six diagonal curvature components become constant and
nonvanishing. This example may comprise a useful model for the general cases we will need in
practice. However, we do set this case aside for now.

We now turn to the general case. The first equation reads, in general notation
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It turns out to be helpful to defer consideration of this case until considering some of the
remaining equations. We write
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Differentiating this equation yields
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We see that either fl =0 or p,= 0. But, given the OTAC hypothesis, none of the p, can
vanish.

I

In a similar fashion,
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Considerable simplifications occur by assuming

e =1

The more general case appears accessible simply by a change of variables.

|
{7
Differentiation with respect to X| leads to the solution

O

We set the coefficient cz to unity for reasons similar to those for e -

Vanishing of f, implies

The equation for f__is:
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Differentiation with respect to x, leads to

FL = cosK

This in turn implies that the integration constant ¢ ., vanishes;
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Next we revisit f, . A similar line of argument ensues:
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This situation also exists for 4_:
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The only solution compatible with the previous result is
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This leaves only fs‘t’to consider. Here the situation is actually a little different. The first part of
the argument proceeds as before:
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However, this time we can keep a constant of integration:
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This case already appears in the simplest O(3) / O(2) example. What we learn here is that,
within the OTAC hypothesis, nothing more happens when one generalizes to O(N+1) / O(N) .
Only one component of F is allowed to become constant and nonvanishing. However, when

we generalize, more interesting cases might emerge. We now turn to this more general
situation.

vi. Loosening the Constraints

From experience with FRW deSitter metrics, we know that there can be a richer structure for F

provided the metric tensor has negative eigenvalues. So we include this generalization in what
follows. The relevant line element is
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We assume
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This choice of metric does not directly affect our definition of A . But the definition of F is

affected: A
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But, in general, the pattern of the subsequent arguments is preserved, with the main change
being the presence of VZA% in the equations that gave us sines and cosines. When VMe.: -1, the
cosines and sines can be replaced with cosh’s and sinh’s with very little structural change in the
final result. This corresponds, for example, to the k = +1 or k = -1 choices for deSitter geometry.
More interesting is what happens if we make the “flat” k = 0 choice. Such cases will be

accessible in what follows as well. But most importantly, we recognize that the very essential
simplification
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will survive the generalization. Consequently, we can ab initio simplify our somewhat
cumbersome notation. In particular, we now define A as follows:
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Given this change of notation, we rewrite the equations for the field strengths yet one more
time. We also define
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It is easily checked that, given these definitions, the only nonvanishing components of F are
the f, ;5 as shown above. And the equations for the f;. ‘s now get cleaned up to a considerable

degree:
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We see here a strong Hamiltonian flavor emerging; this feature has mde been the motivation
for the p, g notation which we have adopted. In this spirit, define
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We have chosen an unconventional normalization for these “Hamiltonians” in order that their
eigenvalues can be naturally set to either +1, -1, or 0. The “equations of motion” which
accompany such “Hamiltonians” are as follows:
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We see that, when they are satisfied, all the f‘. . vanish.

Finally, note that the constants of integration present in previous sections have now been
assumed to vanish. Doing better is still an interesting option to pursue. But it seems to require
going beyond the OTAC hypothesis, which lies outside the scope of this note.

VIl.  Indefinite Metrics and Vanishing Kappas

Once we stray from the fully Euclidean case, there are a large number of cases to consider.
With our Hamiltonian insights, we classify these in terms of the three phase-space plots for the
three canonical pairs of q and p which contain all the information present in the cartography.
The crucial parameters are the K‘s and the Hamiltonian eigenvalues, restricted to +1, -1, and 0:
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The basic inputs to the scheme are the 5 N ‘s defining the MM internal group structure.
Without loss of generality, we can set ns= 1. Furthermore V],, does not play a direct role in
what follows. However, changing the sign of Wy and leaving everything else unchanged does
modify the spacetime metric structure. This issue will return when we see the results of this
exercise.

The remaining crucial parameter choices are for H, and H, . Unless at least one of these is set
to zero, the considerations we have already made follow with only minor changes. More
interesting are cases for which at least one of the H’s vanish. Nevertheless, there are many
different options to classify. i
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On the next page is a flo éart which illustrates this situation. It hopefully is reasonalbly self-
explanatory. There are 3% distinct paths from the top of the page to the bottom, each of which
defines a set of v)‘s (other than ']4 ), the values of the H’s, and therefore the values of the J('s.
From these ?{spacetime line elements can be constructed, thanks to the absence of 7,fin the
flow chart. ci 2

While it is tempting to here provide a catalogue of all these cases, | will not do so. Many of the
output spacetime metrics look unphysical. A very simple example is to retreat to the world of
generalized O(3) / O(2) . Consider our prototypical gauge potential A and field strength F:
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Choosing Y)B = q \ < l , we still may choose }72..= - 1. This leads to the line element
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The curvature tensor R which follows from this is nontrivial;
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However the gauge-invariant curvature remains simple.
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This kind of consideration needs to be extended to higher dimensions. It is not clear to me, e.g.,
whether the connection () which we have constructed is always Levi-Civita. But investigating
this further is beyond the scope of this note.

.
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Vill.  The MacDowell-Mansouri Line Element

The parameters K; which are introduced above have an additional interesting interpretation.
Define the MacDowell-Mansouri line element as follows
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The MM “spacetime” is flat, with a signature given by the W s,
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IX. Comments
This study reveals elements of simplicity which deserve further exploration. The symplectic
structure in particular should be fleshed out. Two approaches suggest themselves. One is by

looking at the covariant-conformal, as well as the Painleve-Gulistrand cartographies, both of
which produce elegant descriptions of deSitter space, but do not fall into the OTAC category.

Another approach is to lean on the spinorial, Clifford-algebra description of the MacDowell-
Mansouri extension. It clearly has a close linkage to what we have explored in thag note. But
the details are not at all clear to me at this stage.

In either case, the content of this note does seem to me to be somewhat nontrivial. Further
exploration in this direction would seem to be very worthwhile.
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