

Envisaging a world with greener cities

MAGIC - Partner Meeting

An update on numerical modelling using Fluidity

Rossella Arcucci, Megan Davies Wykes, Michela Garau, William Lin, <u>Laetitia Mottet</u>, Jiyun Song, Huw Woodward, Dunhui Xiao.

21st March 2018

Numerical Modelling

Fluidity

- Open-source CFD software developed at Imperial College London
- Finite-element method
- Unstructured and adaptive mesh
- Model for turbulence: Large Eddy Simulation (LES) approach
- Inlet velocity: synthetic eddy method

Neighboorhood scale simulations

Comparison with wind tunnel experiment

MAGIC

Envisaging a world with greener cities

Neighboorhood scale simulations

Pollutant transport

MAGIC

Envisaging a world with greener cities

Laetitia Mottet

Source: https://www.windfinder.com/windstatistics/london-heathrow

Traffic modelling

Envisaging a world with greener cities

Huw Woodward

PTV Vissim

Roof shape effects

MAGIC

Envisaging a world with greener cities

Flat roofs

Pitched roofs

Roof shape effects

Michela Garau

MAGIC

Envisaging a world with greener cities

Wind Direction 230°

Imperial College London

W/Uref

(C*Uref) / Qref [m^-2]

Tree modelling

Trees are modelled as porous objects which absorb pollutants. Huw Woodward

Sink added to momentum equation:

$$S = C_d A\left(\frac{1}{2}\rho v |v|\right)$$

Sink added to t diffusion equation $\Delta C = C A V_d$

Imperial College London

Envisaging a world with greener cities

Elevation of the terrain

MAGIC

Envisaging a world with greener cities

Laetitia Mottet

Towards more realistic models Data assimilation (DA)

DA is an uncertainty quantification technique used to incorporate observational data into a prediction model in order to improve numerical forecasted results.

Historical

orecasting data

(1) build_covariance (2) Variational data assimilation prediction/ correction cycle forecasting

observed data

State of the art of DA in MAGIC: FluidityVAR

Imperial College

sensors

data

Envisaging a world with greener cities

Rossella Arcucci

Data assimilation (DA)

• 3D case study: error for Velocity

MAGIC

Envisaging a world with greener cities

Towards more physics

Thermal effect - Microclimate

Main factor influencing the urban microclimate

Imperial College London

Envisaging a world with greener cities

Imperial College London

MAGIC

Indoor modelling

EnergyPlus

Wind pressure coefficient

MAGIC

Envisaging a world with greener cities

Laetitia Mottet

William Lin

Jiyun Song

 Use outdoor sensor data, building material data, wind tunnel experiments and Fluidity simulations to model indoor thermal conditions.

Summary

Fluidity: a complete tool

MAGIC

Envisaging a world with greener cities

Envisaging a world with greener cities

Managing Air for Green Inner Cities (MAGIC)

Web: www.magic-air.co.uk

Email: admin@magic-air.co.uk

Tel: 01223 336494

