CAP 5993/CAP 4993
Game Theory

Instructor: Sam Ganzfried
sganzfri@cis.fiu.edu



Schedule

HW4 out this week due 4/13.

Project presentations on 4/18 and 4/20.
Project writeup due 4/20.

~inal exam on 4/25.




Projects

Can work In groups 1-3

Project can be theoretical, or applied
— Could involve implementation, e.g., with Gambit

Original summary project is ok If it Is approved by me
Can get full credit for all project types



Solution concepts

Maxmin strategies
Weak/strict domination
Nash equilibrium

Refinements of Nash equilibrium
— Trembling hand perfect equilibrium
— Subgame perfect equilibrium

— Proper equilibrium

— Evolutionarily stable strategies
Quantal response equilibrium
Correlated equilibrium

Stackelberg equilibrium



Game representations

o Strategic form

« Extensive form
— Perfect information
— Perfect information (with chance events)
— Imperfect information (with chance events)

» Repeated
— Finite vs. infinite
— Discounted vs. undiscounted



The “Big Match”

« One day, the king has to leave for an undefined time and
therefore decides to put his trusted minister in charge of the
kingdom. The day before leaving, the king informs the minister
that he will not hear from the king until his return. On the day
the king will return, if the minister will be found working hard,
the king will award the minister by abducting in favor of him.
On the other hand, if on that day the king will find the minister
enjoying life, the king will put the minister in prison. The King is
powerful and has informers. Therefore he knows every day
whether the minister was at work or not in the past days.



« The minister knows that If he worked hard every day,
the king, being informed of this, would not come back.
But this would mean an everlasting miserable life of
working hard every day!

» The minister also knows that if he did not work hard at
all, the king would come very soon and the minister
would be imprisoned.






« The row player is the king, and the column player is the
minister. The decision of the king not to come back corresponds
to action T. Thus, for every day that the king plays T, the state
of the game transitions to the same state s,. This occurs
Independently of the choice of the minister to be at work, denote
by L, or to rest, denoted by R. The choice of the king of coming
back is denote by the action B. If the king plays B and the
minster plays L (work hard), the game jumps to state s,, which
Implies an everlasting reward for the minister. Conversely, if the
King plays B and the minister plays R (the minister is found
enjoying life), then the state of the game jumps to s,, which
Implies an everlasting punishment for the minister.



* We can solve this game by applying “dynamic
programming principle.” Let A be the discount factor.
Suppose V; are the “values” of the stage games. Then
we can compute the values of each action in each game
as a function of v; as follows:
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Game G_h
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By imposing the fixed point condition on both states O
and 1, we obtain: vy=0, v; = 1.

From the Indifference Principle, we can then solve for
Vv, to obtain v, = %.

The equilibrium strategies are [*2 L, ¥2 R] for row
player and [1/(1+ A) T, A /(1+ A) B] for column player.

(Full derivation in Bauso textbook).
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» The interpretation of the above result is as follows. The best
strategy for the minister is to work every two days on average.
This i1s equivalent to saying that every day the minister will toss
a coin and depending on the result he will work hard or not. The
Interpretation of the best strategy for the king is as follows. First
note that his optimal strategy will depend on the discount factor,
that is, on how farsighted he is. The king will return with a
probability that increases with the discount factor. That is to say
that the more myopic the king is, the sooner he will come back.
Conversely, if the king Is farsighted, the discount factor is small
and tends to zero, and consequently the probability of coming
back approaches zero. Note that the discount factor influences
only the strategy of the king. The strategy of the minister does
not depend on the discount factor. This derives from the fact that
only the king can force the state of the game to jump to an
absorbing state. 13



Stochastic games

Definition 6.2.1 (Stochastic game) A stochastic g

ame (also known as a Mark«
game) is & tuple (Q, N . A, P,r), where:
« () is a finite set of games;

. | 5

N is a finite set of n players;
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where A; is a finite set of actions available to player 1,

Q > [0, 1] is the transition probability function, Pg,a,q)is
lity of transitioning from state q to state { after action profile a; and
e R=r14....,7,, wherer; : Q x A v R is a real-valued payoff function for

player 1.

In this definition we have assumed that the strategy space of the agents 1s the

D0

same in all games_ and thus that the difference between the games 1s only in the
payoff function. Removing this assumption adds notation, but otherwise presents
no major difficulty or msights

Restricting () and each A, to be finife 1s a sub
stantive restriction but we do so for a reason: the mnfinite case raises a number of
complications that we wish to avoid

We have specified the payoff of a player at each stage game (or in each state),
but not how these payoffs are aggregated into an overall payoff. To solve this prob-

lem. we can use solufions already discussed earlier in connection with mfinitely

repeated games (Section 6.1.2). Specifically, the two most commonly used aggre
gation methods are average reward and future discounted reward
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Stochastic games generalize many
settings

Games with finite interactions; this occurs if the state of the
game reaches at time t an absorbing state with null payoff;
Static matrix games (aka strategic-form games) if we sett =1
Repeated games If the game admits only one state

Stopping games if the stage payoff is null until a player decides
to quit the game; in consequence of this, the state of the game
reaches an absorbing state with normal payoff.

Markov decision problems if the game involves only one single
player.

— We will see an example later.
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Stochastic (aka Markov) games

Capital accumulation or fishery:
Taxation:

Communication network:
Queues:

Poker tournament:
— Stacks of (20,50,10) -> (30,40,10) ->...

16



» Theorem (Shapley 1953): If all sets are finite,
then for every A there exists an equilibrium In
stationary strategies.

— Proof: Uses the above “dynamic programming”
procedure, where “nonexpansiveness” of the value
operator yields a unique fixed point, which
corresponds to a Nash equilibrium.

A strategy Is stationary If it depends only on the
current state (and not on the time step).
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* Theorem (Mertens and Neyman 1981): For two-player
Zero-sum games, each player has a strategy that is -
optimal for every discount factor sufficiently small.

— Called a “uniform equilibrium”

» Theorem (Vielle 2000): For every two-player
nonzero-sum stochastic game there is a strategy
profile that Is an e-equilibrium for every
discount factor sufficiently small.
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Continuous games

« G=(P,C,U)
— P =1,2,3,..,nis the set of players

— C=(C,,...,C,) Is a compact metric space
corresponding to the 1’th player’s set of pure
strategies

— U = (uy,...,u,) Is utility function of player I

19



» Mixed strategies are the space of Borel probability
measures on C..

« The existence of a Nash equilibrium for any continuous
game with continuous utility functions can been proven
using Irving Glicksberg's generalization of the
Kakutani fixed point theorem. In general, there may
not be a solution If we allow strategy spaces, C;'s which
are not compact, or if we allow non-continuous utility
functions.
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Continuous games

It extends the notion of a discrete game, where the players
choose from a finite set of pure strategies. The continuous game
concepts allows games to include more general sets of pure
strategies, which may be uncountably infinite.

In general, a game with uncountably infinite strategy sets will
not necessarily have a Nash equilibrium solution. If, however,
the strategy sets are required to be compact and the utility
functions continuous, then a Nash equilibrium will be
guaranteed; this is by Glicksberg's generalization of the
Kakutani fixed point theorem. The class of continuous games is
for this reason usually defined and studied as a subset of the
larger class of infinite games (i.e. games with infinite strategy
sets) in which the strategy sets are compact and the utility
functions continuous. 21



Guess the larger number

« \What are the strategy sets and utility functions?
» \Why does this have no equilibrium??
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Separable continuous games

Separable games | edit]

A separable game is a continuous game where, for any i, the utility function u; : € — IR can be expressed in the sum-of-products form:
my My
u;(s) = Z .. Z Qi k.. ko J1(81) .. fn(8n). wheres € C, s; € Cj, a; 1,...r, € R, and the functions f; 1 : C; — R are continuous.
ki=1  kn—1

A polynomial game is a separable game where each C; is a compact interval on R and each utility function can be written as a multivariate polynomial.

In general, mixed Nash equilibria of separable games are easier to compute than non-separable games as implied by the following theorem:

For any separable game there exists at least one Nash equilibrium where player i mixes at most m; + 1 pure strategies.[z]

Whereas an equilibrium strategy for a non-separable game may require an uncountably infinite support, a separable game is guaranteed to have at least one Nash

equilibrium with finitely supported mixed strategies.
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Separable games |[edit]

A polynomial game [ edit]
Consider a zero-sum 2-player game between players X and Y, with C'y = Cy = [0, 1]. Denote elements of Cy and Cy asx and y respectively. Define the utility functions H(m, y) = u,(m,y) = —uy(a:, y} where
H(z,y) = (z - y)*.
The pure strategy best response relations are
1, ify €[0,1/2)
bx(y)=4 Oorl, ify=1/2
0, ify e (1/2,1]
by(z) ==z
bx(y) and by (x) do notintersect, so there is
no pure strategy Nash equilibrium. However, there should be a mixed strategy equilibrium. To find 1t, express the expected value, v = ]E[H(:c, y}] as a linear combination of the first and second moments of the probability

distributions of X and Y:

V= pxa — 2ux1py1 + Hyz

(where pxy = ]E[:n\}

and similarly for Y)
The constraints on gx1 and pxs (with similar constraints for y,) are given by Hausdorff as:

BXx1 2 px2 Byl 2 py2
P < pxa 1y < pya

Each pair of constraints defines a compact convex subset in the plane. Since v is linear, any extrema with respect to a player's first two moments will lie on the boundary of this subset. Player i's equilibrium strategy will lie on

il = piz OF .H?l = Hiz

Note that the first equation only permits mixtures of 0 and 1 whereas the second equation only permits pure strategies. Moreover, if the best response at a certain point to player i lies on p;1 = fi2 , it will lie on the whole line,

so that both 0 and 1 are a best response. by(p);l,yxz) simply gives the pure strategy y = x1 , 50 by will never give both 0 and 1. However b, gives both 0 and 1 when y = 1/2. A Nash equilibrium exists when
(lx1%, pxa®, gy, piya*) = (1/2,1/2,1/2,1/4)

This determines one unique equilibrium where Player X plays a random mixture of O for 1/2 of the time and 1 the other 1/2 of the time. Player Y plays the pure strategy of 1/2. The value of the game is 1/4




Non-Separable Games [edi]

A rational pay-off function [ edit]
Consider a zero-sum 2-player game between players X and Y, with Cx = Cy = [D_, 1] Denote elements of C'y and C'y as z and y respectively. Define the utility functions H {_.1:, y) = u,(z, u) = —‘u.y(:z:_. y] where

1+ 2)(1+ )1 - o
H(z,y) = A+a) +u){d - =) l)((l :Iy;){q Iy}.

This game has no pure strategy Nash equilibrium. It can be shownl3] that a unique mixed strategy Nash equilibrium exists with the following pair of probability density functions:

The value of the game is 4/7.

Requiring a Cantor distribution [ edit |

Consider a zero-sum 2-player game between players X and Y, with Oy = Cy = [D_, 1] Denote elements of Cy and Cy as z and y respectively. Define the utility functions H {_.1:, y) = u,(z, y) = —-u.y{:z:_. y] where

He =3 (- ((-3) - (3)) (- ((-9)"-(3))

n=0 “

This game has a unique mixed strategy equilibrium where each player plays a mixed strategy with the cantor singular function as the cumulative distribution function [4]
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Continuous poker models

« Consider the following simplified poker game. Suppose two
players are given private signals, X, and X,, independently and
uniformly at random from [0,1]. Suppose the pot initially has
size p (one can think of this as both players having put in an ante
of p/2, or that we are at the final betting round—aka final
street—of a multi-street game). Player 1 is allowed to bet or
check. If player 1 checks, the game is over and the player with
the lower private signal wins the pot (following the convention
of). If player 1 bets, then player 2 can call or fold. If player 2
folds, then player 1 wins the pot. If player 2 calls, then whoever
has the lower private signal wins p+1, while the other player
loses 1. This situation can be thought of as an abstraction of the
final street of a hand of limit Texas hold ’em where raising is
not allowed and player 2 has already checked. 26
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« These poker game models are generally not separable, but can
often be solved analytically by solving a series of indifference
equations.

— Many examples of this in “Mathematics of Poker” by Ankenman and
Chen.

— See also my paper
https://www.cs.cmu.edu/~sganzfri/Qualitative AAMAS10.pdf (extended
version here https://www.cs.cmu.edu/~sganzfri/Qualitative_TR10.pdf).
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Bayesian games
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Players have uncertainty about the very game being played!!!

— “incomplete information”

Contrast this with when players knew the game but not the exact
state of the game, “imperfect information™

Two assumptions:

— All possible games have the same number of agents and the same strategy
space for each agent; they differ only in their payoffs

— (common prior assumption) The beliefs of the different agents are
posteriors, obtained by conditioning a common prior on individual prior
signals

30



3 (equivalent) definitions

Definition 6.3.1 (Bayesian game: information sets) A Bayesian game
ple (N, G, P, I) where:

* Nisaset of agents:
* Gisaset of games with N agents each

such that if g, g’ € G then for ea
agenti € N the Strategy space in g is identical to the strategy space in g
* PeT(G) is q common prior ovey games, where T1(G) is the set
probability distributions over G; and
L= (L Iy)i

S atuple of pgy titions of G , one for each agent.
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6.3 Bayesian Lames
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Figure 6.9 Utility functions 1 and w: for the Bayesian game from Figur

Our third definition uses the notion of an epistentic type. or simpl
way of defining uncertainty directly over a game’s utility function.
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Security game

Detender Altacker

Target | Covered | Uncovered | Covered l_.|I!|:;:|:'l'|.-1.=:1‘-|.f:=|:||

Table 1 Example of a secunty game with two targets.
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Bayesian Security games

 In the above example, all payoff values are exactly known. In
practice, we often have uncertainty over the payoffs and
preferences of the players. Bayesian games are a well-known
game-theoretic model in which such uncertainty is modeled using
multiple types of players, with each associated with its own
payoff values. For security games of interest, the main source of
payoff uncertainty 1s regarding the attacker’s payoffs. In the
resulting Bayesian Stackelberg game model, there is only one
leader type (e.g., only one police force), although there can be
multiple follower types (e.g., multiple attacker types trying to
Infiltrate security). Each follower type is represented using a
different payoff matrix. The leader does not know the follower’s
type, but knows the probability distribution over them. The goal
IS to find the optimal mixed strategy for the leader to commit to,
given that the defender could be facing any of the followeg %ypes.



Robust management of diabetes
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Assignment

* Project proposal (1-2 pages) due tonight.
» Reading for next class: chapter 12 from main textbook.
« Homework 4 out this week (due 4/13).
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