Section 6. Low / High Temperature Manipulators

Multi-axis Cryo-manipulator 6-1/2

Variable Temperature Insert (VTI)
6-4

Multi- axis High Temperature Manipulator 6-9/10/11

Modules & accessories 6-3/5/6/8

Multi-axis Helium-free Manipulator

Highlights

- Cooled by GM cryocooler
- Low cost of ownership
- Multiple Axis: Up to 6
- Temperature range: < 6K-325K
- > RT to 6K: < 4 hours

- Options

- ✓ Sample Floating Module

- ✓ YAG Stage
- ✓ Low Temperature Cleavage Module
- ✓ Four-probe Transport Module

>> Mechanical Specifications

Polar rotation	360° (-180°, +180°)
Tilt rotation	60° (-15°, +45°)
Azimuthal rotation	240° (-120°, +120°)
X / Y stroke	25mm(max 50mm)
Z stroke	Up to 650mm

FERMI

Multi-axis Low Helium Consumption Manipulator

Highlights

- Cooled by liquid helium
- Multiple Axis: Up to 6
- > Temperature range: 3K-400K
- > RT to 10K, < 15 min
- Liquid nitrogen compatible: < 65K Operation (with pump)</p>

Options

	✓ YAG Stage
	✓ Auto Mapping Module
	✓ Low Temperature Cleavage Module
✓ Sample Floating Module	✓ Four-probe Transport Module

Mechanical Specifications

Polar rotation	360° (-180°, +180°)
Tilt rotation	60° (-15°, +45°)
Azimuthal rotation	240° (-120°, +120°)
X / Y stroke	25mm(max 50mm)
Z stroke	Up to 650mm

Options

Secondary Low Temperature Sample Stage

- ✓ Compatible with LEED measurement
- Silicon diode sensor
- ✓ Temperature range: 4.5K-400K
- ✓ Temperature controller replaced by Lakeshore 336

>>> Four-probe Transport Measurement Module

- ✓ Back gating (or sample floating) module
- ✓ Four probes for sample bias or transport

measurements

- ✓ Insulation breakdown voltage: 100 V DC

>>> Photocurrent Measurement Module

- ✓ Including Sample Floating Module
- ✓ Aluminum foil on sample holder to measure the light intensity
- Kapton insulated wire for photocurrent measurement

- Mounting at the bottom of shielding
- Compatible with flag type sample holder but with special sample's fasteners
- Suitable for many times cleaving before opening the UHV system
- For surface preparation of hard ionic crystals (e.g. MgO) with high precision

Variable Temperature Insert (VTI)

Variable Temperature Insert (VTI) is a continuous flow cryostat that can provide a temperature range from 1.5K to 400K. Various sample stages can be mounted onto the cold head in UHV environment.

Highlights

- Initial Cooling time (from RT to 10K): < 15min
- > Temperature range: 67-400 K with LN2
- ➤ Temperature range: 1.5-400K with LHe
- ▶ Lowest temperature achieved: 1.5 K(with pump)
- LHe consumption: ≤0.3L/h above 10K
- LN2 consumption: 0.5L/h LN2 at 100K
- ▶ Bakeable: Up to 120°C
- Applications

- ✓ Transport measurement

>> Configuration

- CF100,63,35 Mounting flange available
- ⊗′ 1-5 spare CF16 flanges available
- હ Two temperature sensors
- 8 One control heater
- Optional radiation shield
- Optional UHV electrial feedthrough
- Optional electrial insulation
- Optional temperature controller
- Optional LN2 or LH_e transfer line

Options

sample holders

Sample stages

TPD Manipulator

Temperature-Programmed Desorption (TPD) is used to study thermodynamics and kinetics of desorption from solid surfaces while its temperature is changed in a controlled manner.

Highlights

- > Intergrated temperature sensor and filament
- > Easy sample/ filament changing
- > Fully Temperature control and data logging
- > Restricted heating area
- > Quick sample cooling
- > Low background degasing
- > Up to 4-axis movement

Standard Technical Data

Max.sample lateral size	10mm
Max.sample height	2mm
Sample heating	up to 1000K
Sample cooling	down to 90K(LN2)
Heating rate	0.1-3K/s
Cooling rate	10min(1000K to RT)

Applications

- ✓ Thermal Analysis
- ✓ Thin Films Engineering
- ✓ Residual Gas Analysis

>>> TPD Stage

Optical cryostat

Optical cryostat for use in microscopy, spectroscopy, wafer probing, IC testing and more.

Highlights

- The windows and sample holders can be easily changed
- Easy to use: A range of window materials are available
- Configured for reflectance and transmission measurements
- Lowest temperature achieved: 1.5 K(with pump)
- Operates in any orientation
- Compact, lightweight and portable
- Short working distance

>>>	Specifications	Options
હ	liquid helium or nitrogen compatible	✓ Optional superconducting magnet field
હ	Low liquid helium consumption, < 0.5 L/h	✓ Optional low-loss flexible transfer line
હ	Temperature range: < 4K to 325K	✓ Optional Lakeshore temperature controller

- ✓ Fast Cooling: RT to 4.2 K around 10 minutes
- 8-pin electrical feedthrough for temperature control
- ✓ Measurement-ready, via 8-pin electrical wiring to the sample

E-Beam Sample Heating Stage

The modular design guarantees this E-beam Sample Heating Stage is easy mounting and changing. The sample plate can be heated radiatively or by electron bombardment.

Highlights

- Compatible with all our cryomaipulator
- > Tungsten- Thorium Oxide heating wire
- > Easy sample/ filament changing
- > Efficient/ Quick sample heating
- > High voltage applied to the filament
- > Flag type sample holder
- ▶ Up to 4-axis movement
- ➤ Compatible with UHV environment
- Optional pyrometer sensor
- >>> Technical Data

High voltage	-1000V
Heat power	up to 80W
Radiation heating	up to 500 ℃
E-beam heating	up to 1000 ℃
Thermocouple	K/E type
Heating rate	20sec to 1000 ℃

Working State

4 Axes High/ low Temperature Manipulator

Highlights

Coaxial design LN2 cooling head

- > Excellent thermal isolation
- > Fast cooling

Side sealing DPRF

- No pumping needed for 10⁻⁸ mbar
- ➤ Single port pumping for 10⁻¹⁰ mbar
- > Self locking mechanism for R1

Guide tube

> High strength supproting tube for smooth sample transfer

2000°C heating stage

Optional direct heating module

Standard Technical Data

Temperature regulation	Control Range
Radiative heating	RT-1200°C
E-beam heating	RT-2000°C
Direct heating	RT-1400°C
LN2 Cooling	-150°C-RT

Polar rotation	360°
X and Y movements	±9mm
Z movements	Up to 300mm

Cooling curves

*20 min from RT to 80K

Heating Curves —

5 Axes High Temperature Manipulator

Highlights

High precision R3 manipulation

- → 4:1 gear ratio, high precision:

 △~0.03°
- Smooth rotation

Side sealing DPRF R1

> Decoupling R1 and R3 rotation

Guide tube

High strength supproting tube for smooth sample transfer

Hight temperature R3 rotation stage

- > Excellent thermal isolation and minimum heat transfer
- → 360° Continuous rotor design
- > E-beam compatible design
- >>> Technical Data

Temperature regulation	Control Range
Radiative heating	RT-1000°C
Azimuthal rotation	360°
X and Y movements	±9mm
Z movements	Up to 300mm

>> Excellent for RHEED

High Temperature Rotation

*Si₃N₄ bearing support for rotation at temperature up to 1000°C

- *Heat up to 1000°C
- *Reliable reference To measurement $(\Delta < 50^{\circ}\text{C from Ts})$

4 Axes High Temperature Manipulator

Highlights

Magnetic coupled Rotary feedthrough

> ±179° rotation

Supporting tube

- High strength supproting tube for smooth sample transfer
- Wiring inside the tube, no interference in manipulation

Heating stage

- Same design in all 4 axes STD. stage
- Molybdenum stage, Low degasing
- ▶ 1200°C for radiative heating
- ▶ 2000°C for e-beam heating
- Optional direct heating module

Technical Data

Temperature regulation	Control Range
Radiative heating	RT-1200°C
E-beam heating	RT-2000°C
Direct heating	RT-1400°C
Polar rotation	±179°
X and Y movements	±9mm
Z movements	Up to 300mm

>> Excellent temperature uniformity

1205	
1080	
1000	
940	
890	
845	
790	

- Heating Curves

*Reliable reference T_C measurement $(\Delta < 50^{\circ}\mathrm{C} \text{ from } T_S)$