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Gravitational Waves in the First Order Formalism &

1. Introduction

This note is self-pedagogical, and is meant simply to familiarize myself on how gravitational waves
emerge from the Einstein-Cartan action. Our motivation is to eventually introduce the Holst term and a
fermion condensate, and see how the description of gravitational waves is modified with these
symmetry-violating terms included.

il Relevant Degrees of Freedom

We write the vierbein in the following form:
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This should suffice to capture the transverse-traceless piece of the metric which describes a
gravitational wave propagating in the z direction. (All degrees of freedom are assumed to only depend
upon z and t.)
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The only assumption regarding the connection (J)/A is that we may choose temporal gauge:
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Our first job is to compute the curvature tensor R

he A8 AR

Spo = 900 At

The Minkowski metric in the above equation is of course
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From the above formulae the computation of the sundry components of R is straightforward, and the
result is, in general notation (The dot indicates a time derivative, and the prime indicates a derivative
with respect to z.)
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We write the Einstein-Cartan Lagrangian densnty (wuth no cosmologlcal term!) as follows
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The first and second terms are
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The linear terms of course can be neglected. In some of the subsequent terms we will also neglect terms
of third order in the perturbation. This does occur in the next term. We also do not display terms
containing 63 or €2 which clearly vanish.
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In the next two terms, e, =5 e = 1, providing some simplification.
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In the next and final term, there is the additional simplification coming from e~ g e =1,

We may now assemble the full Lagrangian density:
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There are 22 parameters, leading to the same number of equations of motion. Before displaying them,
we note that schematically (ignoring index hell) they are of the form

X~ Re +c'e +RR+CL

Here we have labeled the elements of the connection having a gauge index of zero as k ’s ( extrinsic

curvatures) and the remainder as ¢'s (contortion and/or curvature). The variational principle will yield
equations of the form
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The strategy for simplifying the equations of motion will be to eliminate the k’s by taking a time
derivative of their defining equations, and to eliminate the c’s by taking a space derivative of their
equations. As shown above, the result should be of the form of wave equations for the vierbein
parameters & .

The relevant equations of motion are displayed below:
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These 22 equations organize themselves into groups. There are 8 equations which directly set variables
to zero.
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The 14 remaining equations separate into two groups of 7, corresponding to the “4“and “X“ graviton
polarization states.

There are 7 which relate the “ X ” degrees of freedom to each other.:
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The remaining 7 equations relate the “4” degrees of freedom to each other.
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Examination of these equations requires that v.g' O. 1t also appears that (')-L will not satisfy a wave

equation. Therefore we set it to zero. So we f’ nd that all components of b()l can be chosen to vanish.
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As a consequence, we can express everything in terms of the two graviton polarization degrees of
freedom as follows: =z [ 4
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The 14 equations are thereby reduced to two, essentially ldentlcal sets of three equatlons
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These can be reduced to the desired wave-equation form:
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M. Inclusion of a Cosmological Background

We now redo the previous exercise for FRW Cosmology, with special attention to the deSitter-space
special case. However, this time we can use the experience gained in the previous exercise by reducing
the number of variables and the number of nonvanishing entries in the connection & ab initio. We
limit our attention to the case of the “4" polarization, and write for the vierbein and the connection
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This time the Riemann tensor takes the form
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The six terms for the Lagrangian are now
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The sum can be classified as follows
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Even in the absence of the background extrinsic curvature terms, and upon setting N(t) =a(t) = 1,K=0,
there are several notable features present in this result. First of all, the Lagrangian does reduce to the
previous case, without approximation. Therefore, the solution found in the previous section is actually
an exact solution of the field equations. However, the solution does not satisfy the vacuum Einstein
equations. This can be seen by computing the metric version of the Riemann tensor, and from it the
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The exact solutions have the form e - & (% B ‘t’)
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Therefore the Ricci tensor is traceless and equal to the Einstein tensor:
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This solution has all the properties we might ask of the energy-momentum tensor describing the
gravitational wave:
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Indeed, we would anticipate that a computation done entirely within the metric formalism, but done to
higher orders in the amplitude h , would end up with an Einstein tensor of this form. But it does seem
remarkable that this occurs automatically, without having to put in anything by hand.

There is a general argument which states that, under circumstances such as these, one should have
recovered the vacuum Einstein equations from the Einstein-Cartan formalism, given that no explicit
source terms were put in. This argument would also lead to the conclusion that the torsion component
of the connection &0 vanishes, as a consequence of the variational principle. Given that we have
violated these conclusions, it is essential that the origin of the discrepancy be identified.

It is not hard to locate a "problem”. In the general argument, all 24 components of the connection are
to be subjected to the variational principle. On the other hand, we set Wy = 0 abinitio, as well as
setting (4)% =0 later on. This led us to a violation of the vacuum equations; the Einstein tensor does
not vanish. While one might suspect that the solution we have found contains torsion, this seems not
the case. To check this, one can simply take the metric g ,,,, implied by our choice of vierbein, and
compute the Christoffel symbols and Riemann/Ricci tensors using the textbook algorithms. At least for
the case of the “4” mode of the gravitational wave, the result is simply the form of the Einstein tensor
written above. Since it can be identified with the energy-momentum expected to be carried by
gravitational waves, there seems no problem in presuming that this procedure does lead to a physically
sensible description of gravitational waves, albeit obtained by the well-known (but all too rare in
practice) “guess the answer” method. The more general case of a mixture of “<4” and “ X ” modes has
more index hell and was not checked (Maple or Mathematica is the appropriate tool.). However, it is
very likely that the energy-momentum tensor, when multiplied bym‘j , will simply be the sum of
the two contributions.The consequences of this description are discussed in somewhat more general
terms in the next section.



V. Einstein-Cartan Formalism in Temporal Gauge

Before trying to synthesize our first-order description of gravitational waves with FRW cosmology, we
shall first explore the formal structure of the first order formalism. This will lead to some notational
simplicities, as well as some general results. We do make the following general, simplifying assumptions:

The vierbein e has the following form:
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The connection £ has the following form
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It follows that the Riemann tensor has the following form
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In these equations, the indices A, B, and C are assumed to take only the values r ,or3. _n:n:m_.:._o_,m
we shall demand A u\| B u\l C uT A, and that they are in cyclic order, i.e. either 123, 231, or 312.

Space indices _,:.. and k are subjected to the same conditions.
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The Einstein-Cartan (Palatini) Lagrangian density has many terms, as well as 27 variational parameters.
But it can be written in a quite compact form
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We have included here the correct normalization for a change, as well as the cosmological term. Our
notation in this equation is as follows:
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Note that these constructions satisfy the following symmetry properties:
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The first-order Lagrangian has only one term which contains time derivatives. This suggests going to a
“Hamiltonian” language by defining
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It is easily seen that the Lagrange equations take the schematic form
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The variation with respect to lapse N(t) requires that the “Hamiltonian” U (we use this notation,
because the variable H is already taken.) vanishes. The role of the 9 extrinsic curvatures k is that of
“momenta”. The 9 “coordinate” variables conjugate to the k’s are quadratic forms built from the
vierbein and are essentially areas. The remaining degrees of freedom called c (for space curvature
and/or contorsion) will create equations of constraint.

To warm up, we review FRW cosmology in this formalism. Symmetry |mplles
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Therefore the Lagrangian simplifies to the form
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The variational principle leads to four equations of motion/constraint:
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The deSitter space solution then follows immediately.
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Note that the role of N(t) is significant-—it provides the FRW equation directly. In general, for the FRW
description, it suffices to set N to unity once the variation has been performed. However, we will later
find it convenient to go to conformal coordinates by setting N(t) = a(t). When this is eventually done,
we will redefine the time variable as r’ , consistent with conventional notation.
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For the gravitational-wave example, we neglected the cosmological term
y B

We also did not consider N and e?; as dynamical variables; we shall not allow them to participate here
either. Upon performing the remaining variations, we now find the following expressions:
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Upon examination of the equations involving S k , we immediately see that they are solved simply:
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If there is no degeneracy in the 9 relevant llnear equations, this is a unique solution. Otherwise it is one
of many, presumably related by gauge transformations.

Examination of the equations involving c are linear constraint equations. But they must be handled
with care. In component form, they take the form

ie Sc,l = —5[_1-'](3&>S&l

‘a«l"/Q, A R bhl
= Lel ey cre; =4ed(%¢ )

However, the matrix ¢ is not diagonal. The nonvanishing elements are
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The variational principle yields two and only two nontrivial constraint equations. After index hell, the
results are as follows:
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The final application of the variational principle involves the transverse components of the vierbein:
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With these results, one readily reconstructs the wave equation and again finds that it is an exact
solution of the equations of motion.
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We now turn to the issue at hand, namely to include the FRW cosmological solution as a background

metric for the gravitational waves. Our notation will be
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and we hope that this simplification will be manifest in this first-order formalism.
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Note that we here commit to the conformal language. The main reason is that the wave equation for
massless bosons in deSitter space has a simple solution when expressed in the conformal coordinates,

We have also introduced additional streamlining of our notation. The 3 x 3 matrix degrees of freedom
(e, k, and ¢ ) will have the above structure, each of which contains at most three independent degrees of

freedom:
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It is then straightforward to simplify the structure of our “double forms”. The result is
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The additional form which involves the torsion/curvature also simplifies as follows:
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Our FRW/gravitational wave Lagrangian can now be written in streamlined form as follows; index-hell
has been vanquished!
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We emphasize that the lapse N has here been equated to the scale factor a(\7 ). Therefore the FRW
equations are modified. They now read
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The solution for deSitter space is well-known: ,
H a 1
The gravitational-wave degrees of flfeedom again only appear in the Lagrangian to quadratic order.

‘Therefore their equations of motion, now with the FRW degrees of freedom representing a background
metric, will again be linear:
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The third equation can again be simplified down to wave-equation form
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For deSitter space, we find the simple equation
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It is known as the Mukhanov-Sasaki equation {(cf Baumann TASI lectures and/or his website notes on
inflation). It admits a closed solution for a plane wave moving in the z direction with comoving
momentum p :

e - ¢ P FL
T 1
me )[Lr !-J-] H7_ He bf( 7-")0 ”'LI’/]
—\ ( —% - . --L:\ -k R t:
%Jr: Pl )[“Lf”[*ff?‘l 7:“H€’ 7 )Dﬂm-ﬁj

The parameters € -+ and k4. can be considered, from the Hamiltonian point of view, a canonical pair. |
suspect the parameters Cy play a special role as well in inflation theory---in the Baumann description
they appear to be related to the gauge-invariant perturbation he denotes as R . If this is right, the
formalism we are using should be very well-suited for describing inflation.

If one wants to generalize the above description beyond deSitter space, allowing a more general FRW
expansion, source terms need to be included. For our purposes, all that needs to be done is to
generalize the cosmological term to a general function of |e e e| .We write for the modified Lagrangian
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We have expanded the function 9 out to linear order in order to accommodate the modifications to
the gravitational-wave equation. Note that in the deSitter limit
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When we set N = 1, the FRW equation lmmedlaréy follows from the first two of the equations.
P
N=| K=a (—%—) = _——%3’"’ P
We see that the final, “pressure” equation, as expected, follows automatically from the first two:
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The equations for the gravntatlonal waves are again better written down in the conformal-coordinate
description. Before writing them down, we reduce the FRW equations for this case. The first two

equations r;ow read 3
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Again the third, “pressure” equation follows automatically from the first two: f@
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We now write down the gravitational-wave equatlons The first

because the source term © is not involved.
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Reduction of the third “pressure” equation leads to the final form of the wave equation:
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This equation agrees with the generalized Mukhanov-Sasaki equation as quoted by Baumann.

To go further would lead us into a description of inflation theory which is based on the first-order
formalism. This topic is an extremely attractive one for me to pursue. But it is beyond the scope of this
note. Instead, we now turn to the question of adding discrete symmetry violation to this description.

V. Inclusion of the Holst Term

The Holst term in the Lagrangian, which violates discrete symmetries, has a structure similar to the
Einstein-Cartan (Palatini) term. The combined Lagrangian is
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The coupling parameter Y is known as the Barbero-Immirzi parameter.

We again assume temporal gauge for the connection and the “space-dominance” assumption for the
vierbein. AG o
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We will also include &"a(ﬁ “ source terms which are linear in the connection variables k and c.

It is then straightforward to expand the Lagrangian in terms of double forms. After considerable algebra
and care with numerical factors, the result is as follows:
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The only dynamical variable is a “generalized extrinsic curvature” k , especially familiar to the loop

quantum gravity community:
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We therefore recast the Lagrangian in terms of this variable, and find
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Again we only consider the “FRW + transverse-traceless” case. This allows a relatively simple
expansion of the sundry double forms.

eck - -4 K- Uk e
)[ewl =-NED) [l LGt a4 )]
BB =N[aR*> 1% +%<)a, G AN

%;@e%/ -HE

NI = - 30 (2 )(é .- €5

N Hk |eeR | =-2VHu [@ K-d(el+ K - 2(e éj%)aj

Z_.N,(//JZ ) leee] =2t Ny [a'c-Her )G -Heered)a)
31 fece] (lecel) = — &= {a Pe - o€+ )[P@)+a’f ’(d’)]}

3 -t
\r\fihave in the above expressions mtroduce the notation
o AN
Hu = HK \/ = (HK‘W{HC)

]9 —

|




There are now 10 parameters to be varied. We begin with the FRW limit:
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After some algebra, these equations simplify to simple expressions:
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The first two of these express th “generalized extrmsnc curvature" K and the contorsion C in terms of
the vierbein parameters and the source parameters H The third equation is the FRW equation, and
shows that the only effect of the presence of the sources is to renormalize the input Hubble parameter.

There is a fourth variation to take

Sa: O = 20K~ /\/(’ )Q“#NK N(Hw)aK
+M(HVMC BM,L 32 (P+°F)

As usual, this follows from the FRW equation and provides no new constraint on the dynamics.

In preparation for the 6 variations that lead to the gravitational wave equations, we redo the above
exercise in the conformal language, where N is set equal to a(v] }.
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The first four of the equations are relatively simple, and as usual allow us to solve explicitly for the
connection variables k and c.
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After some algebra, these can be written as follows:
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Finally, the last two equatuons for the vierbein components wull determine the structure of the wave
equation:
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Since these equations are linear, we can go to complex wave-equation notation. We assume a plane-
wave structure with momentum p in the positive z direction. Therefore we make the replacements
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This allows us to solve for the c¢ ‘s interms of the € ’s.
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Thanks to considerable hindsight, it turns out that choice of a circular-polarization basis in all cases leads
to a significant amount of simplification. This is implemented by the following assumptions:
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It is easily seen that all the previous equations for the gravitational-wave amplitudes are consistent with
these assumptions. We are left with only two independent equations:

(Pia; = [“,\\{ + 2a(Hw) + "4%]%;
Hx - £ ) 5e

Q@

€, = (Mg{ — {Q(H@-ﬁ H‘?;\lé+
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The entry marked X is a bit lengthy:

fx}“-[- (f X) cL(f’ﬂLf’)]

If we use the FRW “pressure” equation, this simplifies down to
/\9/ -~ ~2  Ia : 2 2L
‘ 1 -~ 4 -~
4X = K-2aK(Hu)+K :—(%) + a(Hu)- a,(Hu)

In practice, it turns out that we will be interested in two special cases. Before reheating, the spacetime
can be taken to be deSitter, but with nonvanishing source terms. In this case, we know a (‘7) explicitly.

__l ’....-...’ .,,' )

qu—
— -t ampm— —

HY Ul H vf’
Therefore we also know X and K explicitly in terms of the time variable Vi and the source
parameters.

R

The equations of motion then take the form (for the deSitter case only!)

%;:—. [('"v]@ + 2‘?]2&[:%@@(1—@#;4 7@—,;-#9-7:%9;%/— €,

e kL u, i
€, HL?-r‘,]e+ €y

We will assume that the source terms are only present before reheating, and that only the present-day
dark energy remains thereafter. Therefore the post-reheating description only depends on the
(nontrivial) behavior of the FRW scale factor a ( q ) . Nevertheless, the equations of motion again
simplify consnderably

%0; ( @ +[<a;’— (’E’)(y“”)]-ﬁ’ 2:
2 = af, - “F%égu
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We begin with the e-free FRW case:

€ = a,szr a@“ i ¢ €,
= 5;2; Q{’(a@)%‘+[<%—€<#z+l]&++% .
;:(%)g; F?'<—_#+D€++lf% ak-¢)

The solution agrees with what we found previously
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The final wave equation is gloriously simple:

- N\
=2~ @(ﬂ‘ﬂ N
1

Remarkably, the only correction to the “normal”, symmetric behavior does not depend upon the value
of the Barbero-Immirzi parameter Y. it also requires the existence of a source for torsion (more
precisely, for contorsion).

The previous case admitted an exact solution for the wave equation. We now search for its
generalization.

The equation of motion is actually that of a harmonic oscillator with time-dependent frequency which
passes through zero near horizon crossing and thereafter becomes imaginary. To clean up notation, we

write D = FVI N
£ =)=t

Note that , under a space reflection, which interchanges left- and right-handed chiralities, the parameter
f changes sign.

The equation of motion is, in this streamlined notation,
'S
%
de . -2 -2]e - _5r)e
AT> T T+ * -}

For f = 0, the two independent solutions are the real and imaginary parts of the expression

: — T (l B
It will be useful to consider the phase space description of this system. The canonical momentum is

evidently justaé*..This allows a quick visualization of the time evolution of a classical ensemble and/or a
quantum Wigner function. ‘
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This exact solution can be written

6=qtia,  &=(a-ME)  PB=wrCl+L)-

<
) ~ . < 4 C S’E ! s T
€= b, Q= —(ST+ %) T, — sz +;a.> -

The pairs ( Q', P' ) and { 02, Pz‘) are solutions of the Hamiltonian equations of motion. They will serve
as a basic skeleton for the description of a more general phase-space architecture.

When T is large (and negative!), we have a simple harmonic oscillator. Its natural phase-space
structure is circular, both at the classical level, and at the quantum level, provided a Bunch-Davies
vacuum structure is assumed. As the frequency parameter )’ decreases to zero and then changes
sign, the phase space is squeezed and rapidly turns into a filamentary structure. This can be seen by
mapping the exact solutions as a function of 7’ :

ip
“',\
d o
\_ R R
= ~qN =5 T =-10
N lage) T=r08

The shaded areas indicate an ensemble of degrees of freedom which are in proportionto (Q 1P Yor
to | Q‘,', P.z) and with relative amplitudes in the interval (-1, 1) . Note that the pair (Q;, Py )
describes the thickness of the filament, while the pair ( Qa, R, ) describes its length. The area of the
filament is described by the quantity (().| PZ - O‘:LPI) = =~ 1, independent of 7. This quantity, the
Wronskian, is an expression of the Liouville theorem, which is applicable to this system.

Not surprisingly, the crossover from round to filamentary occurs when the frequency parameter
vanishes, namely when T = =1.4 . When we include the contorsion parameter f , this crossover point
will occur at a different value of “Z". This means that the squeezing process is either delayed or advanced
relative to the standard description. This will in turn lead to a “length of the filament” at small 7 which
is f ~dependent. But it is these lengths which control the polarization properties of the gravitational
beam after it “crosses the horizon”.



The polarization properties of the graviton beam are essentially the same as for photons, because they
have only two helicities. In each case they are most conveniently encoded in terms of the Stokes matrix.
We write, for photons and gravitons respectively

/Pi'\,d+01w S G MVTj-O W
AT

VS
o~
= &
é.‘ —_— 6-—9 éu — +
(4 ET v éx

S'h'ges tw%x

AL A AN *

. e 7 -5 3
Py=6d=R=%(I+68)x

=, =3 xR -1V
4-S'= U+ivV  —Q )

For a pure state, the determinant of the Stokes matrix vanishes. For pure linear polarized photon beams,

. | [ + cos Stha b

—— -
\

2 Sin ¢ | — cos ¢

For pure, circularly polarized photon beams

/ T L

+ ¢ (

The case of interest here is for circularly polarized gravitational beams, and the Stokes parameter of
interestis V .

This parameter can be expressed directly in terms of the “length of the filaments”, as discussed above:

/ = Lep)|” — LAEPI”
[LET + (LA

— 26—



When f is nonvanishing, the solutions of the wave equation are more complicated. They are best found
numerically, and | leave that task to others. But it is not so hard to bound the “filament length:;'
parameter via simple, analytic means. In the figure below we plot the “frequency function"~ip for f = 0

andfor f = £ 1. A_&‘)L

-lpe

the VCO’"FaYiSm funition’

Also plotted (the heavy dashed line) is a “comparison function”
- -
W {“’ [ZI> 1T,

Given this comparison function, there is a corresponding easy solution:

51T o> (z,]

¢
ot + & 7)< T
2 <

r_ ]
-

AN AN
After matching the solutions at “T” = To by equating the values of & and € across the discontinuity
there, we obtain

-
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The quantity of interest is the square of the “filament length” :
2 . 2
L = [m e
T=0
For the comparison-function solution

L@ =4 =F@+7)

As long as the comparison function -UJ is Iess than-—{) (_{3) for f= 1, and forall T, the value of f
for the =1 solution will be larger than |b | . The most stringent limit will occur for 'Z; = =2,

implying
2 : ~ D —
LA >z =35
f=1
2
In the same way, as long as the comparison function -u) is larger than -w(-F ) for f = ~1,andforall T,
the value of £ for f= =4 will be less than | b \" The most stringent limit occurs for T- =1, implying

yaes) {5

Evidently, for! f ’= 1, we have very large polarization:

Whenf| << 1, the same kind of analysis does not succeed, This emphasizes the need for careful
numerical work. But even in the absence of this work, we can conclude that for |f[ :)1 , large values of
the Stokes parameter V are indicated.

In terms of the source parameters, the implications are interesting. Recall that

Hk Hu QC"E Hv =:_"qu
1= w—[u-]"

If the “simple” scenario is adopted, we have additional constraints:



It follows that there is a correlation between the value of [f ' and that of the Barbero-Immirzi parameter 3} ’

vl = 11= [

Therefore, large circular-polarization effects, namely large values of the Stokes parameter V , will in the
“simple” scenario occur if and only if the Barbero-Immirzi parameter [YI is not large compared to unity.

2(V]zor & Yl54

In the next section we will study how this result gets expressed in terms of the properties of fermion-
condensate sources.

Vi Dirac-Fermion Source Terms

In the first order formalism, the Dirac gamma matrices live only within the internal O(3,1) gauge group
and have no spacetime dependence. The Dirac Lagrangian density takes the form

L(-w) P9, +w, ) LYY + e,

We have included a phase factor Q—[g;) out in front. In the Minkowky-space limit it does not affect
anything. But in curved spacetime, as pointed out by Freidel et al {arXiv 0507253), it does have an effect.
(We have normalized this factor so that the Dirac action reduces to standard form in the Minkowski-
space limit.)

lch

We will assume that these fermions form a condensate, such that

= {Tryydto =

The Dirac Lagrangian density reduces to

= |k + RG]

This form allows us to identify the condensate densities with the source terms used in the previous

ACanf)ik = ik

M1 (o N (= 3 a (h G
Mt (o) G = 30 A

m—

YL+
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Consequently

H = L”m Fv /H\“ qv()ﬁ

The two conditions for our “simple” scenario, where all of the inflationary dark energy is contributed by
the condensate, is -\

Hi-( = Y,H\g % 0<€ YPA
He=H = =t

if we demand a fully chiral condensate

(6] =1f]

[«<| =1Y]
1= H1- (4]

This allows us to solve for the condensate density-

I‘DV} I&,dqlﬂyl

We conclude that a fully chiral, Lorentz-violating, fermionic condensate is sufficient to generate a large
value for the gravitational-wave Stokes parameter V emergent from the inflationary era, provided only
that the magnitude of the Barbero-immirzi parameter Y is not large compared to unity.

it follows that

VIl. Summary

1) The goals of this note have been met, and in a surprisingly user-friendly way.

2) The choice of temporal gauge is very appropriate for the problem at hand.

3) The gravitational-wave solution in Minkowski space is exact, and is physically reasonable.

4) The use of double forms in the temporal-gauge first-order formalism provides considerable—
but not complete—computational relief.

5) Inclusion of the Holst term and of sources is a smooth generalization, leading to remarkably
simple results.

6) The source of torsion, needed to provide a large Stokes parameter V, is provided quite
naturally by a Lorentz-violating, pure chiral fermion condensate.

7) These results need to be recast in a shorter, more intelligible form. That, along with a discussion
of inflation theory, will be the next step.
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