Calculus 3 - Vector Fields

Early in this course, we introduced vector functions

$$
\vec{r}(t)=<f(t), g(t)>.
$$

For example

Figure 1: Vector Function $\vec{r}(t)=\left\langle t, \frac{1}{2} t^{2}+1>\right.$

Figure 2: Vector Function $\vec{r}(t)=<\cos t, \sin t>$

We now introduce vectors that change with respect to position.

Consider the following

$$
\begin{equation*}
\vec{F}(x, y)=<-y, x> \tag{1}
\end{equation*}
$$

We certainly could create a sort of table of values. So choosing ordered pairs (x, y) we see

$$
\begin{array}{rlrl}
\vec{F}(1,0) & =\langle 0,1\rangle & \vec{F}(0,1) & =\langle-1,0\rangle \\
\vec{F}(-1,0) & =\langle 0,-1\rangle \vec{F}(0,-1) & =\langle 1,0\rangle \\
\vec{F}(1,1) & =<-1,1\rangle \vec{F}\left(-\frac{1}{2}, \frac{1}{2}\right) & =\left\langle-\frac{1}{2},-\frac{1}{2}\right\rangle
\end{array}
$$

Figure 3: Vector Field $\vec{F}(x, y)=<-y, x>$

In general we have

$$
\begin{equation*}
\vec{F}(x, y)=<P(x, y), Q(x, y)> \tag{2}
\end{equation*}
$$

3D Vector Fields.
Consider for example

$$
\begin{equation*}
\vec{F}(x, y, z)=\langle-y, x, z\rangle \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\vec{F}=\left\langle\frac{x}{r}, \frac{y}{r}, \frac{z}{r}\right\rangle, \quad r=\sqrt{x^{2}+y^{2}+z^{2}} \tag{4}
\end{equation*}
$$

Gradient Vector Fields

A vector field is called a gradient vector field (VF) if given some function $f(x, y)$ (called a potential) then

$$
\begin{equation*}
\vec{F}=\nabla f=\left\langle f_{x}, f_{y}\right\rangle \tag{5}
\end{equation*}
$$

or in 3D if $f(x, y, z)$

$$
\begin{equation*}
\vec{F}=\nabla f=\left\langle f_{x}, f_{y}, f_{z}\right\rangle \tag{6}
\end{equation*}
$$

For example, if $f(x, y)=x^{2}+y^{2}$ then the gradient VF is

$$
\begin{equation*}
\vec{F}=\nabla f=\langle 2 x, 2 y\rangle \tag{7}
\end{equation*}
$$

or if $f(x, y, z)=x y+z^{2}$ then the gradient VF is

$$
\begin{equation*}
\vec{F}=\nabla f=\langle y, x, 2 z\rangle \tag{8}
\end{equation*}
$$

Conservative Vector Field

A vector field is said to be conservative is a function f exists such that

$$
\begin{equation*}
\vec{F}=\nabla f \tag{9}
\end{equation*}
$$

So, for example one of these two vector fields is conservative

$$
\begin{equation*}
\vec{F}=\langle y, x\rangle, \quad \vec{F}=\langle-y, x\rangle \tag{10}
\end{equation*}
$$

Test for Conservative Vector Fields

Let P and Q have continuous partial derivatives. A vector field

$$
\begin{equation*}
\vec{F}=\langle P(x, y), Q(x, y)\rangle \tag{11}
\end{equation*}
$$

is conservative if

$$
\begin{equation*}
\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x} \tag{12}
\end{equation*}
$$

Example 1. Is the following vector field conservative?

$$
\begin{equation*}
\vec{F}=\left\langle 2 x y+2, x^{2}+3 y^{2}\right\rangle \tag{13}
\end{equation*}
$$

We first test that the VF is conservative. So

$$
\begin{equation*}
P=2 x y+2, \quad Q=x^{2}+3 y^{2} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial P}{\partial y}=2 x, \quad \frac{\partial Q}{\partial x}=2 x \tag{15}
\end{equation*}
$$

and they are the same, so yes, the VF is conservative.
Example 2. Is the following vector field conservative?

$$
\begin{equation*}
\vec{F}=\langle-y, x\rangle \tag{16}
\end{equation*}
$$

We first test that the VF is conservative. So

$$
\begin{equation*}
P=-y, \quad Q=x \tag{17}
\end{equation*}
$$

and since

$$
\begin{equation*}
\frac{\partial P}{\partial y}=-1, \quad \frac{\partial Q}{\partial x}=1 \tag{18}
\end{equation*}
$$

and they are not the same, so no, the VF is conservative.
Once we know that a VF is conservative, how do we find the potential f. Let us return to example 1. Here

$$
\begin{equation*}
\vec{F}=\left\langle 2 x y+2, x^{2}+3 y^{2}\right\rangle \tag{19}
\end{equation*}
$$

Conservative vector fields are such that

$$
\begin{equation*}
\vec{F}=\nabla f=\left\langle f_{x}, f_{y}\right\rangle \tag{20}
\end{equation*}
$$

so we equate the two so

$$
\begin{equation*}
\nabla f=\left\langle f_{x}, f_{y}\right\rangle=\left\langle 2 x y+2, x^{2}+3 y^{2}\right\rangle \tag{21}
\end{equation*}
$$

or

$$
\begin{align*}
& f_{x}=2 x y+2 \tag{22}\\
& f_{y}=x^{2}+3 y^{2}
\end{align*}
$$

Now we integrate each separately noting that integrating with respect to one variable, a function of integration is included.

$$
\begin{align*}
& f_{x}=2 x y+2, \quad \Rightarrow \quad f=x^{2} y+2 x+A(y) \tag{23a}\\
& f_{y}=x^{2}+3 y^{2} \quad \Rightarrow \quad f=x^{2} y+y^{3}+B(x) \tag{23b}
\end{align*}
$$

As we want the same f in equation (23a) and (23b) we choose $A(y)$ and $B(x)$ accordingly. Thus,

$$
\begin{equation*}
A(y)=y^{3}+c, \quad B(x)=2 x+c \tag{24}
\end{equation*}
$$

(c is an arbitrary constant) and the potential is

$$
\begin{equation*}
f=x^{2} y+2 x+y^{3}+c \tag{25}
\end{equation*}
$$

Divergence and Curl of Vector Fields

We introduced the gradient of a function as

$$
\begin{equation*}
\nabla f=\left\langle f_{x}, f_{y} f_{z}\right\rangle \tag{26}
\end{equation*}
$$

we now introduce the del operator and define it as

$$
\begin{equation*}
\nabla=\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial y} \frac{\partial}{\partial z}\right\rangle \tag{27}
\end{equation*}
$$

Given a vector field

$$
\begin{equation*}
\vec{F}=\langle P(x, y, z), Q(x, y, z), R(x, y, z)\rangle \tag{28}
\end{equation*}
$$

we define the Divergence and Curl of a vector field.

Divergence - We define divergence of a vector field as

$$
\begin{align*}
\nabla \cdot \vec{F} & =\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial y} \frac{\partial}{\partial z}\right\rangle \cdot\langle P(x, y, z), Q(x, y, z), R(x, y, z)\rangle \tag{29}\\
& =P_{x}+Q_{y}+R_{z}
\end{align*}
$$

For example if

$$
\begin{equation*}
\vec{F}=\left\langle x^{2}, 2 y, x y z\right\rangle \tag{30}
\end{equation*}
$$

then

$$
\begin{equation*}
\nabla \cdot \vec{F}=2 x+2+x y \tag{31}
\end{equation*}
$$

Curl - We define the curl of a vector field as

$$
\nabla \times \vec{F}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \tag{32}\\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
P(x, y, z) & Q(x, y, z) & R(x, y, z)
\end{array}\right|
$$

For example if $\vec{F}=\left\langle x^{2}, 2 y, x y z\right\rangle$ then

$$
\begin{align*}
\nabla \times \vec{F} & =\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x^{2} & 2 y & x y z
\end{array}\right| \\
& =\left|\begin{array}{cc}
\frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
2 y & x y z
\end{array}\right| \vec{i}-\left|\begin{array}{cc}
\frac{\partial}{\partial x} & \frac{\partial}{\partial z} \\
x^{2} & x y z
\end{array}\right| \vec{j}+\left|\begin{array}{cc}
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\
x^{2} & 2 y
\end{array}\right| \vec{k} \tag{33}\\
& =\langle x z,-y z, 0\rangle
\end{align*}
$$

In 3D, if a vector field is conservative, then

$$
\nabla \times \vec{F}=\overrightarrow{0}
$$

Example 3

Show the following vector field is conservatives and find the potential f.

$$
\begin{align*}
\vec{F} & =\left\langle 2 x z-\frac{3 y}{x^{2}}+1, \frac{3}{x}, x^{2}+4 z\right\rangle \tag{34}\\
\nabla \times \vec{F} & =\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
2 x z-\frac{3 y}{x^{2}}+1 & \frac{3}{x} & x^{2}+4 z
\end{array}\right| \\
& =\left|\begin{array}{cc}
\frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\frac{3}{x} & x^{2}+4 z
\end{array}\right| \vec{i}-\left|\begin{array}{cc}
\frac{\partial}{\partial x} & \frac{\partial}{\partial z} \\
2 x z-\frac{3 y}{x^{2}}+1 & x^{2}+4 z
\end{array}\right| \vec{j}+\left|\begin{array}{cc}
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\
2 x z-\frac{3 y}{x^{2}}+1 & \frac{3}{x}
\end{array}\right| \vec{k} \\
& =\left\langle 0,-(2 x-2 x),-\frac{3}{x^{2}}+\frac{3}{x^{2}}\right\rangle \\
& =\langle 0,0,0\rangle
\end{align*}
$$

So the vector field is conservative. Thus, a potential f exists such that

$$
\begin{align*}
& f_{x}=2 x z-\frac{3 y}{x^{2}}+1 \\
& f_{y}=\frac{3}{x} \tag{35}\\
& f_{z}=x^{2}+4 z
\end{align*}
$$

We integrate each

$$
\begin{align*}
& f=x^{2} z+\frac{3 y}{x}+x+A(y, z), \\
& f=\frac{3 y}{x}+B(x, z), \tag{36}\\
& f=x^{2} z+2 z^{2}+C(x, y)
\end{align*}
$$

Since we want a single f then choose

$$
\begin{equation*}
A=2 z^{2}, \quad B=x^{2} z+x, \quad C=\frac{3 y}{x} \tag{37}
\end{equation*}
$$

and so

$$
\begin{equation*}
f=x^{2} z+\frac{3 y}{x}+2 z^{2}+x+c . \tag{38}
\end{equation*}
$$

