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CAP 5993/CAP 4993

Game Theory

Instructor: Sam Ganzfried

sganzfri@cis.fiu.edu
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Schedule

• HW4 out this week due 4/13.

• Project presentations on 4/18 and 4/20. 

• Project writeup due 4/20.

• Final exam on 4/25.
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Projects

• Can work in groups 1-3

• Project can be theoretical, or applied

– Could involve implementation, e.g., with Gambit

• Original summary project is ok if it is approved by me

• Can get full credit for all project types
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Solution concepts

• Maxmin strategies

• Weak/strict domination

• Nash equilibrium

• Refinements of Nash equilibrium

– Trembling hand perfect equilibrium

– Subgame perfect equilibrium

– Proper equilibrium

– Evolutionarily stable strategies

• Quantal response equilibrium

• Correlated equilibrium

• Stackelberg equilibrium
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Game representations

• Strategic form

• Extensive form 

– Perfect information

– Perfect information (with chance events)

– Imperfect information (with chance events)

• Repeated 

– Finite vs. infinite

– Discounted vs. undiscounted
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The “Big Match”

• One day, the king has to leave for an undefined time and 

therefore decides to put his trusted minister in charge of the 

kingdom. The day before leaving, the king informs the minister 

that he will not hear from the king until his return. On the day 

the king will return, if the minister will be found working hard, 

the king will award the minister by abducting in favor of him. 

On the other hand, if on that day the king will find the minister 

enjoying life, the king will put the minister in prison. The king is 

powerful and has informers. Therefore he knows every day 

whether the minister was at work or not in the past days.
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• The minister knows that if he worked hard every day, 

the king, being informed of this, would not come back. 

But this would mean an everlasting miserable life of 

working hard every day!

• The minister also knows that if he did not work hard at 

all, the king would come very soon and the minister 

would be imprisoned.
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• The row player is the king, and the column player is the 

minister. The decision of the king not to come back corresponds 

to action T. Thus, for every day that the king plays T, the state 

of the game transitions to the same state s2. This occurs 

independently of the choice of the minister to be at work, denote 

by L, or to rest, denoted by R. The choice of the king of coming 

back is denote by the action B. If the king plays B and the 

minster plays L (work hard), the game jumps to state s1, which 

implies an everlasting reward for the minister. Conversely, if the 

king plays B and the minister plays R (the minister is found 

enjoying life), then the state of the game jumps to s0, which 

implies an everlasting punishment for the minister.    
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• We can solve this game by applying “dynamic 

programming principle.” Let λ be the discount factor. 

Suppose vi are the “values” of the stage games. Then 

we can compute the values of each action in each game 

as a function of vi as follows:
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• By imposing the fixed point condition on both states 0 

and 1, we obtain: v0 = 0, v1 = 1.

• From the Indifference Principle, we can then solve for 

v2 to obtain v2 = ½.

• The equilibrium strategies are [½ L, ½ R] for row 

player and [1/(1+ λ) T, λ /(1+ λ) B] for column player.

• (Full derivation in Bauso textbook).
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• The interpretation of the above result is as follows. The best 

strategy for the minister is to work every two days on average. 

This is equivalent to saying that every day the minister will toss 

a coin and depending on the result he will work hard or not. The 

interpretation of the best strategy for the king is as follows. First 

note that his optimal strategy will depend on the discount factor, 

that is, on how farsighted he is. The king will return with a 

probability that increases with the discount factor. That is to say 

that the more myopic the king is, the sooner he will come back. 

Conversely, if the king is farsighted, the discount factor is small 

and tends to zero, and consequently the probability of coming 

back approaches zero. Note that the discount factor influences 

only the strategy of the king. The strategy of the minister does 

not depend on the discount factor. This derives from the fact that 

only the king can force the state of the game to jump to an 

absorbing state.
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Stochastic games
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Stochastic games generalize many 

settings
• Games with finite interactions; this occurs if the state of the 

game reaches at time t an absorbing state with null payoff;

• Static matrix games (aka strategic-form games) if we set t = 1

• Repeated games if the game admits only one state

• Stopping games if the stage payoff is null until a player decides 

to quit the game; in consequence of this, the state of the game 

reaches an absorbing state with normal payoff.

• Markov decision problems if the game involves only one single 

player.

– We will see an example later.
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Stochastic (aka Markov) games

• Capital accumulation or fishery:

• Taxation:

• Communication network:

• Queues:

• Poker tournament:

– Stacks of (20,50,10) -> (30,40,10) ->…
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• Theorem (Shapley 1953): If all sets are finite, 

then for every λ there exists an equilibrium in 

stationary strategies.

– Proof: Uses the above “dynamic programming” 

procedure, where “nonexpansiveness” of the value 

operator yields a unique fixed point, which 

corresponds to a Nash equilibrium.

• A strategy is stationary if it depends only on the 

current state (and not on the time step).
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• Theorem (Mertens and Neyman 1981): For two-player 

zero-sum games, each player has a strategy that is ε-

optimal for every discount factor sufficiently small.

– Called a “uniform equilibrium”

• Theorem (Vielle 2000): For every two-player 

nonzero-sum stochastic game there is a strategy 

profile that is an ε-equilibrium for every 

discount factor sufficiently small. 



19

Continuous games

• G = (P,C,U)

– P = 1,2,3,..,n is the set of players

– C = (C1,…,Cn) is a compact metric space 

corresponding to the i’th player’s set of pure 

strategies

– U = (u1,…,un) is utility function of player i
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• Mixed strategies are the space of Borel probability 

measures on Ci.

• The existence of a Nash equilibrium for any continuous 

game with continuous utility functions can been proven 

using Irving Glicksberg's generalization of the 

Kakutani fixed point theorem. In general, there may 

not be a solution if we allow strategy spaces, Ci's which 

are not compact, or if we allow non-continuous utility 

functions.
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Continuous games

• It extends the notion of a discrete game, where the players 

choose from a finite set of pure strategies. The continuous game 

concepts allows games to include more general sets of pure 

strategies, which may be uncountably infinite.

• In general, a game with uncountably infinite strategy sets will 

not necessarily have a Nash equilibrium solution. If, however, 

the strategy sets are required to be compact and the utility 

functions continuous, then a Nash equilibrium will be 

guaranteed; this is by Glicksberg's generalization of the 

Kakutani fixed point theorem. The class of continuous games is 

for this reason usually defined and studied as a subset of the 

larger class of infinite games (i.e. games with infinite strategy 

sets) in which the strategy sets are compact and the utility 

functions continuous.
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Guess the larger number

• What are the strategy sets and utility functions?

• Why does this have no equilibrium??
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Separable continuous games
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Continuous poker models

• Consider the following simplified poker game. Suppose two 

players are given private signals, x1 and x2, independently and 

uniformly at random from [0,1]. Suppose the pot initially has 

size p (one can think of this as both players having put in an ante 

of p/2, or that we are at the final betting round—aka final 

street—of a multi-street game). Player 1 is allowed to bet or 

check. If player 1 checks, the game is over and the player with 

the lower private signal wins the pot (following the convention 

of). If player 1 bets, then player 2 can call or fold. If player 2 

folds, then player 1 wins the pot. If player 2 calls, then whoever 

has the lower private signal wins p+1, while the other player 

loses 1. This situation can be thought of as an abstraction of the 

final street of a hand of limit Texas hold ’em where raising is 

not allowed and player 2 has already checked.
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• These poker game models are generally not separable, but can 

often be solved analytically by solving a series of indifference 

equations.

– Many examples of this in “Mathematics of Poker” by Ankenman and 

Chen.

– See also my paper 

https://www.cs.cmu.edu/~sganzfri/Qualitative_AAMAS10.pdf (extended 

version here https://www.cs.cmu.edu/~sganzfri/Qualitative_TR10.pdf).

https://www.cs.cmu.edu/~sganzfri/Qualitative_AAMAS10.pdf
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Bayesian games
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• Players have uncertainty about the very game being played!!!

– “incomplete information”

• Contrast this with when players knew the game but not the exact 

state of the game, “imperfect information”

• Two assumptions:

– All possible games have the same number of agents and the same strategy 

space for each agent; they differ only in their payoffs

– (common prior assumption) The beliefs of the different agents are 

posteriors, obtained by conditioning a common prior on individual prior 

signals
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3 (equivalent) definitions
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Security game
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Bayesian Security games
• In the above example, all payoff values are exactly known.  In 

practice, we often have uncertainty over the payoffs and 

preferences of the players.  Bayesian games are a well-known 

game-theoretic model in which such uncertainty is modeled using 

multiple types of players, with each associated with its own 

payoff values.  For security games of interest, the main source of 

payoff uncertainty is regarding the attacker’s payoffs.  In the 

resulting Bayesian Stackelberg game model, there is only one 

leader type (e.g., only one police force), although there can be 

multiple follower types (e.g., multiple attacker types trying to 

infiltrate security).  Each follower type is represented using a 

different payoff matrix. The leader does not know the follower’s 

type, but knows the probability distribution over them.  The goal 

is to find the optimal mixed strategy for the leader to commit to, 

given that the defender could be facing any of the follower types.
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Robust management of diabetes
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Assignment

• Project proposal (1-2 pages) due tonight.

• Reading for next class: chapter 12 from main textbook.

• Homework 4 out this week (due 4/13).


