
IJRECE VOL. 7 ISSUE 1 (JANUARY- MARCH 2019)                 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE) 

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING 

 A UNIT OF I2OR  1065 | P a g e  

 

Serverless Computing: An Evolution from Servers to 

Functions. 
Manasha Saqib 

 (E-mail: manashasaqib@gmail.com)

 
 

Abstract— Cloud computing has empowered organizations to 

concentrate more on their core services and products and less 

on their IT framework. Today, a wide range of organizations 

use cloud services without worrying about any hidden 

problems related to infrastructure. The new intake version of 

Serverless Computing has emerged. In standard cloud 

computing, dynamically allotted pay-per-use resources replace 

the dedicated hardware, for example, virtual servers. These 

resources are usually referred to as "pay-per-use," as they are 

charged based on allocation rather than actual use, which may 

lead a customer to pay more than necessary. Resources are 

generally not charged or allocated in serverless computing 

until a function is called. In addition to Platform-as-a-Service 

(PaaS) and Infrastructure-as-a-Service (IaaS), Serverless 

computing or Function-as-a-Service is the next level of 

abstraction capable of changing the way many organizations 

devour cloud services. Serverless Computing "allows 

designers to concentrate solely on composing code without 

managing servers"- basically make the procedure “serverless” 

to the client. The unit of scale in Serverless technology is the 

function and abstracts the runtime of the language. The 

potential benefits of serverless computing -easier operational 

management, faster innovation, increased development, and 

testing complexity, reduced cost of maintenance and 

infrastructure, increased scalability and higher performance -

appear to outweigh the risks for several organizations. 

 

Keywords— Serverless Computing, Infrastructure-as-a-

Service, Platform-as-a-Service, Function-as-a-Service, Cloud 

computing. 
 

 I.INTRODUCTION 

The term ‘Serverless’ refers to a new generation of 

Platform-as-a-Service (PaaS) offerings by major cloud 

service providers. For the deployment of cloud applications, 

Serverless Computing has emerged as a new and 

compelling paradigm, mostly because of the recent shift of 

enterprise application architectures to containers and micro-

services [1]. The word ‘serverless’ doesn’t mean ‘No 

Servers’. Rather, servers are a fundamental part of this 

concept; but, it is the responsibility of cloud service 

provider to provide an ephemeral compute service  and to 

handle the complexity of managing individual servers that 

will execute a piece of code on-request triggered through 

requests and events.  
Serverless is an event-driven computer model in which the 

underlying infrastructure (includes physical and virtual 

hosts, machines, containers, and operating systems) is 

abstracted from the developer and the service consumer. 

Applications run in stateless containers based on event 

triggering. The application logic is encapsulated in 

functions which runs on containers in the infrastructure of 

the cloud provider. As the load of the application increases, 

more functions are executed proportionately, the cloud 

service provider takes care of the scaling of the underlying 

infrastructure.  

II.EVOLUTION 

The origin of Serverless goes back to the early 2000s when 

cloud computing vendors began providing IT organizations 

with open-source software and infrastructure as hosting 

services in private or hybrid clouds. The framework has 

matured following the standardization of cloud-computing 

models, namely, Infrastructure as a Service (IaaS), Platform as 

a Service (PaaS), and Software as a Service (SaaS). The 

serverless cloud is an evolving step in making full use of the 

cloud-from Infrastructure-as-a-Service (IaaS) to Platform-as-

a-Service (PaaS) to Function-as-a-Service (FaaS) as shown 

below in Table 1 [2]. While IaaS abstracts the underlying 

infrastructure to provide ready-to-use virtual machines and 

PaaS abstracts the entire middleware layer and operating 

system to develop the application, FaaS goes one step further 

in abstracting up the entire  runtime of programming to 

provide options for the easy deployment and execution of a 

piece of code without worrying about its deployment. 

 

 
TABLE I. EVOLUTION OF SERVERLESS COMPUTING 

 
 IaaS PaaS FaaS 

Unit of 
deployment Operating 

System 
Applications Functions 

Provides  Virtual 

machines 
packaged with 

operating 

systems 

Application 

development 
platform 

Execute code 

(with business 
logic) on-

demand  

Abstracts Physical 

hardware 

Operating system 

& middleware 

Programming 

runtime 

Cloud providers have also begun to provide hardware and 

software assets as per-use service-based models, leading to 

significant costs reductions compared to IT organizations 

existing expenditure. Due to competitive and upcoming 



IJRECE VOL. 7 ISSUE 1 (JANUARY- MARCH 2019)                 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE) 

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING 

 A UNIT OF I2OR  1066 | P a g e  

 

services from Microsoft to Google to IBM, Serverless, 

originally a market limited to AWS’s Lambda service, has 

expanded dramatically. In the last few years, leading cloud 

providers such as Amazon, Microsoft, Google, and IBM have 

launched serverless services. In 2014, Amazon Web Services 

released an innovative service called AWS Lambda that 

offered a new way to deploy code to the cloud for the web, 

mobile or IOT applications. Instead of deploying the 

application’s entire codebase at once, Lambda allows the 

application to deploy its function individually, to their own 

containers. Microsoft announced its response to AWS Lambda 

in 2015 with the launch of “Azure Function”. Google released 

“Cloud Function” in February 2016 as its own Serverless 

service. IBM also released its OpenWhisk serverless service. 

 

III.SERVERLESS COMPONENTS 

The three key components of serverless computing stack are:  

 API Gateway. 

 Function as a Service (FaaS). 

 Backend as a Service (BaaS) 

 

A. API Gateway 

The API Gateway acts as the communication layer between 

the front-end and the Function as a Service layer. It maps 

the endpoints of the REST API with the respective business 

logic functions. There is no need to deploy and manage 

load balancers n this model with servers out of the equation. 

 

B. Function as a Service (FaaS) 

Function as a Service (FaaS) is a type of cloud computing 

service that allows customers to develop, run, and manage 

application functionality without the complexity of building 

and maintaining the infrastructure. The core of the 

“Serverless” architecture is to build an application with this 

model. 

FaaS functions do not need to be coded to a specific 

framework and are regular language and environment 

applications. [3] All aspects are fully automatic, elastic, and 

managed by the provider from execution to scaling. 

The key components of Function as a Service are: 

 Functions 

 Events 

 Resources 

A Function is an independent deployment unit like a micro-

service. The responsibilities of a function may encompass: 

 Saving a user in the database. 

 Processing a file. 

 Performing a scheduled task. 

Anything that triggers the performance of a function is 

considered to be an Event. It could be: 

 Call for an HTTP endpoint registration service. 

 Upload of files to the file server.  

 The message published in the message queue. 

A resource refers to the components used by the Functions. 

For example: 

 Database services (e.g. for saving data from 

Users/Posts/Comments). 

 File System services (e.g. for saving files or images). 

 Message Queue services (e.g. for publishing 

messages). 

C. Backend as a Service (BaaS) 

This is essentially a distributed No SQL database based on 
the cloud that essentially removes overheads for database 
management.  

IV. SERVERLESS ARCHITECTURE 

In today's world, cloud services are used by all sorts of 

companies without worrying about any underlying 

infrastructure problems [4]. This new consumption model 

has evolved into a serverless architecture. Customers can 

re-imagine their next-generation products from ideation to 

production by adopting serverless architectures without 

waiting or worrying about infrastructure.  In Serverless 

architecture, the design is completely dependent on third-

party services where the code runs in ephemeral containers 

using FaaS calling BaaS for data storage needs. Serverless 

architectures have gained momentum through the creation 

of scalable and cost-effective applications. 

In a serverless architecture, the “User” service would be 

divided into more granular functions. In Figure 1, [5] each 

API endpoint corresponds to a specific function and file. If 

the client initiates a "create user" request, the entire 

codebase of the "User" service must not run; instead, only 

create user.js will run. Containers do not need to be pre-

supplied, as standalone functions only consume resources 

when needed, and users are only charged for their functions 

actual runtime. This granularity also facilitates parallel 

development work, since functions can be independently 

tested and deployed. 

 

 



IJRECE VOL. 7 ISSUE 1 (JANUARY- MARCH 2019)                 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE) 

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING 

 A UNIT OF I2OR  1067 | P a g e  

 

 
Fig 1. Serverless Architecture 

 

 

V.SERVERLESS CHARACTERISTICS 

A number of characteristics help to distinguish the different 
serverless platforms. When selecting a platform, developers 
should be aware of these properties. 

a) Cost: Usage is usually measured and users only pay 

for the time and resources used to run serverless functions. 

One of the key differentiators of a serverless platform is the 

ability to scale to zero instances. The measured resources such 

as memory or CPU, and the price model, such as off-peak 

discounts, vary from provider to provider [6]. 

b) Performance and limits: The runtime resource 

requirements of serverless code are limited in a variety of 

ways, including the number of simultaneous requests, the 

maximum available memory and CPU resources for a function 

call. Some limits can be increased when users need to grow, 

such as the threshold for simultaneous requests, while others 

are inherent in platforms, such as the maximum memory. 

c) Programming Languages: Serverless services 

support a wide range of programming languages including 

Python, JavaScript, Go, Java, C# and Swift. Most platforms 

support more than one language of programming.  

d) Composability: Platforms can invoke one serverless 

function from another, but some platforms provide higher 

level mechanisms to compose these functions and facilitate the 

construction of more complex serverless applications. 

e)  Deployment: Serverless architectures are built to 

improve the productivity of developers and inherently agile 

building, testing and release cycles. With the serverless 

approach, one can perform as many test runs as possible 

without worrying whether infrastructure is ready or 

components in the solution are available for deployment.  

f) Security and accounting: Serverless platforms are 

multitenant and must isolate the performance of functions 

among users and provide detailed accounting so that it will be 

easy for users to understand how much they have to pay. 

g) Monitoring and Debugging: Each platform supports 

basic debugging using print statements recorded in the logs of 

execution. Additional capabilities can be provided to help 

developers trace errors, bottlenecks, and understand function 

execution circumstance better.  

 

VI.BENEFITS OF SERVERLESS 

ARCHITECTURE 

 

Serverless applications allow developers to concentrate time 

and energy on the core product at hand, instead of worrying 

about server management and operation or runtime, whether in 

the cloud or on premises. This can significantly reduce 

overhead costs, and at the same time lead the development of 

better, higher-quality and scalable products. 

 

a) Easier Operational Management: The serverless 

platform makes operational management easy and cost-

effective by automatically scaling tools like FaaS [7]. The 

clear division of applications and support infrastructure leads 

to higher quality products. 

b) No need for Server Management:  Serverless 

architecture allows to focus only on the code that is important 

for the application and does not have to worry about the 

provision and maintenance of servers. There are also no 

requirements for software installation, maintenance or 

management. 

c) Reduced time to market: Ideas can be transformed 

into reality in minutes or hours by using a serverless 

architecture. Serverless architecture also allow tight deadlines 

to be met by running multiple versions of code. 

d) Flexibility of Scaling: Serverless applications enable 

easy scaling, as they can be automatically scaled or switched 

to throughput, memory and other consumption units. This is in 

contrast to complexity of the traditional applications 

associated with scaling units of individual servers. 

e) Built-in Default Capabilities: Another advantage of 

serverless applications is that, unlike traditional applications 

that require one to architect for these capabilities, the 

availability and fault tolerance capabilities are by default built 

into the system. 

f) Zero Idle Capacity Low Costs: Like cloud services, 

serverless is a new way to offload IT overhead. A serverless 

architecture eliminates the responsibility for the management 

of servers, databases, and even application logic, reducing the 

costs of setup and maintenance. One has to pay only for the 

time code runs and the operating costs are reduced. Cloud 

management costs are reduced by serverless architecture. 

g) Step Ahead of PaaS: Even if PaaS is set up to allow 

auto-scale application. It cannot be done at an individual 

request level. However, the provider uses the serverless 

framework to find a server where the code is to run and scale 

up when necessary. As soon as the execution ends. The 

containers used to perform these functions are 

decommissioned.  

 

 



IJRECE VOL. 7 ISSUE 1 (JANUARY- MARCH 2019)                 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE) 

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING 

 A UNIT OF I2OR  1068 | P a g e  

 

 

VI. TRADE-OFFS  

a) Third-Party Vendor Locking: Another trade-off 

for the use of serverless architecture is dependence on 

third-party vendors and services, resulting in a lack of 

control over problems such as system downtime, 

unexpected limits, changes in costs, loss of functionality,  

etc. 

b) The Hidden Costs: While hidden costs can lead 

to reduced operating system, development costs and 

complexity of the application are increased. Projects that 

small to medium-sized teams had developed in the past 

now require many small teams and significant complexity 

in product and team management. 

c) Increased Development and Testing Complexity: 

The Serverless architecture combines the complexity of 

dividing a single application into a service and function 

fabric, which increases significantly with the number and 

variety of services. Similarly, it is difficult to carry out 

integration tests and load tests for a serverless platform, 

since it depends on externally provided systems. 

 

VII. CONCLUSION 

Serverless Computing is an evolution of the trend towards 

higher levels of abstraction in cloud programming models, 

which is currently exemplified by the Function-as - a-Service 

(FaaS) model, in which developers write small snippets of 

stateless code and allow the platform to manage the 

complexities of performing the function in a flaw-tolerant 

way. The serverless paradigm can eventually lead to new 

types of programming models, languages and platform 

architectures. Adopting serverless can bring many benefits but 

depending on the use case, the road to serverless can be 

challenging and like any new technology innovation, 

serverless architectures will evolve into an obvious standard. 

REFERENCES 

 
[1] NGINX Announces Results of 2016 Future of 

Application Development and Delivery Survey. 
https://www.nginx.com/press/nginx-announces-results-
of2016-future-of-application-development-and-delivery-
survey. 

[2] Ma, J. (2016, September 22). Serverless Architectures: 
The Evolution of Cloud Computing - DZone Cloud. 
https://dzone.com/articles/serverless-architectures-the-
evolution-of-cloud-co. 

[3] Serverless Architecture: Evolution of a New Paradigm. 

(2017,December12).https://www.globallogic.com/gl_new

s/serverless-architecture-evolution-of-a-new-paradigm/.s 

[4] Serverless Computing: A Compelling Opportunity for 

Today’s...(n.d.).https://www.tcs.com/content/dam/tcs/pdf/

technologies/cloud/abstract/Serverless Computing.pdf 

[5] Serverless Architectures | The Evolution of Cloud ... 

(n.d.). https://www.mongodb.com/blog/post/serverless-

architectures-the-evolution-of-cloud-computing. 

[6] Baldini, I., Castro, P., Chang, K., Cheng, P., Fink, S., 

Ishakian, V., Suter, P. (2017). Serverless Computing: 

Current Trends and Open Problems. Research Advances 

in Cloud Computing, 1-20. doi: 10.1007/978-981-10-

5026-8_1. 

[7] Serverless Architecture - The Future of Business 

Computing | T/DG Blog – Digital Thoughts. (2019). 

http://blog.thedigitalgroup.com/serverless-architecture-

set-to-redefine-business-computing. 

 
 

 

 
 

https://www.nginx.com/press/nginx-announces-results-of2016-future-of-application-development-and-delivery-survey
https://www.nginx.com/press/nginx-announces-results-of2016-future-of-application-development-and-delivery-survey
https://www.nginx.com/press/nginx-announces-results-of2016-future-of-application-development-and-delivery-survey
https://dzone.com/articles/serverless-architectures-the-evolution-of-cloud-co
https://dzone.com/articles/serverless-architectures-the-evolution-of-cloud-co
https://www.globallogic.com/gl_news/serverless-architecture-evolution-of-a-new-paradigm/
https://www.globallogic.com/gl_news/serverless-architecture-evolution-of-a-new-paradigm/
https://www.mongodb.com/blog/post/serverless-architectures-the-evolution-of-cloud-computing
https://www.mongodb.com/blog/post/serverless-architectures-the-evolution-of-cloud-computing

