Shortest Path Calculation for Mobile Robot using ACO

${ }^{1,4}$ Mehak Saini, ${ }^{2,4}$ Dr. Sanju Saini, ${ }^{3,5}$ Dr. K.K.Saini
${ }^{1}$ Department of ECE,
${ }^{2}$ Asstt. Professor, Department of EE
${ }^{3}$ Director
${ }^{4}$ D.C.R. University of Sci. \& Tech., Murthal, Sonepat, Haryana, India- 131039
${ }^{5}$ Hindu College of Engineering, Sonepat-131001.

Abstract

Mobile Robot path planning (RPP) is an important research field of robotics. It refers to the use of some optimization criterion by the mobile robot to search for an optimal, safe and obstacle free path from the initial state to the target state in a work environment with obstacles. In this work, mobile robots path planning has been done by using an ant colony optimization algorithm providing minimum time complexity and good stability with the objectives of finding a collision free $\&$ shortest path between start and the end point.

Keywords - Ant Colony optimization (ACO), artificial ant colony system (AACS), Mobile robot, Shortest path.

I. INTRODUCTION

The field of robotics has attracted a lot of attention in research and industrial communities. Currently robots are being used in manufacturing, transportation, medicine, exploration and services. However, in future, robotic systems will need to become more intelligent so that they can execute variety of tasks within minimum time with almost no human intervention. One of the main challenges for an intelligent robot is to determine the safest and fastest(shortest) route to its destination, that is also referred to as the problem of path planning. Path planning is an ordering problem, in which, after beginning at the initial location, the problem is to find a sequence of configurations so as to end at the final goal location. The robot tries to search for an optimal path with respect to a number of performance objectives, such as distance, energy, time, smoothness and safety. Obstacle avoidance is also another main design requirement for a mobile robot. Path planning covers a large area of robotics research as it improves robotic navigation systems in static as well as dynamic environments. With a perfect path planning system, mobile robot can navigate automatically so as to reach the final destination. Robot navigation problems can be generalized into four categories [1], i.e., localization, path planning, motion control and cognitive mapping. If the knowledge of environment is known, the planning of global path can be made offline before the robot starts moving. This path can help the robot to traverse within the real environment. However, one more category of path planning was introduced to solve the robotic path planning problem when the robot is faced with obstacles, and that is known as local path planning. Local path is generally constructed online when the robot avoids the obstacles in a real time environment. Table 1 show the main differences between the two mobile robot navigational approaches [2].

Table 1. Differences in Robot Navigation Approaches

Local Path Planning	Global Path Planning
1. Sensor based system.	1. Map based system
2. Reactive system.	2.Deliberative system
3. Fast response.	3. Slow response.
4. Incomplete knowledge of	4. Complete knowledge of

5. The problem is to follow path to avoid obstacle or objects while moving towards target.

The problem of path planning of mobile robot requires searching through a huge space of possibilities for solutions and often requires the system to be adaptive. Biological evolution is an appealing source of inspiration for addressing such difficult computational problems. A number of nature inspired techniques such as genetic algorithm [4-7], fuzzy logic [8], Artificial neural networks [9], evolutionary algorithm [10], bee swarm optimization [11], etc. have been used by the researchers for the task of robot path planning. Biological ants in the real world utilize swarm intelligence to determine the shortest route to the nutrients. Ant Colony Optimization (ACO) algorithms mimic behavior of the real ants so as to provide heuristic solutions for the optimization problems. Biological ants exhibit complex social behavior while searching for food depending on the hormones (also called pheromones) deposited by them[3]. Pheromones attract the other ants and give a path to the food source that can be followed by other ants. When more ants walk along the path, more content of pheromone is laid, and the chance of taking that path by the more ants will increase. Most pheromone is deposited on the shortest path to the food as more ants can travel it in less amount of time. A number of researchers have used basic ACO as well as its various variants for the problem of robotic path planning [12-19].
In this work, four different models of ACO; namely ant quantity model, ant density model, ant cycle model and ant cycle model with ellistic ants have been used for finding the optimal (shortest) path for mobile robot and a comparison between the performances of various models of ACO has been made. Rest of the paper is organized as follows:
An introduction to the artificial ant colony system \& robot path planning problem has been given in sections II and III respectively. Simulation results are presented in section IV followed by conclusion, future scope and list of references.

II. ARTIFICIAL ANT COLONY SYSTEM

An artificial ant colony system is a stochastic populationbased heuristic algorithm that simulates the natural behavior of ants. An ACS algorithm performs a loop [20], by mimicking the way the ants construct a solution for the problem in hand \& updating the pheromone trail. The probability of adding a new term to the solution under construction is a function of a problem-dependent heuristic and the amount of pheromone previously deposited in the trail. The pheromone trail are updating considering the evaporation rate and the quality of the current solution. The main task of each artificial ant in an ACO algorithm is to get the shortest path between a pair of nodes on the graph (used for problem representation). The decision rules of an ant, ' k ' located at node, ' i ' use the pheromone trails $\tau_{i j}$, to compute the probability with which it should choose node j as the next node to move to [20] as shown in eqn. $1\left(N_{i}\right.$ is the set of one step neighbors of node i):

$$
p_{i j}^{k}=\left\{\begin{array}{cc}
\tau_{i j} / \sum_{j \in N_{i}} \tau_{i j} & \text { if } j \in N_{i} \tag{1}\\
0 & \text { otherwise }
\end{array}\right.
$$

Here, the ants are assumed to deposit a constant amount $\tau_{i j}$ of the pheromone. An ant moving from node, ' i ' to node, ' j ' will change the pheromone value $\tau_{i j}$ given by eqn. 2 .

$$
\begin{equation*}
\tau_{i j}(t) \leftarrow \tau_{i j}(t)+\Delta \tau \tag{2}
\end{equation*}
$$

Pheromone trail is updated in the following three ways:
Online step- by- step pheromone update When moving from node i to neighboring node j , the ant can update the pheromone trail $\tau_{i j}$ on the arc (i, j).
Online delayed pheromone update once a solution is built; the ant can retrace the same path backward and update the pheromone trail on the traversed path.
Off -line pheromone update Pheromone updates performed using the global information available is called off- line pheromone updates.

After choosing a path with the help of the action choice rule, an ant has to indicate its movement and the quality of the food source obtained so far to its fellow ants. The pheromone updating method is different for different types of ant colony model, as described in the following models:
A. Ant-Quantity Model: In this model, ants locally update the pheromone trail directly (by using eqn. 3) after moving from one state to the adjacent one.

$$
\begin{equation*}
\tau_{i j}(t+1)=\rho \tau_{i j}+\Delta \tau_{i j}(t, t+1) \tag{3}
\end{equation*}
$$

where

$$
\begin{gathered}
\Delta \tau_{i j}=\sum_{k=1}^{m} \Delta \tau_{i j}^{k} \\
\Delta \tau_{i j}^{k}=\left\{\begin{array}{cl}
Q / d_{i j} & \text { if } k \text { ant uses edge }(i, j) \\
0 & \text { otherwise }
\end{array}\right.
\end{gathered}
$$

Where $m=$ total number of ants
$d_{i j}=$ Euclidean distance calculated for particular stage
$\mathrm{Q}=$ constant related to the quantity of the pheromone in trail.
B. Ant Density Model: In this model, an ant going from ito j leaves a quantity Q of the pheromone on the edge (i, j) every time it goes from i to j. The ant density model is represented by eq. (4)

$$
\begin{equation*}
\tau_{i j}(t+1)=\rho \tau_{i j}(t)+\Delta \tau_{i j}(t, t+1) \tag{4}
\end{equation*}
$$

Where

$$
\begin{gathered}
\Delta \tau_{i j}=\sum_{k=1}^{m} \Delta \tau_{i j}^{k} \\
\Delta \tau_{i j}^{k}=\left\{\begin{array}{cc}
Q & \text { if k ant uses edge }(i, j) \\
0 & \text { otherwise }
\end{array}\right.
\end{gathered}
$$

C. Ant-cycle Model: In this model, the pheromone trails are updated globally by using the eqn. 5. In cycle model, the pheromone trail is updated only after all the ants have constructed their tours and the amount of pheromone deposited by each ant is set to a function of the tour quality.

$$
\begin{equation*}
\tau_{i j}(t+n)=\rho \tau_{i j}(t)+\Delta \tau_{i j}(t, t+n) \tag{5}
\end{equation*}
$$

Where

$$
\Delta \tau_{i j}=\sum_{k=1}^{m} \Delta \tau_{i j}^{k}
$$

$$
\Delta \tau_{i j}^{k}=\left\{\begin{array}{cc}
Q / T_{k} & \text { if kth ant uses edge }(i, j) \text { in its tour } \\
0 & \text { otherwise }
\end{array}\right.
$$

Where T_{k} is the length of the tour taken by the kth ant.
D. Ant system with elistic ants: in this ant system for the ant cycle model, an elastic ant reinforces the edges belonging to T^{+}-the best tour found from the beginning of the trail-by a quantity $Q / L_{L^{+}}$, where L^{+}is the length of T^{+}. During each cycle, e elastic ants are added to the usual ants, so that the edges belonging to T^{+}get extra reinforcement $e Q / L^{+}$.In this method, the globally updated pheromone trail is given by eqn. 6

$$
\begin{equation*}
\tau_{i j}(t)=\rho \tau_{i j}(t)+\Delta \tau_{i j}(t)+e \Delta \tau_{i j}^{e}(t) \tag{6}
\end{equation*}
$$

where

$$
\Delta \tau_{i j}^{e}(t)=\frac{Q}{L^{+}}
$$

III. ROBOT PATH PLANNING PROBLEM

To represent the path planning problem, a 2-dimension square map overlaid with a uniform pattern of grid points is chosen . The size of a map can be changed arbitrarily; here, the map consists of a 16×16 grid. The left bottom corner of the map is the starting point for a path while the right top corner of the map is the destination point for a path. The shape of an obstacle is always a circle, but the size of the obstacle is variable. The goal is to construct a shortest path from the starting point, S , to the destination (goal point,) D , which avoids every obstacle in the map. The robot first ascertains
the next position in order to coordinate itself with the destination and constructs a path to that location. The robot will move to the calculated next position if it can align itself towards its goal location without any collision. Experiments have been performed with different number of obstacles. The results are obtained in static as well as dynamic environment.

IV. SIMULATION RESULTS

In this paper, an ant colony optimization algorithms is implemented as a MATLAB script. MATLAB is adopted as a computer language which is used on an i-5 processor running at 2.50 GHZ with a 4 GB of RAM. ACO is used to find the optimal path for three different static cases and one dynamic case. Here, four different models of ant colony system i.e. ant density model, ant quantity model, ant cycle model and ant cycle model with elistic ants have been used. For each model of ACO, the optimal path length is determined. The ant population is taken equal to 50 . The parameters of ant colony algorithm have a crucial importance. For each specific model, the best combination of main parameters is different. For the problem in this work, the possible ranges of parameters (information inspiration factor (α), hope inspiration factor (β), pheromone intensity Q and rate of pheromone evaporation) is quite vast ($0 \leq \alpha \leq 10,0 \leq \beta \leq 10,10 \leq$ $Q \leq 10000,0 \leq \rho \leq 1$). The parameter settings for the path planning problem have been obtained through repeated tests. Corresponding values of the parameters used in this work have been given in Table 2.

Table 2: ACO Parameters values

Name of the model	α	β	ρ	Q
Ant density model, Ant quantity model, Ant cycle model, Ant cycle model for elistic ant (Ellistic ants =12)	9.6	6.8	0.8	25.3

A. ACO Result in Static Environment with Classical Transition Rule

In this work, ACO is used to determine the optimal (shortest) path for three different static environments taking the ant population equal to 50 . The optimal path length obtained in each case by using 4 different models is the same as shown in Figs. $1,3 \& 5$ respectively. But the time taken by each model to reach the final solution is different which is shown in Table 3. In the same table, a comparison between the models of ACO with classical transition Rule has been given. Figs 2,4 \& 6 represent the deposited pheromone in three cases.

Table 3: Comparison between the models of ACO

$\begin{gathered} \text { S. } \\ \text { No } \end{gathered}$	No. of obstacles	Path Length	Computation Time (sec.)			
			Ant quantity model	Ant density model	Ant Cycle model	Ant cycle model with 12 elistic ants
1	0	21.12	21.40	26.4	22.7	14.03
2	10	24.14	29.18	34.5	25.7	19.08
3	18	21.7	22.80	32.5	24.24	15.88

Fig. 1. Optimal path length in static environment without obstacles a) Ant density model, b) Ant quantity model, c) Ant Cycle model d) Ant Cycle model with elastic ants

Fig. 2. Deposited pheromone in 2-Dimensional space for no obstacle

Fig. 3. Optimal path length in static environment with ten obstacles a) Ant density model, b) Ant quantity model, c) Ant

Cycle model d) Ant Cycle model with elistic ants

Fig. 5 Optimal path length in static environment with eighteen obstacles a) Ant density model, b) Ant quantity model, c) Ant Cycle model d) Ant Cycle model with elistic ant

Fig. 4. Deposited pheromone in 2-Dimensional space with ten obstacles

(c)

Fig. 6 Deposited pheromone in 2-Dimensional space with eighteen obstacles
B. ACO results in dynamic environment

To simulate a dynamic environment, 11 stationery obstacles and 4 moving obstacles are chosen. The speed of the moving obstacle is 1 grid in nine seconds. Using the proposed algorithm the mobile robot is able to find a feasible path from starting to a target with obstacles avoidance as shown in Fig. 7(a-e).

(a)

IJRECE Vol. 5 ISSUE 4 OCT.-DEC. 2017

Fig. 7. Optimal path length in dynamic environment (a) after 9 s (b) after 18 s (c) after 27 s (d) after 36 s (e) after 45 s

V. CONCLUSION

It has been observed that optimal(shortest) path length can be determined by using any of the four different models of ant colony system i.e. ant density model, ant quantity model, ant cycle model and ant cycle model with elistic ants, but, use of ant cycle model with elistic ants results in minimum computational time. This model has also been successfully tested to give a feasible solution in dynamic environment.

VI. FUTURE SCOPE

In future, this algorithm may be applied to a real robot which has to deal with the nonlinear factors such as noise. Moreover, in this work, a 2- dimensional workspace is considered. Further the work can be extended for a 3dimensional workspace.

VII. REFERENCES

[1]. Khatib, "Real time obstacle avoidance for manipulators and mobile robots," International Journal of Robotics Research, Vol. 5, pp. 90-98, 1985.
[2]. Buniyamin N, Sariff N., Wan Ngah W.A.J, Mohamad Z, "Robot global path planning overview and a variation of ant colony system algorithm", International Journal Of Mathematics And Computers In Simulation, Vol. 5, pp. 10-16, 2011.
[3]. Marco. Dorigo \& Christian Blum, "Ant Colony Optimization Theory A Survey". Theoretical Computer Science, pp. 243-278, 2005.
[4]. Jianping Tu, Simon X. Yang, "Genetic Algorithm Based Path Planning for a Mobile Robot", IEEE International Conference on Robotics \& Automation, 2003.
[5]. M.Gemeinder, M.Gerke, "GA-based path planning for mobile robot systems employing an active search algorithm", Applied Soft Computing, vol. 3, pp. 149-158, 2003.
[6]. O.Castillo L, Trujillo, " Multiple Objective optimization Genetic Algorithm for Path planning in Autonomous Mobile Robots", International Journal Of Computers, Vol. 6, No. 1, pp. 48-63, 2005.
[7]. N. Baba and N. Kubota, "Collision Avoidance Planning of a Robot Manipulator by Using Genetic Algorithm", Proceeding of the First Conference on Evolutionary Computation, pp. 714719, 1994.
[8]. Mohannad Al-Khatib, Jean J. Saade, "An efficient data-driven fuzzy approach to the motion planning problem of a mobile robot", Fuzzy Sets and System, vol.134, pp. 65-82, 2003.
[9]. Simon X. Yang, Max Meng, "An efficient neural network method for real-time motion planning with safety consideration", Robotics and Autonomous Systems, vol. 32, pp. 115-128, 2001.
[10].Xiao, Michalewicz K.,"Adaptive evolutionary navigator/planner for robots," IEEE Transaction on Evolutionary Computation, vol.1, no 1, pp. 18-23, 1997.
[11].Jiann-Horng Lin and Lin-Ren Huang, "Chaotic Bee Swarm Optimization Algorithm for Path Planning of Mobile Robots, Proceedings of the 10th WSEAS International Conference on evolutionary computing, 2009.
[12].ZHAO Juan-ping, LIU Jin-gang, GAO Xian-wen, "Research of Path Planning for Mobile Robot based on Improved Ant Colony Optimization Algorithm", IEEE international
conference on Advanced Computer Control (ICACC), pp. 241245, 2010.
[13]. Wang Zhangqi, Zhu Xiaoguang, Han Quingyao, "Mobile Robot Path Planning Based on Parameter Optimization Ant Colony Algorithm", Science Direct, Vol. 15, pp 2738-2741, 2011.
[14].Beatriz A. Garro, Humberto Sossa, "Evolving Ant Colony System for Optimizing Path Planning in Mobile Robots", Fourth Congress of Electronics, Robotics and Automotive Mechanics, IEEE, pp 444-450, 2007.
[15].Song-Hiang Chia, Kuo-Lan Su, Jr-Hung Guo, Cheng-Yun Chung, "Ant Colony System Based Mobile Robot Path Planning", Fourth International Conference on Genetic and Evolutionary Computing, 2010.
[16]. Michael Brand, Michael Masuda, Nicole Wehner, Xiao-Hua Yu, "Ant Colony Optimization Algorithm for Robot Path Planning", International Conference on Computer Design and Applications, 2010.
[17].Ritesh Maurya \& Anupam Shukla, "Generalized and Modified Ant Algorithm for Solving Robot Path Planning Problem", $3^{\text {rd }}$ IEEE international conference on Computer Science and Information Technology (ICCSIT), 2010.
[18].Nohaidda Binti Sariff, Norlida Buniyamin, "Ant Colony System for Robot Path Planning in Global Static Environment", Proceedings of the 9th WSEAS international conference on System science and simulation in engineering,pp. 192-197, October 04-06, 2010
[19].Jie Dong, Bing Liu, Kaixiang Peng and Yixin Yin, "Robot Obstacle Avoidance based on an Improved Ant Colony Algorithm", IEEE Global Congress on Intelligent Systems, 2009.
[20].N.P.Padhy, "Artificial Intelligence \&Intelligent Systems" Oxford University Press, New Delhi, 2005.

Mehak Saini is B.Tech (ECE) and M.Tech from Deenbandhu Chhotu Ram University of Science and Technology Murthal, Sonepat (Haryana), India. She is a young Technocrat and Researcher. She has published 6 research papers in National/ International Journals. Her areas of Interest are Digital Water Marking Techniques, Optical Communication, Advanced Communication System and optimization techniques.

Dr. Sanju Saini is working in Electrical Engineering Department of Deenbandhu Chhotu Ram University of science and technology, Murthal, Sonipat. She has 26 years of technical teaching experience. She is B.Tech (Electrical Engineering) and M.tech (Electrical Engineering with specialization in Control System) from NIT, Kurukshetra. She has received her Ph.D. degree from Electrical engineering department of DCRUST, Murthal. She has more than 50 technical research papers to her credit and has twice won the best paper presentation award. She has guided more
than 25 M.Tech. students for their dissertation work and is life member of technical associations like, ISCA, IETE \& IE. Her areas of research are chaotic theory, Neural networks and Fuzzy systems.

PROF. (DR.) K. K. SAINI is BE (ELECTRONICS \& COMM. ENGG.), ME (ELECTRONICS ENGG.) \& PHD (ENGG.).He had also done MBA from Missouri University, USA by NFIS [Distance Education Centre] Harriman Circle, Bombay. He is expert \& well known in the field of Electronics \& Communication Engineering with an experience of 25 years including Industry/Administration/Teaching. He is life member of ISCA, FIETE, FIE, MINTACH, MISTE, MIASTD [CANADA], OSA [USA], IEEE[USA], and other associations. He had guided more than fifty students for their M.TECH/ME dissertation work. He has also composed six Hindi Poem Books. His areas of interest are advance communication, digital electronics \& reliability of electronic components in electronics based industries. At Present he is serving as DIRECTOR-PRINCIPAL at HINDU COLLEGE OF ENGINEERING ,SONIPAT , HARYANA From 2015 Onwards.

