

Retrospective Epidemiological Study on Goat Disease in Debre Birhan Agricultural Research Center Ataye Boer Breeding, Evaluation and Distribution Site, North Shoa, Ethiopia

¹Enyiew Alemnew*, ¹Erdachew Yitagesu ²Habtamu Addis, ¹Alemnew Areaya

Telephone: 0921281124; E-mail: yohansAddi68@gmail.com

Abstract: The information of diseases prevalence give useful information on disease pattern and thus can be used in preventing diseases as well as formulating policies for future management to prevent diseases. A retrospective epidemiological study of goats diseases were undertaken at Debre Birhan Agricultural Research Center, Ataye Boer Breeding, Evaluation and Distribution Site, from September 2015 to August 2019 to determine the pattern, temporal distribution and associated risk factor of clinical cases. The data's were collected from registered case record book. A total of 2025 cases were documented during the time period, which were analyzed to assess the importance of existing diseases. The data were analyzed by SPSS version 20 and Chi-square test for significance test. Goats were significantly suffering from various diseases and disorders. The maximum 509 (25.1%) was affected by integumentary disease and lowest 3 (0.1%) was affected with urolthiasis. The others diseases highest to lowest rate were 429 (21.2%), 333(16.4%), 311 (15.4%), 192 (9.5%), 98 (4.8%),61 (3.0%), 57(2.8%), 28 (1.4%), and 4 (0.2) affected with respiratory disease, gastrointestinal disease, infectious disease, reproductive disease, deficiency and metabolic disease, musculoskeletal disease, nerve disease, cold stress, and congenital defect respectively. There was statistically highly significant relation between diseases and sex of goats. The highest disease prevalence 1327 (65.5%) was observed in female than male 698(34.5%). Breeds had significant effect, the highest disease prevalence 1238 (61.1%) was observed in cross goat than pure boer 429(21.2%) and local goat 358 (17.6%). Similarly, the age had significant effect and highest value were 1010 (49.9%), 390 (19.3%), 383 (18.9), and 242 (12.0%) observed in >730 days, 0-180days, 181-365days, and 366-330days ages of goats respectively. Also, the season had significant effect and the overall disease prevalence were highest in winter 731 (356.5%), spring 451 (22.3%), autumn 446 (22), and summer 389 (19.2). Based on the results of this retrospective epidemiologic study of goat diseases; respiratory distress 338, enteritis 289, local abscess 279, or 183 and cawdrosis 160 were the most clinical cases and health problems in the study site.

[Enyiew Alemnew, Erdachew Yitagesu, Habtamu Addis, Alemnew Areaya. Retrospective Epidemiological Study on Goat Disease in Debre Birhan Agricultural Research Center Ataye Boer Breeding, Evaluation and Distribution Site, North Shoa, Ethiopia. *Biomedicine and Nursing* 2020;6(1):1-10]. ISSN 2379-8211 (print); ISSN 2379-8203 (online). http://www.nbmedicine.org. 1. doi:10.7537/marsbnj060120.01.

Keywords: Age, Diseases, Morbidity, Prevalence, Seasons, Sex

Introduction

The goat population of Ethiopia was estimated to be 21,884,222 (CSA, 2009). The country holds 13.5% of the African goats' population (FAO, 1991). Small ruminants are wide spread in the tropics and are important to subsistence, economic and social livelihoods of a large human population in these areas. Small ruminant are especially important to women, children, and aged individuals, who are the most vulnerable member of the society in terms of undernutrition and poverty. The great Indian leader and freedom fighter M. K. Gandhi "father of the nation" designated goats as "poor man's cow," emphasizing the importance of small ruminants in poor countries (Lacasta et al., 2008). The agricultural potential in tropics, particularly in Ethiopia varies, consequently, wide array of small ruminant production systems with different production goals and priorities, management strategies and practice are found (Ramay, 1999).

In Ethiopia, spread of disease is a major constraint for livestock production. The annual total economic losses due to diseases, mortality and reduced productive and reproductive performance were estimated to 150 million USD (Berhanu, 2002). Currently, restricted attention is given to flock health and comprehensive preventive medicine which give proper consideration to both infectious and non-infectious diseases and designed to increase production by preventing disease, rather than just dispensing traditional treatment to clinically sick animals (Sefinew, 2008).

¹ Amhara Agricultural Research Institute, Debre Birhan Agricultural Research Centre, Livestock Research Directorate, Po. Box 112, Debre Birhan Ethiopia

² Debremarkose University, Faculty of Agriculture, Department of Animal Science, P.O. Box, 73, Debremarkose, Ethiopia

Even though there have been notable successes in the control of livestock diseases, some still pose problems both in developed and developing countries. In Ethiopia, timely recognition of the diseases followed by acquisition of the pharmaceuticals are lacking due to shortage of infrastructure facilities to support health services delivery. Consequently, in the country majority of disease intervention consists of mass inoculations following outbreaks (Radostits, 2007).

Screening disease occurrence on a study area is the accumulation of valuable information and allowing animal attendants and veterinarians to confidently determine priorities to design preventive measures which consequently leads the prevention of economic losses associated with diseases (Zegye et al., 2013). Diagnosing a disease and provision of treatment and control measures for disease management involves physical examination and generation of a list of differential diagnoses; the critical part of which is clinical examination of individual animal or group of animals (Faccini, 2008).

Prevalence and intensity of pathogenic infections are often seasonal and occur in many species and may be linked to changes in the host or to seasonal changes in the prevalence of the pathogen or vector (Zegye et al., 2013). In this regard, knowledge of temporal pattern of distribution of a disease in a population is important in suggesting the type of disease that is occurring and its possible causes (Radostits, 2007). Understanding on the incidence, prevalence, distribution and determinants or risk factors of diseases in an area is necessary for undertaking efficient control program. The objectives of this study were:

- To observe the occurrence and associated risk factors of clinical diseases of goats and to point out the epidemiology of diseases in breeding, evaluation and distribution site.
- To give useful information on disease pattern and thus can be used in preventing diseases as well as formulating policies for future management to prevent diseases.

Materials And Methods Description of Study Area

Debre birhan agricultural research center, Ataye boer breeding, evaluation and distribution site is found 5km far from Ataye town, Eastern Amhara Regional state of Ethiopia. The site located 250 km from Addis Ababa. At'aye (Āt'aye) is a populated place (class P -Populated Place) in Amhara Regional State ((ET10)), Ethiopia (Africa) with the region font code of Africa/Middle East. It is located at an elevation of 1,468 meters above sea level. Its coordinates are 10°21'0" N and 39°55'60" E in DMS (Degrees

Minutes Seconds) or 10.35 and 39.9333 (in decimal degrees). Its UTM position is FM04 and its Joint Operation Graphics reference is NC37-07. Atave's climate is classified as tropical. In winter, there is much less rainfall in Atave than in summer. At an average temperature of 25.4 °C, June is the hottest month of the year. December has the lowest average temperature of the year. It is 18.7 °C. In a year, the average rainfall is 1085 mm.

Study Animals and Their Management:

Clinically sick, goats were the study subjects in Debre birhan agricultural research center, Ataye boer breeding, evaluation and distribution site. Goats were kept in intensive and semi-intensive management system. Kids weaned at 3 months of age. Goats were reared with two categories of feeding management i.e. concentrate plus green grass /napier/ to pure boer and cross goats, and concentrate only to local goats though out the years. Local and cross goats were allowed to graze from 8:30 am to 11:30 am and from 1:30pm to 5:00pm with 2 h rest (11:30 am to 7:30 pm) when fresh river water and concentrate were supplied. A concentrate was provided twice daily in the morning and evening at the rate of 200g/h/d for pure boer goat with overnight access of hav and once 300g/h/d and 200 g/h/d for cross and local goat respectively at the rest time and also, accessed hay at the rest and night time. Napier grass were allowed for pure and cross goat from 11:30am to 1:30 pm. Kids had access to napier and concentrate feed in addition to their dam's milk before weaning with 100g/h/d to 200g/h/d.

Goats were vaccinated against goat pox, caprine pleuro pneumonia/CCPP/, contagious pestides petites ruminitis and ovine pasterollosis diseases. They were treated regularly for internal and external parasites. All animals were dipped and sprayed for ticks, mites and other ectoparasites with Diazinon 60% and Amitrazine (12.5%) and regularly drenched for internal parasites with Albendazole, Tribex, levanide, oxyclozanide, redaflucks and ivermectine for treatment and for prophylaxis measure. Generally, there were a regular follow up of sick animals and the causes of illness and type of disease were registered in case recording book. Morbidity was recorded daily on the basis of observed clinical signs and some by laboratory examinations. Suspected causes of mortality were clarified by taking history, clinical signs before death where showed, postmortem examination and in some cases by laboratory tests.

Study Design

Retrospective epidemiologic study of diseases was done using of five years recorded data (September, 2015 to Augest, 2019) in Debre Birhan Agricultural Research Center, Ataye Goat Breeding, Evaluation and Distribution Site. Diagnosis was based on fecal, postmortem and clinical examination. Accordingly management system, weaning time and chance of exposure to infectious agent, diseased animals were grouped based on age (as <90 days, 90 -365 days, 365-730 days, >730days), breed (as pure boer, cross goat (pure boer X local goat, cross boer (f1) X cross boer (f1)), and local goat), sex (female and male), and body condition score (good, medium, and poor). Also the time of exposure were grouped into season (summer from June to august, autumn from September to November, winter from December to February, and spring from march to May)

The data were analyzed retrospectively and interpreted to determine the prevalence of diseases: seasonal pattern and distribution of diseases. The age, breed, sex, and body condition of the animals were collected from the data recording book. There were 2025 clinical cases, which has been registered in case recording book. The encountered cases were grouped into the following eleven major categories viz. gastrointestinal disease, respiratory disease, reproductive disease, musculoskeletal disease, integumentary disease, nerve disease, infectious disease, cold stress, congenital defect, urolithiasis and deficiency and metabolic disorders.

Cases of local abscess, orf, myasis, mengimitis, contact dermatitis were grouped and disease. Cases of Pneumonia/ integumentary aspiration pneumonia, and chronic pneumonia/, and Respiratory distress / contagious caprine pleura pneumonia, verminious pneumonia, pasteurollosis/ were grouped as respiratory disease. Cases of enteritis, gingivitis, internal parasitism /fasciola, pharamphistomum, heamonchus, strongyles, tricuris, and monozia/, and simple indigestion were grouped as gastrointestinal diseases. Cases of actinomycosis, cawdrosis, keratoconjectivitis, pesti des petits ruminants' /PPR/, and septicaemia were grouped as cases of infectious diseases. Cases such as abortion, dystocia, mastitis, metritis, orchatis, and retained placenta were all categorized as reproductive diseases. Cases of agalactia, milk fever, and mineral deficiency were grouped as deficiency and metabolic disease. Cases of aging, arthritis, mechanical damaged /hernia, bone breakage, and horn breakage/ were grouped as musculoskeletal disease. Cases of coenurosis, enzoticatactia & swayback, and parasis were grouped as nervous disease. Also, schistosomus reflaxisus and malformed mandible were included in congenital defect.

Data Management and Statistical Analysis:

The data generated were entered and managed in MS excel work sheet. The data were checked manually for obvious inconsistencies, recording errors or missing data. Data were statistically analyzed by Statistical Package for Social Science (SPSS) software 16.0 version. Descriptive statistics was used to determine the prevalence of diseases, seasonal pattern and distribution of diseases. Proportion of different animal's health problems was expressed as percentage by dividing total number of animals positive to a specific health problem to the total number of animals which showed clinical disease. Chi-square (X²) test with P-value was applied to test the existence of association and to see level of significance between observed health problems and associated risk factors. respectively.

Result And Discussion

Prevalence of Different Clinical Cases and Their Distribution in Sex: In this study a total of 2025 cases were recorded of this respiratory distress, enteritis, local abscess, orf and cawdrosis were the highest case occurred in both sex with an overall occurrences of 338, 289, 279, 183, and 160 cases respectively. Besides of this, Respiratory distress and urolithiasis were the highest and the lowest diseases occurrences in both sexes with overall occurrences of 338 and 3 cases respectively (table 1).

Table 1: Distribution of diseases and disorders in goat observed in age and sex wise

Trues of discoss	sex		age				4.4.1
Types of disease	female	male	0-180days	180-365day	365-730day	>730day	— total
Integumentary disease							
Local abscess	203	76	8	21	55	195	279
Orf	120	63	29	24	24	106	183
Myasis	2	4	0	0	0	6	6
Mengimitis	16	17	3	1	5	24	33
Contact dermatitis	-	8	0	0	0	8	8
total	341	168	40	46	84	339	509
Respiratory disease							
Pneumonia	62	29	2	23	13	53	91
Respiratory distress	207	131	32	97	66	143	338
Total	269	160	34	120	79	196	429
Gastrointestinal disease							

Types of disease			age				4-4-1
	female	male	0-180days	180-365day	365-730day	>730day	– total
Enteritis	145	144	160	95	8	26	289
Gingivitis	1	0	0	0	0	1	1
Internal parasitism	28	12	0	4	8	28	40
Simple indigestion	3	0	0	0	0	3	3
total	177	156	160	99	16	58	333
Infectious disease							
Actinomycosis	13	4	0	2	0	15	17
Cawdrosis	86	74	22	36	36	66	160
Keratoconjectivitis	40	28	32	23	0	13	68
PPR	27	0	0	15	11	1	27
Septicaemia	27	12	1	9	2	27	39
Total	193	118	55	85	49	122	311
Reproductive disease							
Abortion	54	-	-	-	0	54	54
Dystocia	22	-	-	-	0	22	22
Mastitis	27	-	-	-	0	27	27
Metritis	19	-	-	-	0	19	19
Orchatis	_	5	0	0	1	4	5
Retained placenta	65	-	-	-	0	65	65
total	187	5	0	0	1	191	192
Metabolic disease							
Agalactia	36	27	63	-	-	-	63
Milk fever	14	-	-	-	0	14	14
Mineral defficiency	18	3	0	10	10	1	21
Total	68	30	63	10	10	15	98
Musculoskeletal disease							
Aging	6	3	-	-	-	9	9
Arthritis	0	7	0	5	0	2	7
Mechanical damaged	41	4	2	2	0	41	45
Total	47	14	2	7	0	52	61
Nervous disease							
Coenurosis	0	1	0	0	0	1	1
Enzotic atactia & swayback	2	12	8	3	1	2	14
Parasis	25	17	0	13	2	27	42
Total	27	30	8	16	3	30	57
Cold stress	14	14	28	-	-	-	28
Congenital defect	1	3	4	-	_	_	4
Urolithiasis	3	0	0	0	0	3	3
Grand total	1327	698	1010	390	383	242	2025

In this stud there was statistically highly significant relation between diseases and sex of goats. Based on the study higher clinical cases were registered in female goat with prevalence of 65.5%. The present finding was in agreement with the report of Ali et al (2011) and Asres et al., (2014), they report female goats were more prone to disease than male goats. Integumentary disease and urolithiasis case were the highest and lowest in both sexes as compared to other diseases (Table 2). The occurrence of diseases

was found to be more in females than males. It could associate with higher number of female animals as compared to male in the study site. In addition, it might also partly associate with the low level of immunity of female animals. Susceptibility to infection in female animals is maximized during time of per parturient and parturition where relaxation of resistance and suppression of immunity happens (Sefinew and Bider, 2011).

Table 2: Cross tabulation of diseases and different sex of goats

Tymas of disease	sex		Total shi sayara value (0/)
Types of disease	Female (%)	Male (%)	Total chi square value (%)
Integumentary disease	341 (16.8)	168 (8.3)	509 (25.1)
Respiratory disease	269 (13.3)	160 (7.9)	429 (21.2)
Gastrointestinal disease	177 (8.7)	156 (7.7)	333 (16.4)
Infectious disease	193 (9.5)	118 (5.8)	311 (15.4)
Reproductive disease	187 (9.2)	5 (0.2)	192 (9.5)
Metabolic disease	68 (3.4)	30 (1.5)	98 (4.8) 135.520***
Musculoskeletal disease	47 (2.3)	14 (0.7)	61 (3.0)
Nervous disease	27 (1.3)	30 (1.5)	57 (2.8)
Cold stress	14 (0.7)	14 (0.7)	28 (1.4)
Congenital defect	1 (0.0)	3 (0.1)	4 (0.2)
Urolithiasis	3 (0.1)	0 (0.0)	3 (0.1)
Grand total	1327 (65.5)	698 (34.5)	2025 (100.0)

^{***} There is statistically highly significant relation between diseases and sex of goats.

Prevalence of Clinical Cases in breed:

In the present study respiratory distress, enteritis, local abscess, orf and cawdrosis were the highest case occurred in all breeds with an overall occurrences of 338, 289, 279, 183, and 160 cases respectively. It was also observed that arthritis and urolithiasis were not recorded in pure boer and local goats (table 3). From

total observed disease conditions, higher clinical cases were registered in cross goat as compared to pure boer and local goat (table 3). The difference in the number of clinical cases between breed might be associated with the number of population of animals in the study area, management difference, or difference in natural immunity.

Table 3: Distribution of diseases and disorders in goat observed in breed and body condition score wise

T-mas Of Disease	Breed			Body (Condition Sc	ore	Total
Types Of Disease	Pure Boer	Cross goats	Local goat	Good	Medium	Poor	
Integumentary disease							
Local abscess	67	165	47	63	158	58	279
Orf	64	85	34	16	99	68	183
Myasis	2	2	2	0	4	2	6
Mengimitis	14	17	2	2	19	12	33
Contact dermatitis	2	6	0	0	7	1	8
total	149	275	85	81	287	141	509
Respiratory disease							
Pneumonia	36	48	7	9	36	46	91
Respiratory distress	36	263	39	37	227	74	338
Total	72	311	46	46	263	120	429
Gastrointestinal disease							
Enteritis	61	224	4	47	139	103	289
Gingivitis	1	0	0	0	1	0	1
Internal parasitism	6	21	13	2	8	30	40
Simple indigestion	2	1	0	0	1	2	3
total	70	246	17	49	149	135	333
Infectious disease							
Actinomycosis	3	9	5	2	6	9	17
Cawdrosis	27	121	12	27	95	38	160
Keratoconjectivitis	12	51	5	13	29	26	68
PPR	0	0	27	3	15	9	27
Septicaemia	23	10	6	7	23	9	39
Total	65	191	55	52	168	91	311
Reproductive disease							
Abortion	8	28	18	15	25	14	54
Dystocia	5	6	11	3	12	7	22
Mastitis	6	10	11	6	13	8	27

TOf D'	Breed			Body (Condition Sc	ore	Total
Types Of Disease	Pure Boer	Cross goats	Local goat	Good	Medium	Poor	
Metritis	3	6	10	3	10	6	19
Orchatis	2	3	-	0	4	1	5
Retained placenta	12	29	24	15	28	22	65
total	36	82	74	42	92	58	192
Metabolic disease							
Agalactia	11	52	-	1	2	60	63
Milk fever	2	1	11	0	0	14	14
Mineral deficiency	0	4	17	1	5	15	21
Total	13	57	28	2	7	89	98
Musculoskeletal disease							
Aging	2	2	5	2	1	6	9
Arthritis	0	7	0	1	3	3	7
Mechanical damaged	6	7	32	5	22	18	45
Total	8	16	37	8	26	27	61
Nervous disease							
Coenurosis	1	0	0	0	0	1	1
Enzoticatactia & swayback	7	7	0	2	4	8	14
Parasis	6	20	16	1	20	21	42
Total	14	27	16	3	24	30	57
Cold stress	1	27	-	0	6	22	28
Congenital defect	1	3	-	0	2	2	4
Urolithiasis	0	3	0	0	2	1	3
Grand total	429	1238	358	283	1026	716	2025

In this stud there was statistically highly significant relation between diseases and breeds of goats. The results obtained from the study showed that clinical cases were more prominent in cross goats (61.1%) than that of pure boer (21.1), and local goat (17.6%). The present finding was in agreement with the report of Asres et al., (2014); they report cross goats were more prone to disease than local goats. This might associated with the presence of higher number of cross breed animals in the study area. Integumentary disease and respiratory disease were the highest case occurrences in all breed with prevalence rate of 25.1% and 21.2 respectively. Besides this, clinical cases of urolithiasis were not observed in pure boer and local goat (Table 4). Internal parasitism was less observed than other breeds. This might be pure boer were indoor but other breeds were allowed to graze as a result they easily access the parasite.

Table 4. Cross tabulation of diseases and different breeds of goats

1	able 4: Cross tabl	nation of diseases a	na amerent breeds	s of goals
Types Of Disease	Breed			Total (%) chi square value
Types Of Disease	Pure Boer (%)	Cross goats (%)	Local goat (%)	
Integumentary disease	149 (7.4)	275 (13.6)	85 (4.2)	509 (25.1)
Respiratory disease	72 (3.6)	311(15.4)	46 (2.3)	429 (21.2)
Gastrointestinal disease	70 (3.5)	246 (12.1)	17 (0.8)	333 (16.4)
Infectious disease	65 (3.3)	191 (9.4)	55 (2.7)	311 (15.4)
Reproductive disease	36 (1.8)	82 (4.0)	74 (3.7)	192 (9.5) 252.894***
Metabolic disease	13 (0.6)	57 (2.8)	28 (1.4)	98 (4.8)
Musculoskeletal disease	8 (0.4)	16 (0.8)	37 (1.8)	61 (3.0)
Nervous disease	14 (0.7)	27 (1.3)	16 (0.8)	57 (2.8)
Cold stress	1 (0.0)	27 (1.3)	=	28 (1.4)
Congenital defect	1(0.0)	3 (0.1)	-	4 (0.2)
Urolithiasis	0 (0.0)	3 (0.1)	0(0.0)	3 (0.1)
Grand total	429 (21.2)	1238 (61.1)	358(17.6)	2025 (100.0)

^{***} There is statistically highly significant relation between diseases and different breeds of goats.

Disease Distribution in Age: In this stud there was statistically highly significant relation between diseases and ages of goats. Of the total 2025 clinical cases, 19.9%, 18.9%, 12.0% and 49.9%, were observed in the age group of 0- 180 days, 181-365 days, 366-730 day and >730 day respectively (Table 5). Animals with age group of >730days old were most significantly susceptible to diseases. This might associate with chance of exposure to infectious agents increase as their life period of goat increase. In this study the rate of infection to internal parasitism, local abscess and cawdrosis increase but keratoconjectivitis and enteritis decrease as the ages of goats increases (Table 1).

Table 5: Cross tabulation of diseases and different age of goats

	age				Total chi square value
Types of disease	0-180days	181-365day	366-730day	>730day	(%)
	(%)	(%)	(%)	(%)	(70)
Integumentary disease	40 (2.0)	46 (2.3)	84 (4.1)	339 (16.7)	509 (25.1)
Respiratory disease	34 (1.7)	120 (5.9)	79 (3.9)	196 (9.7)	429 (21.2)
Gastrointestinal disease	160 (7.9)	99 (4.9)	16 (0.81)	58 (2.9)	333 (16.4)
Infectious disease	55 (2.7)	85 (4.2)	49 (2.4)	122 (6.0)	311 (15.4)
Reproductive disease	0(0.0)	0(0.0)	1 (0.0)	191 (9.4)	192 (9.5)
Metabolic disease	63 (3.1)	10 (0.5)	10 (0.5)	15 (0.7)	98 (4.8) 911.729***
Musculoskeletal disease	2 (0.1)	7 (0.3)	0 (0.0)	52 (2.6)	61 (3.0)
Nervous disease	8 (0.4)	16 (0.8)	3 (0.1)	30 (1.5)	57 (2.8)
Cold stress	28 (1.4)	-	-	-	28 (1.4)
Congenital defect	4 (0.2)	-	-	=	4 (0.2)
Urolithiasis	0(0.0)	0(0.0)	0(0.0)	3 (0.1)	3 (0.1)
Grand total	390 (19.3)	383 (18.9)	242 (12.0)	1010 (49.9)	2025 (100.0)

*** There is statistically highly significant relation between diseases and different ages of goats.

Pattern of Diseases Season: In this study, there was statistically highly significant relation between diseases and different seasons for goats, which was in agreement with the report of Ali et al., (2011) and Asres et al., (2014). Peak cases were observed during the season of winter with a rate of 36.5% (table 6). As a result of scarce grazing, animals graze close to the ground and have higher chance to acquire infectious agents. Those animals which are under fed and debilitated had low resistance to infection. Integumentary diseases were highest in winter season as compared to other seasons (table 6). This condition might be associated with the shortage of feed, animals graze close to the ground and dust might favour transmission of infectious agents and other environmental stress factors. Peak parasitic cases were observed during the winter season while the lowest number of cases of parasite was observed in summer season, with which agrees with works of Alemu et al., (2009) who reported highest prevalence of small ruminant lungworms was in November and February, bit disagrees with the finding of Asres et al., (2014), they reported peak parasitic cases were observed during the months of September and August while the lowest number of cases of parasite was observed in December, November and February. The difference might be associated with variation in seasonal factors as the epidemiology of gastrointestinal parasitic infections is influenced by climatic factors (particularly rainfall and temperature), management systems used for the animals and parasite factors including intermediate hosts all determine the epidemiology of the parasite as well (Kusiluka and Kambarage, 2006).

In this findings, highest cases of respiratory disease were recorded in main rain season (summer) (table 7), which was in agreement with Asres et al., (2014), they report pneumonia was peaked at months of July. Marked changes in weather and other factors that impair innate or adaptive resistance increase susceptibility to pneumonia (Radostits, 2007). In such cases, most of the bacteria which are normally resident in the upper respiratory tract have the ability to establish themselves in the lower respiratory tract (lung) and cause disease when the defence mechanism of the host is affected (Lopez, 1995). Therefore, the highest number of respiratory disease is associated with change in the factors that determine animals 'resistance to infection or due to lack of an effective vaccine against pasteurellosis.

Table 6: Cross tabulation of diseases and different seasons

Tymas Of Diagona	Season				Total (%) chi square value
Types Of Disease	Autumn (%)	Winter (%)	Spring (%)	Summer (%)	
Integumentary disease	90 (4.4)	222 (11.0)	140 (6.9)	57 (2.8)	509 (25.1)
Respiratory disease	94 (4.6)	80 (4.0)	92 (4.5)	163 (8.0)	429 (21.2)
Gastrointestinal disease	77 (3.8)	169 (8.3)	62 (3.1)	25 (1.2)	333 (16.4)
Infectious disease	44 (2.2)	130 (6.4)	71 (3.5)	66 (3.3)	311 (15.4)
Reproductive disease	63 (3.1)	62 (3.1)	32 (1.6)	35 (1.7)	192(9.5) 311.537***
Metabolic disease	34 (1.7)	33 (1.6)	29 (1.4)	2 (0.1)	98 (4.8)
Musculoskeletal disease	14 (0.7)	18 (0.9)	17 (0.8)	12 (0.6)	61 (3.0)
Nervous disease	20 (1.0)	5 (0.2)	7 (0.3)	25 (1.2)	57 (2.8)
Cold stress	8 (0.4)	18 (0.9)	1 (0.0)	1 (0.0)	28 (1.4)
Congenital defect	0 (0.0)	1 (0.0)	0(0.0)	3 (0.1)	4 (0.2)
Urolithiasis	2 (0.1)	1 (0.0)	0 (0.0)	0 (0.0)	3 (0.1)
Grand total	446 (22.0)	739 (36.5)	451 (22.3)	389 (19.2)	2025 (100.0)

^{***} There is statistically highly significant relation between diseases and different seasons for goats.

Table 7: Distribution of diseases and disorders in goat observed from September 2014 to August 2019 and season wise

Types Of Disease	Season				Year						Total
Types Of Disease	Autumn	Winter	Spring	Summer	2014	2015	2016	2017	2018	2019	
Integumentary disease											
Local abscess	50	93	100	36	19	44	64	81	56	15	279
Orf	33	107	29	14	5	38	28	20	92	0	183
Myasis	3	3	0	0	0	0	1	0	4	1	6
Mengimitis	3	15	8	7	0	0	7	9	2	15	33
Contact dermatitis	1	4	3	0	0	0	0	3	4	1	8
total	90	222	140	57	26	82	100	113	158	32	509
Respiratory disease											
Pneumonia	26	17	33	15	20	10	21	15	17	8	91
Respiratory distress	68	63	59	148	0	0	160	101	27	50	338
Total	94	80	92	163	20	10	181	116	44	58	429
Gastrointestinal disease											
Enteritis	63	155	52	19	14	86	33	91	56	9	289
Gingivitis	0	0	1	0	0	1	0	0	0	0	1
Internal parasitism	11	14	9	6	0	0	10	20	8	2	40
Simple indigestion	3	0	0	0	3	0	0	0	0	0	3
total	77	169	62	25	17	87	43	111	64	11	333
Infectious disease											
Actinomycosis	3	5	6	3	2	0	0	4	10	1	17
Cawdrosis	20	52	56	32	2	4	37	38	53	26	160
Keratoconjectivitis	14	42	9	3	1	21	9	21	16	0	68
PPR	0	0	0	27	0	0	0	27	0	0	27
Septicaemia	7	31	0	1	7	6	15	8	3	0	39
Total	44	130	71	66	12	31	61	98	82	27	311
Reproductive disease											
Abortion	20	14	7	13	0	0	19	19	15	1	54
Dystocia	8	11	2	1	0	4	1	9	8	0	22
Mastitis	5	4	9	9	1	2	1	16	5	2	27
Metritis	6	11	2	0	3	10	2	4	0	0	19
Orchatis	4	1	0	0	0	0	0	1	4	0	5
Retained placenta	20	21	12	12	3	10	23	20	9	0	65
total	63	62	32	35	7	26	46	69	41	3	192
Metabolic disease											

8

T. Of D.	Season				Year						Total
Types Of Disease	Autumn	Winter	Spring	Summer	2014	2015	2016	2017	2018	2019	
Agalactia	15	23	25	0	0	0	37	20	6	0	63
Milk fever	0	10	3	1	0	0	12	2	0	0	14
Mineral deficiency	19	0	1	1	0	0	0	19	0	2	21
Total	34	33	29	2	0	0	49	41	6	2	98
Musculoskeletal disease											
Aging	1	3	1	4	0	0	0	4	3	2	9
arthritis	3	4	0	0	0	3	0	3	1	0	7
Mechanical damage	10	11	16	8	8	13	9	5	6	4	45
Total	14	18	17	12	8	16	9	12	10	6	61
Nervous disease											
Coenurosis	0	0	1	0	0	0	0	0	0	1	1
Enzootic atactia & swayback	2	5	6	1	1	2	1	5	3	2	14
Parasis	18	0	0	24	0	0	16	1	12	13	42
Total	20	5	7	25	1	2	17	6	15	16	57
Cold stress	8	18	1	1	0	0	1	24	3	0	28
Congenital defect	0	1	0	3	0	0	0	3	1	0	4
Urolithiasis	2	1	0	0	0	0	0	1	2	0	3
Grand total	446	739	451	389	89	254	507	594	426	155	2025

Distribution of Clinical Cases in Years: The general frequency of the diseases were randomly distributed throughout the year, but relatively more cases were encountered during 2017 (594 cases) followed by 2016 (507) as stated in Table 7. Occurrence of variable number of cases in the study years might be due to not full period study on the year 2014 and 2019. Also it might be associated with changes in environmental factors like rain fall, temperature and humidity which might affect animal disease occurrence among the study years.

Prevalence of Clinical Cases in body condition score: In this study, there was statistically highly

significant relation between diseases and different body condition scores of goats. Of overall, peak cases were observed on medium body conditioned goats with prevalence a rate of 50.7% (Table 8), but agalactia, milk fever, and mineral deficiency cases were more observed in poor conditioned goats as compared to medium and good conditioned goats (Table 3). The relative variation in the distribution of the number of clinical cases within body condition score might be associated with the number of population of animals in the study area, management difference, or difference in natural immunity.

Table 8: Cross tabulation of diseases and different body condition score of goats

Towar Of Disease	Body Condi	tion Score		Total (%) chi square value
Types Of Disease	Good (%)	Medium (%)	Poor (%)	
Integumentary disease	81 (4.0)	287 (14.2)	141 (7.0)	509 (25.1)
Respiratory disease	46 (2.3)	263 (13.0)	120 (5.9)	429 (21.2)
Gastrointestinal disease	49 (2.4)	149 (7.4)	135 (6.7)	333 (16.4)
Infectious disease	52 (2.6)	168 (8.3)	91 (4.5)	311 (15.4)
Reproductive disease	42 (2.1)	92 (4.5)	58 (2.9)	192 (9.5) 221.029***
Metabolic disease	2 (0.1)	7 (0.3)	89 (4.4)	98 (4.8)
Musculoskeletal disease	8 (0.4)	26 (1.3)	27 (1.3)	61 (3.0)
Nervous disease	3 (0.1)	24 (1.2)	30 (1.5)	57 (2.8)
Cold stress	0 (0.0)	6 (0.3)	22 (1.1)	28 (1.4)
Congenital defect	0(0.0)	2 (0.1)	2 (0.1)	4 (0.2)
Urolithiasis	0 (0.0)	2 (0.10	1 (0.0)	3 (0.1)
Grand total	283 (14.0)	1026 (50.7)	716 (35.4)	2025 (100.0)

^{***} There is statistically highly significant relation between diseases and different body condition score of goats.

Conclusion

Based on the results of this retrospective epidemiologic study of goat diseases; respiratory distress, enteritis, local abscess, orf and cawdrosis were most clinical cases and health problems in the breeding site. The occurrence of diseases were found to be more in females than male's as well in cross goat than local goat and pure boer. The prevalence of diseases was more >730days age. It also observed that distribution of diseases were affected by temporal factors. Identification of risk factors of diseases will help to initiate efficient control program. Increased production of goat meat and skin are deeply related to management of the goat, identification of risk factors of diseases and disorder. Therefore strategies should be taken to minimize their occurrence.

Acknowledgment

We would like acknowledge all members of livestock research team for their comments and data gathering. Also, we would like to express our sincere appreciation to Debr Birhan Agricultural Center for giving us all the necessary facilities for the completion of this work.

Corresponding Author:

Dr. Habtamu Addis

Veterinary medicine Debre Marekose University

Telephone: 0921281124

E-mail: yohans Addi68@gmail.com

Reference

- Alemu, S., E.L. Gelaye, G. Eyelet and A. Sleek, 2006. Study on small ruminant lungworms in north-eastern Ethiopia. Vet. Parasitology. 142: 330-335.
- Berhanu, A., 2002. Welcome address: Animal health and poverty reduction strategies. In: proceedings of the 16th Annual Conference of the Ethiopian Veterinary Association (EVA) held 5-6 June, 2002, Ghion Hotel, Addis Ababa, Ethiopia. pp: 117-137.
- CSA (Central Statistical Authority). Ethiopian agricultural sample survey. Vol II. Report on livestock and livestock characteristics. CSA, Addis Ababa, Ethiopia, 2009.
- D. Lacasta, L.M. Ferrer, J. J. Ramos, J. M. Gonz'alez, and M. De las Heras, "Influence of climatic factors on the development of

- Pneumonia in lambs," Small Ruminant Research, vol. 80, no. 1-3, pp. 28-32, 2008.
- Faccini, F.P., 2008. An Epidemiological approach to Diagnostic Process - Med students Epidemiology, pp: 234.
- Food and Agriculture Organization of the United Nations (FAO), Livestock and Livestock products, Quarterly Bulletin of Statistics. FAO, Rome, Italy, 1991.
- Kusiluka, L. and D. Kambarage, 2006. Diseases of Small Ruminants, A Handbook, Common Diseases of Sheep and Goats in Sub-Saharan Africa. pp: 8-11.
- Lopez, A., 1995. Respiratory System. In: W.W. Carlton and M.D. Mc Gavin: Thomson's Special Veterinary Pathology. 2. pp: 116-174.
- M. H. Ali, M. K. J. Bhuiyan and M. M. Alam (2011) L: Retrospective epidemiologic study of diseases in ruminants in khagrachari hill tract district of bangladesh bangl. J. Vet. Med. (2011). 9 (2): 145 – 153.
- 10. Radostits, O.M., C.C. Gay, K.W. Hinchcliffand P.D. Constable, 2007. Veterinary Medicine, a Textbook of the Diseases of Cattle, Horses, Sheep, Pigs and Goats. 10th Ed. London: Saunders Elsevier. pp: 119-1966.
- 11. Ramsay, (1999): Animal husbandry and securing the food supply- consequences for environment? Anim. Res. Dev. 49.39-50.
- Sefinew, A. and Z. Bider, 2011. Occurrence and Associated Risk Factors of Clinical Diseases of Farm Animals Presented to Gondar University Veterinary Clinic, Ethiopia, during the years 2007 to 2009. Journal of Tropical Animal Health and Production. pp: 323.
- 13. Zegeve Asres, Belavineh Nigus, Shinkute 1 1 2 Abiy, 1Lakew Mesfine And 3Tesfaye Abebe (2014): On-Station Retrospective Epidemiologic Study Of Small Ruminant Disease In sirinka agricultural Research Center, Sheep And Goat Breeding, Evaluation And Distribution Site Academic Journal Of Animal Diseases 3(3): 39-44, 2014.
- 14. Zegeye, B., A. Sefinew and T. Wudu, 2013. Distribution of diseases of farm animals presented to Gondar University Veterinary Clinic, Ethiopia, during the years 2007 to 2009. Journal of Tropical Animal Health and Production. pp: 334.

12/25/2019