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Abstract
Emerging evidence shows that m6A, one of the most abundant RNA modifications in mammals, is involved in the entire 
process of spermatogenesis, including mitosis, meiosis, and spermiogenesis. “Writers” catalyze m6A formation on stage-
specific transcripts during male germline development, while “erasers” remove m6A modification to maintain a balance 
between methylation and demethylation. The different functions of RNA-m6A transcripts depend on their recognition by 
“readers”. m6A modification mediates RNA metabolism, including mRNA splicing, translation, and degradation, as well as 
the maturity and biosynthesis of non-coding RNAs. Sperm RNA profiles are easily affected by environmental exposure and 
can even be inherited for several generations, similar to epigenetic inheritance. Here, we review and summarize the critical 
role of m6A in different developmental stages of male germ cells, to understand of the mechanisms and epigenetic regulation 
of m6A modifications. In addition, we also outline and discuss the important role of non-coding RNAs in spermatogenesis 
and RNA modifications in epigenetic inheritance.
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Introduction

In mammals, spermatogenesis is a highly sophisticated 
and complex process that can be divided into four stages: 
mitosis, meiosis, spermiogenesis, and spermiation [1–3]. 
In the mitosis phase, A-single (As) spermatogonia are 
capable of self-renewal, amplifying the stem cell pool, 
and differentiation to undergo spermatogenesis. The As 
spermatogonia differentiate into two A-paired (Ap) sper-
matogonia and then undergo repeated mitotic division 
to form chains of 4, 8, 16, and even 32 A-aligned (Aal) 
spermatogonia. These spermatogonia, including As, Ap, 
and Aal, are connected together through an intercellu-
lar bridge arising from incomplete cytokinesis and are 
defined as undifferentiated spermatogonia. Undifferen-
tiated spermatogonia undergo an irreversible transition 

to differentiating A1 spermatogonia (A–A1 transition), 
followed by five synchronized cell divisions to form A2, 
A3, A4, A-intermediate (AIn) and type B spermatogonia, 
which differentiate into preleptotene spermatocytes that 
enter the meiosis phase [2, 4]. The meiosis phase consists 
of a single round of meiotic DNA replication and two con-
secutive rounds of chromosome segregation, meiosis I, and 
meiosis II. Double-strand break (DSB) formation, recom-
bination and synapse of homologs are hallmark events 
during meiotic prophase I ensuring proper segregation 
of homologs during meiosis I. Meiotic prophase I can be 
divided into leptonema (SPO11-induced DSB formation), 
zygonema (synapsis initiation), pachynema (synapsis com-
pleted) and diplonema (desynapsis and chiasmata) accord-
ing to morphological characteristics [3]. During meiosis 
II, sister chromatids separate to produce haploid round 
spermatids and then enter the spermiogenesis stage. There 
are several major events in the development of highly spe-
cialized spermatozoa during spermiogenesis: formation of 
the acrosome and flagellum, chromatin remodeling, and 
removal of the residual body. The development of mouse 
spermatids is subdivided into 16 steps based on the mor-
phology of the nuclei and acrosome [5]. Steps 1–8 are 
characterized by early round spermatids; whereas, the 
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later steps (steps 9–11) are characterized by intermediate 
and late spermatids with elongating nuclei. In elongated 
spermatids (steps 12–16), transcription terminates due to 
chromatin compaction. Finally, mature spermatozoa are 
released into the seminiferous tubule, through a process 
termed spermiation [1] (Fig. 1).

Epigenetic regulation (DNA methylation, histone modi-
fication, and non-coding RNAs) plays an important role 
in spermatogenesis, including spermatogonia stem cell 
amplification to maintain stem cell pools, meiosis to form 
haploid cells, and spermiogenesis to develop into mature 
spermatozoa [6, 7]. Similar to DNA methylation, there are 
various types of methylation modifications on mRNA, such 
as m6A, 5-methylcytosine (m5C), N7-methylguanosine 
(m7G), N6-methyl-2′-O-methyladenosine (m6Am), and 
2′-O-methylation, which comprise the emerging field 
“RNA Epigenetics” [8]. m6A plays an important role in 
gametogenesis [9–13], embryonic development[14–16], 
sex determination [17], and response to environmental 
insults [18] by affecting the splicing [19], translation [20, 
21], and stability [22] of mRNA, as well as the maturity 
and biosynthesis of non-coding RNAs [23–25]. The impor-
tance of RNA-m6A modification and epigenetic regulation 
mediated by m6A in spermatogenesis has attracted wide-
spread attention, as discussed in the following sections.

The functions of m6A‑associated proteins 
in spermatogenesis

Although m6A was discovered as early as 1975 [26], its 
biological function and clinical application have received 
increasing attention with the development of epigenetics 
and the application of high-throughput sequencing tech-
nology. There are three m6A-associated proteins: “writer” 
(methyltransferase), “eraser” (demethylase), and “reader” 
(decoder). “Writer” is a multicomponent m6A methyltrans-
ferase complex (MTC), which introduces m6A into mRNAs. 
The main components of “writer” include METTL3, the 
core catalytic subunit; METTL14, the scaffold [27, 28]; 
and WTAP, the regulatory subunit, ensuring the stability 
and localization to nuclear speckles [29]. “Eraser” includes 
fat mass and obesity-associated protein (FTO) and alkB 
homolog 5 (ALKBH5), which are responsible for remov-
ing m6A modification. The decoder "reader" (YTH family) 
recognizes m6A modifications and has complex biological 
functions [30].

m6A writers in spermatogenesis

Methyltransferase complexes play an important role in mam-
malian spermatogenesis, including spermatogonial stem cell 

Fig. 1   A schematic diagram of 
mouse spermatogenesis
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differentiation, meiosis, and spermiogenesis (Fig. 2). Mettl3 
is highly conserved in eukaryotes from yeast to humans. In 
Arabidopsis [31], inactivation of methyltransferase results in 
failure of the developing embryo to progress past the globu-
lar stage. In yeast [32], the deletion of Ime4 (homolog of 
Mettl3) causes failure to initialize meiosis and sporulation. 
In zebra fish [11], Mettl3 mutation alters the expression pro-
file of hormone synthesis genes, disrupts gametogenesis, and 
reduces fertility. In mice, inactivation of Mettl3 or Mettl14 
with Vasa-Cre in early male germ cells causes m6A loss 
and excessive spermatogonial stem cell proliferation and 
depletion, disrupting spermatogenesis [12, 33]. Mettl3 and 
Mettl14 double-knockout mice showed severely reduced 
sperm motility, flagellar defects, and abnormal sperm head 
abnormalities, similar to the human oligo-astheno-teratozo-
ospermia (OAT) syndrome [33]. In humans [34], METTL3 
mediates higher m6A levels in sperm RNA and is considered 
a high-risk factor for asthenozoospermia.

METTL16 is a non-classical methyltransferase that tar-
gets pre-mRNAs and various non-coding RNAs [35], such 
as MAT2A hairpins and spliceosomal U6 snRNA [36]. 
METTL16-mediated modifications may play an impor-
tant role in regulating splicing events. In Caenorhabditis 
elegans, METT10 (a homolog of METTL16) inhibits the 

specification of germ-cell proliferative fate [37]. METT10 
also promotes vulva, somatic gonad, and embryo devel-
opment and ensures meiotic development of these germ 
cells do differentiate. However, whether METTL16 plays 
an important role in mammalian gametogenesis remains 
unclear. Additional studies are needed to explore the func-
tion and mechanism of “writer” in germ cells.

m6A erasers in spermatogenesis

FTO [38] and ALKBH5 [39] can remove the methyl group 
of m6A from RNA both in vitro and in vivo. FTO and 
ALKBH5 are highly expressed in the testis, and both are 
localized to nuclear speckles [40]. ALKBH5 co-localizes 
with mRNA processing factors that play an important role 
in alternative splicing [39]. FTO-dependent demethylation 
of m6A also regulates mRNA splicing and is required for 
adipogenesis [41] (Fig. 2). Alkbh5-deficient male mice are 
characterized by impaired fertility resulting from apopto-
sis, which affects meiotic metaphase stage spermatocytes 
[39]. Dysfunction may be related to the interaction between 
ALKBH5 and nuclear speckle proteins to regulate RNA 
metabolism [39]. Another study showed that ALKBH5-
mediated m6A is essential for correct splicing of transcripts 

Fig. 2   The function of 
m6A-associated proteins in sper-
matogenesis. “Writers” catalyze 
m6A formation on stage-specific 
transcripts during male ger-
mline development while “eras-
ers” remove m6A modification 
to maintain a balance between 
methylation and demethyla-
tion. The different functions of 
m6A transcripts (splicing, 
translation, and degradation) 
depend on their recognition by 
“readers.” Abnormal expression 
of m6A-associated proteins in 
different developmental stages 
results in male infertility
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with a longer 3′UTR in spermatocytes and round spermatids 
[42]. m6A marks the 3′-UTRs of longer mRNAs destined to 
be degraded during spermiogenesis. Global shortening of 
3′-UTRs to enhance translational efficacy and fast turnover 
through selective degradation of longer 3′-UTR transcripts 
is essential for spermiogenesis. In short, ALKBH5-depend-
ent m6A is required for the meiotic and haploid phases of 
spermatogenesis by controlling the splicing and stability of 
mRNAs. Genetic mutations in human FTO are significantly 
associated with reduced semen quality [43]. The discovery 
of two missense mutations and a genetic variant of FTO 
suggests that aberrant demethylation of messenger RNA is 
a risk factor for reduced male fertility [43].

m6A readers in spermatogenesis

The m6A function is mediated by the ‘‘reader’’ protein fam-
ily, which carries a YTH (YT521-B homology) domain. In 
addition to providing an aromatic cage structure to accom-
modate m6A modification [30], the YTH protein can also 
modulate RNA structure (acting as methylation-dependent 
RNA switch), affecting RNA stability, and splicing [44]. It 
is worth noting that recent studies have shown that YTHDC2 
[45, 46], YTHDC1 [9], and YTHDF2 [47], play an essential 
role in spermatogenesis (Table 1).

YTHDC2 is the largest YTH domain-containing protein 
and the only member of the family that contains helicase 
domains. YTHDC2 is highly expressed in testicular germ 
cells and is essential for meiosis because it promotes trans-
lation by recognizing m6A [45]. Ythdc2 missense muta-
tions in germ cells cause germ cells to enter meiosis, but 
proceed prematurely to aberrant metaphase and apoptosis 

[48]. In addition, YTHDC2 has been reported to interact 
with the essential meiosis-specific protein MEIOC [49]. 
Bgcn-Bam (YTHDC2-MEIOC homolog in Drosophila) 
is required autonomously for mitotically dividing sper-
matogonia to stop meiosis initiation and spermatocyte 
differentiation [48]. This indicates that gene expression 
regulated by the YTHDC2-MEIOC complex is an evolu-
tionarily ancient strategy that controls germline transition 
into meiosis.

The nuclear m6A reader YTHDC1 is essential for main-
tenance of male spermatogonia development in mice [9]. 
Ythdc1 knockout mice showed a Sertoli-only phenotype in 
seminiferous tubules. In addition, YTHDC1 facilitates the 
nuclear export of m6A-containing mRNAs through SRSF3 
and NXF1 [50]. Tyrosine phosphorylation of YTHDC1 
regulates its intra-nuclear localization, thereby modulat-
ing its effects on alternative splicing [51]. The role of 
YTHDC1 in regulating spermatogenesis requires further 
investigation.

In recent years, YTHDF2 has been reported to play an 
important role in neural cancer development [52], can-
cer progression [53], and maternal mRNA clearance [54]. 
Recently, an in vitro experiment indicated that YTHDF2 
may regulate spermatogonia migration and proliferation by 
affecting the stability of m6A-containing transcripts [47]. 
In addition, miR-145 modulates expression of YTHDF2 
by targeting its mRNA 3′-UTR, which inhibits the pro-
liferation of liver cancer cells [53]. The regulatory effect 
of microRNA (miRNA) on the "reader" undoubtedly 
increases the complexity of the functional study of m6A.

Table 1   The functions of m6A-associated proteins in spermatogenesis

m6A-associated proteins Species Function in germ cells References

METTL3/METTL14 Arabidopsis METTL3 and METTL14 ensure the developing embryo to progress past the 
globular stage

[31]

Yeast IME4 (homologue of METL3) ensures initialization of meiosis and sporulation [32]
Zebra fish Mettl3 regulates hormone synthesis in gametogenesis and protects fertility [11]
Mouse METTL3 and METTL14 ablation showed spermatogonial stem cells excessive 

proliferation and disrupted spermatogenesis
[33]

Human Higher m6A methylation levels in sperm RNA are considered a high- risk factor 
for asthenozoospermia

[34]

METTL16 Caenorhabditis elegans METT10 (a homolog of METTL16) inhibits the specification of germ-cell 
proliferative fate

[37]

ALKBH5 Mouse ALKBH5-dependent m6A is required for meiotic and haploid phases of sper-
matogenesis by controlling both splicing and stability of mRNAs

[42]

FTO Human FTO genetic mutations are significantly associated with reduced semen quality [43]
YTHDC2 Mouse and Drosophila YTHDC2-MEIOC complex is essential for meiosis by promoting translation [48]
YTHDC1 Mouse Ythdc1 knockout mice showed a Sertoli-only phenotype in spermatogenic 

tubules
[9]

YTHDF2 Mouse YTHDF2 regulates spermatogonia migration and proliferation by affecting the 
stability of m6A-containing transcripts

[47]
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m6A function in testicular somatic cells

In addition to playing an essential role in spermatogenic 
cells, m6A can also participate in spermatogenesis by affect-
ing the function of testicular somatic cells. In Sertoli cells, 
m6A and its “writer” WTAP are essential for sustaining the 
spermatogonial stem cell pool [55]. Loss of WTAP in Ser-
toli cells results in infertility and progressive loss of sper-
matogonial stem cell population [55]. In addition, exogenous 
Vitamin C supplementation decreases the level of global 
nucleic acid methylation (including DNA methylation and 
m6A RNA modification) in porcine immature Sertoli cells, 
which promotes the reproduction function [56]. In Leydig 
cells, m6A mRNA methylation was reported to regulate 
testosterone synthesis by modulating autophagy [57]. Fur-
thermore, studies have shown that m6A and eraser “FTO” 
may be involved in environmental toxin-induced Leydig cell 
apoptosis [18, 58].

Non‑coding RNAs in spermatogenesis

Non-coding RNAs, as epigenetic regulators, play an impor-
tant role in spermatogenesis. Among them, miRNAs, circu-
lar RNAs (circRNAs), PIWI-interacting RNAs (piRNAs), 
tRNA-derived small RNAs (tsRNAs), and rRNA-derived 
small RNAs (rsRNAs) exert their functions to control the 
normal development of male germ cells at the transcrip-
tional, post-transcriptional, and translational levels. We will 
summarize and discuss the functions of those non-coding 
RNAs in spermatogenesis in the following sections:

miRNA

The classic processing of mature miRNA s (22nt) includes 
two steps: an original long transcript (primary miRNA) 
is processed in the nucleus by a microprocessor complex 
consisting of the RNA-binding protein DGCR8 and ribo-
nuclease type III DROSHA to form a 60–70nt stem-loop 
structure (pre-miRNA). The pre-miRNA is cut by DICER 
in the cytoplasm to form one mature miRNA, which is 
incorporated into the miRNA-induced silencing complex 
(miRISC) to recognize the 3′-UTR of target mRNA and 
promote mRNA degradation or inhibit translation [59]. In 
recent years, miRNAs have been found to regulate various 
biological processes, such as cancer, in a tissue- and devel-
opmental-specific manner [60]. Notably, as an important 
physiological process, spermatogenesis is also regulated 
by miRNAs to some extent [61]. miRNAs are abundantly 
enriched during the active transcription of meiotic genes in 
male germ cells, especially in pachytene spermatocytes and 
round spermatids [62]. Many genes, such as Rsbn1, partici-
pate in spermatogenesis and are involved in the regulation 

of translation by miRNAs [62]. In addition, miRNA clus-
ters (miR-34b/c and miR-449a/b/c) are indispensable for 
spermatogenesis and male efferent ductule ciliogenesis 
[63, 64]. Proteins involved in miRNA processing, such as 
DGCR8 and DROSHA, are essential for spermatogenesis 
and male fertility in mice [65]. There is increasing evidence 
that abnormal expression of miRNAs is closely related to 
spermatogenic disorders in humans. For instance, compared 
to fertile men, the expression of miR-141 (targeting CBL 
and TGFβ2) and miR-7–1-3p (targeting RBL and PIK3R3) 
are significantly increased in non-obstructive azoospermia 
(NOA) patients[66], and may serve as clinical biomarkers 
in the future.

In addition to miRNAs, endogenous small interfering 
RNAs (endo-siRNAs) can serve as epigenetic regulators 
and be involved in spermatogenesis [65]. Although there are 
many similarities between endo-siRNA and miRNA, such as 
22nt length, requiring DICER for processing and the same 
function, the endo-siRNA processing is independent of the 
microprocessor. Thus, the role of endo-siRNA in mamma-
lian spermatogenesis requires further study.

circRNA

Circular RNA (circRNA), a new class of non-coding RNA, 
is characterized by a back-splicing mechanism without 
poly-A tails and 5′ caps. The biosynthesis efficiency of 
circRNA is closely related to the integrity and extension 
speed of RNA polymerase II [67]. Compared with miR-
NAs, circRNAs are more conservative and tissue specific. 
As early as 1979, circRNAs were observed through elec-
tron microscopy, but these molecules have always been 
considered as "junk" products of abnormal splicing [68]. In 
1993, the testicular-specific circRNA derived from the sex-
determining region (SRY) gene was found to be functional 
[69]. With the development of next-generation sequencing 
technology, thousands of circRNAs have been detected in 
the testes. Most testicular circRNAs are derived from the 
exon regions of genes and are widely distributed on chro-
mosomes (including the mitochondrial genome). CircRNAs 
exert their biological functions in various ways: 1) weak-
ening the repressive effects of miRNAs on mRNA transla-
tion as “miRNA sponges”; 2) acting as decoys/transporters 
for factors or serving as a protein scaffold; and 3) being 
translated through the internal ribosome entry site (IRES) 
[70]. CircRNA levels increase with the progression of sper-
matogenesis, especially when late pachytene spermatocytes 
develop into round and elongating spermatids [71]. Interest-
ingly, the differentially expressed circRNAs were detected 
in high-quality and low-quality human spermatozoa [72]. 
In addition, a large number of abnormally expressed cir-
cRNAs, such as hsa_circRNA_0023313, have also been 
detected in patients with NOA [73]. CicrRNAs generated 
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from the conserved reproductive gene BOULE protect the 
fertility of males under heat stress [74]. In addition, the level 
of circBoule RNAs in asthenozoospermic sperm is lower 
[74]. Thus, sperm-derived circRNAs are potential modula-
tors of sperm quality and can be used as a new non-invasive 
biomarker for male fertility.

piRNA

piRNA, another member of the non-coding RNA family, 
was discovered in 2006 and has high specificity in germ 
cells. piRNA can be divided into two categories according 
to piRNA expression in germ cells: pre-pachytene piRNAs 
and pachytene piRNAs. The length of piRNAs is mainly 
24–31nt, which is longer than that of other small non-coding 
RNAs. piRNAs interact with PIWI subfamily members, rep-
resented by MIWI, MILI, and MIWI2. piRNA and PIWI 
proteins may inhibit transposable elements, regulate trans-
lation, participate in germline stem cell maintenance, regu-
late RNA degradation, and influence cellular defence at the 
transcriptional or post-transcriptional level [59]. Deficiency 
in any of the PIWI proteins (MIWI, MILI, and MIWI2) in 
mice causes aberrant piRNA production and spermatogen-
esis arrest [75–77]. In addition, a recent study revealed that 
the assembly of PIWI proteins and piRNAs can assemble 
to form germ granules, which are products of liquid–liquid 
phase separation (LLPS), are filled with amorphous fibrous 
material mixed with RNA [78], and protect germline tran-
scripts from inappropriate piRNA-induced silencing [79]. 
piRNAs establish intergenerational responses to environ-
mental stress in the nematode Caenorhabditis elegans [80]. 
In addition, recent research shows that piRNA-30473 con-
tributes to tumourigenesis by regulating m6A RNA methyla-
tion in diffuse large B-cell lymphoma [81], which may pro-
vide new insights into piRNA-mediated multi-generational 
epigenetic inheritance through m6A.

tsRNAs and rsRNA

In recent years, a novel class of tRNA-derived small 
RNAs (tsRNAs) has been identified in mature mouse 
sperm [82]. In contrast to other small RNAs, the length 
of tsRNA (also known as tRNA-derived fragments, tRFs) 
is mainly 30–40nt. Sperm tsRNAs have been reported to 
play an important role in transmitting paternal high-fat-
diet (HFD)-induced impaired glucose-tolerance phenotype 
in the progeny [83]. Further studies showed that deletion 
of tRNA methyltransferase abolished the transmission of 
HFD-induced metabolic disorder, implicating sperm RNA 
modifications as an additional layer of paternal heredi-
tary information [84]. There are two independent path-
ways for tsRNAs biogenesis: one involving the specific 
cleavage in the T-loop of mature nuclear tRNAs and the 

other involving the mitochondrial tsRNAs [85]. tsRNAs 
are scarce in testicular sperm, but are abundant in mature 
sperm in the epididymis, suggesting the important role of 
exsome transfer [86]. The transcription of mitochondrial 
small RNAs is rarely understood.

In addition to tsRNAs, an underestimated “housekeeping 
RNA-derived” small RNA family (rsRNAs) is enriched in 
mature sperm and various somatic tissues [87]. Similar to 
tsRNAs, rsRNA-28 s are more abundant in mature sperm in 
the epididymis than in testicular sperm. Recent studies have 
suggested that rsRNA-28 s and tsRNAs are actively involved 
in the acute phase inflammation in mice [87]. The potential 
existence and function of these small RNAs in mature sperm 
increase understanding of mechanisms involved in reproduc-
tive health.

RNA‑m6A modifications 
and spermatogenesis

mRNA‑m6A modifications in spermatogenesis

m6A is the most abundant modification of mammalian 
mRNAs. To date, more than 12,000 m6A sites have been 
identified in more than 7000 genes using m6A affinity puri-
fication and sequencing (m6A-seq). Each mRNA contains 
an average of 3–5 m6A sites, which are synthesized co-tran-
scriptionally and depend on the dynamics of RNA polymer-
ase II [88]. The abundance of m6A in nascent transcripts 
is higher than that in mRNA in the nucleoplasm or in the 
cytoplasm [89, 90]. Histone H3 trimethylation at lysine 36 
(H3K36me3), a marker for transcription elongation, guides 
m6A modification co-transcriptionally [89]. m6A modifica-
tion is enriched near H3K36me3 peaks and reduced glob-
ally when cellular H3K36me3 is depleted. In addition, when 
the histone methyltransferase SETD2 is silenced, the target 
gene loci modified by the classic methyltransferase complex 
(METTL3 / METTL14 / WTAP), especially the CDS and 
3′UTR regions, are hypomethylated. Further research shows 
that METTL14 directly recognizes and binds H3K36me3, 
promoting the transcription of nascent RNA with m6A modi-
fication [89]. The information exchange (cross talk) between 
histone modification and m6A modification provides a new 
concept for the biosynthesis of mRNA-m6A.

During spermatogenesis, many genes are regulated by 
m6A modification in spermatogonial differentiation, meiosis, 
spermiogenesis, and other processes. m6A modification is 
highly enriched in pachytene/diplotene spermatocytes and 
round spermatids. Many m6A-target transcripts in male germ 
cells have been identified as the result of the development of 
high-throughput sequencing [4, 12, 33, 39, 42] (summarized 
in Table 2).
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miRNA‑m6A modifications in spermatogenesis

During the process of maturation of miRNA, the pri-miRNA 
is methylated by METTL3, allowing its recognition by 
HNRNPA2B1 and processing by DGCR8 [91, 92]. HNRN-
PA2B1 is recruited by "m6A switch" [93] and combined 
with DGCR8 promotes pri-miRNA processing [92]. For 
example, METTL3 interacts with DGCR8 to regulate the 
processing of pri-miRNA-221/222 in an m6A -dependent 
manner and downregulate the tumor-suppressor gene PTEN 
in bladder cancer [94]. The effect of METTL3 depletion on 
miRNA processing is not restricted to a particular cell line 
but is also observed in multiple cell types [95]. Addition-
ally, HNRNPA2B1 can also regulate miRNA production and 
exert biological functions, such as endocrine resistance in 
breast cancer [96].

In spermatogenesis, miRNAs are expressed in a cell-
specific or stage-specific manner and inhibit translation or 
promote mRNA decay at the post-transcriptional level [97].
miRNAs can also serve as epigenetic markers to partici-
pate in prenatal and postnatal male germ-cell development. 
However, the function of miRNA-m6A modifications in 
spermatogenesis is largely unknown. Owing to the recent 
discovery of the role of m6A in the promotion of mature 
mRNA processing, future research will focus on the under-
standing of the biological functions of m6A during germ-cell 
development.

CircRNA‑m6A modifications in spermatogenesis

Recently, researchers proposed that m6A mediates the bio-
genesis of circRNAs [71, 98]. Junction sequences of these 
circRNAs appear to be enriched in m6A, which is usually 
located around the stop codons in linear mRNAs. Elevated 
m6A levels enhance circRNA production.The amount 
of circRNA in METTL3 deleted testes is significantly 
reduced compared to that in the wild type [71]. In contrast, 
the amount of circRNA in spermatogenic cells lacking 
ALKBH5 is significantly higher than that in wild-type cells 
[71]. For example, specific m6A promotes the synthesis of 
circ-ZNF609 through METTL3 and YTHDC1 in HeLa cells 
[99]. Although YTHDC1 was previously reported to play a 

role in the export of circRNAs, the export or stability of circ-
ZNF609 was not found to be affected in this study [99]. This 
indicates that YTHDC1 on circ-ZNF609 is rate-limiting for 
the back-splicing reaction.

CircRNAs increase with a decrease in linear mRNAs dur-
ing spermatogenesis. The number of circRNAs in mature 
sperm is approximately 50–100 times higher than that in 
spermatocytes and spermatids [71]. Further investigation 
indicates that circRNA encodes stable and long-lasting 
proteins, which compensates for the massive degradation 
of linear mRNAs during late spermiogenesis and maintains 
protein levels during the chromatin concentration stage [71]. 
ORF-containing circRNAs regard the specific m6A modi-
fication site as a ribosome entry site (IRES) to facilitate 
translation [98]. For example, specific m6A modifications 
promote the translation of circ-ZNF609 through YTHDF3 
and eIF4G2 in HeLa cells [99]. The study of circRNA m6A 
in spermatogenesis is in its infancy, and additional studies 
are expected to reveal the role of m6A in non-coding RNA. 
In addition, studies have also shown that circRNAs reversely 
regulate m6A modification by binding to m6A-related pro-
teins. By capturing the "eraser" ALKBH5, circSTAG1 
inhibits ALKBH5 transport into the nucleus, resulting in 
enhanced FAAH m6A modification levels in astrocytes and 
reduced depression-like behavior in mice [100]. Thus, this 
type of feedback loop is worth exploring.

RNA modifications and epigenetic response

Environmental effects on RNA‑m6A modifications

There have been several reports that external factors, such 
as environmental toxins [18], drugs [101], cigarette smoke 
[102], carbon black particles [103], ultraviolet [104], heat 
shock [105, 106] and PM2.5 [107], can regulate the lev-
els of m6A modification of RNAs. For example, cigarette 
smoke condensate (CSC) leads to hypomethylation of DNA 
in the METTL3 promoter region and increases m6A lev-
els, leading to the excessive maturation of miR-25-3p and 
pancreatic cancer [102]. In response to ultraviolet-induced 
DNA damage, m6A modification of mRNA is rapid (within 

Table 2   m6A-target genes in spermatogenesis

Stage-specific events m6A-target genes

Spermatogonial stem cell maintenance Dazl, Ddx4, Plzf, Pax7, Nanos2, Id4, Pou3f1, Taf4b, Bcl6, Etv5, Bcl6b, Lhx1, Pou3f1, Gfrα1, Ret, 
Pou5f1, Foxo1, Lin28a, Plzf, Sox3, Taf4b, Stat3

Spermatogonial differentiation Sohlh1, Sohlh2, Neurog3, Kit, Dmrt1, Sox3, Stra8, Kit, Sohlh2, Dnmt3b, Ccnd2
Meiosis Stra8, Sycp1, Sycp3, Spo11, Rad18, Dmc1, Rec8, Mlh1, Smc1b, Prdm9, Spo11, Gm960, Rec114, Mei4, 

Hormad1, Rpa1, Brca1, Brca2, Dmc1, Rad51, Rec8, Atm, Msh4/5, Mlh1/3, Marf1
Spermiogenesis Brd7, Cstf2t, Jmjd1c, Parp11, Lmtk2, Tdrd12, Gopc, Pick1, Csnk2a2, Spaca1, Setd2, Gba2, Agfg1, 

Spaca1, Prm1, Camk4, Pygo2, Crem, Prm2, Foxj1, Dnnaf3
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2 min) and induced at the site of DNA damage [104]. Under 
acute temperature stress, RNA-binding protein (DGCR8) 
and METTL3 are relocated to heat-shock genes, which in 
turn play co-transcriptional effects, affecting mRNA-m6A 
modifications, thus promoting mRNA degradation [106]. In 
addition, under heat-shock stress, the increased m6A modifi-
cation in the 5′-UTR of mRNAs promotes cap-independent 
translation initiation, providing a mechanism for selective 
mRNA translation [105]. A recent study has shown that in 
humans with a higher PM2.5 exposure group, the expres-
sion levels of m6A writers (METTL3 and WTAP), erasers 
(FTO and ALKBH5), and readers (HNRNPC) are signifi-
cantly higher than in the lower PM2.5 exposure control 
group [107]. In addition, the microbiome has a strong effect 
on host m6A mRNA modification by regulating the expres-
sion of both m6A writers and erasers [108]. Changes in m6A 
modifications induced by environmental factors may serve 
as molecular markers for monitoring and early diagnosis 
of adverse health outcomes from environmental exposure.

RNA modifications and epigenetic 
transgenerational inheritance

In mammals, the epigenetic response (DNA methylation, 
histone modifications or non-coding RNAs) plays a vital 
role in gametogenesis and embryonic development [6, 7]. 
Although sperm RNA is thought to play a minimal role in 
spermatogenesis, recent studies have shown that it can also 
be transmitted into the zygote during fertilization [109]. 
Mature spermatozoa are enriched in a wide range of larger 
RNAs (mRNA, long non-coding RNA, and circRNA) and 
small RNAs (miRNAs, tsRNAs, rsRNAs, and piRNAs) [82, 
86, 87, 110]. Several compelling independent studies have 
corroborated that epigenetic modifications can be transmit-
ted from the father to the offspring via paternal RNAs. Both 
coding RNA and non-coding RNA, as regulatory elements 
of gene expression and chromatin structure, can serve as 
targets of epigenetic programs induced by environmental 
factors, acting on the reproductive system and being trans-
mitted from generation to generation [111]. Environmental 
exposure-induced epigenetic transgenerational inheritance is 
defined as the germ-line transmission of changed epigenetic 
information between generations without sustained environ-
mental exposures [112]. When an F0 father is exposed to 
environmental insults, the effect on F1 (♂) is mediated by 
intergenerational inheritance, and the effect on F2 (♂) gen-
eration is defined as transgenerational inheritance (Fig. 3).

Environmental exposure, such as HFD [83], high-fat and 
high-sugar diet [113], traumatic stress [114], and depres-
sion, alter the RNA profiles in sperm and have a correspond-
ing impact on future generations. Several sperm miRNAs 
and piRNAs exhibited different expression profiles in F0 
males of the depression-like model and reproduced paternal 

depressive-like phenotypes in F1 offspring [115]. Further-
more, when a combination of miRNA antisense strands was 
injected at the zygote stage to neutralize the abnormal miR-
NAs, successfully rescue the depressive-like phenotype in 
F1 offspring successfully [115]. In addition, m5C and m2G 
on sperm tsRNAs are involved in the intergenerational 
inheritance of HFD-induced metabolic disorders [83, 84]. 
In addition to small RNAs, large sperm RNAs could also be 
involved in transmitting of traumatic experiences from par-
ent to offspring, but the mechanism is not clear [116]. Dif-
ferent sperm RNA fractions contain distinct profiles of RNA 
modifications, which add new dimensions of complexity 
regarding RNA structural and functional diversities (Fig. 3).

Conclusions and perspectives

Studies on the m6A of mammalian spermatogenic cells and 
knockout models of m6A-associated proteins have revealed 
the importance of m6A in spermatogonial stem cell mainte-
nance, spermatogonial differentiation and meiosis. However, 
studies on the role of m6A in non-coding RNAs (such as 
miRNAs and circRNAs) in spermatogenesis are still very 
preliminary, and further research is required to enrich it. 
During spermatogenesis, the role of other methyltrans-
ferases, such as RBM15 (anchoring MTC in nuclear speck-
les and U-rich regions in mRNAs) [117], ZC3H13 (a bridge 
for WTAP and RBM15) [118], and KIAA1429(known as 
VIRMA, serving as a scaffold to guide m6A modification in 
the 3′-UTR around the stop codon) [119] needs also further 
exploration.

Fig. 3   A schematic diagram of epigenetic response to environmental 
insults. Epigenetic alterations (DNA methylation, histone modifica-
tion, m6A modification, and non-coding RNAs) induced by an envi-
ronmental exposure can substantially affect the sperm function and 
have an inter-/transgenerational inheritance effect
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Crosstalk among writers, erasers, and readers of m6A 
regulates the homeostasis of biological processes. As key 
components of the methyltransferase complex, METTL3 and 
METTL14 are known to regulate each other’s stability at the 
protein level [15]. Furthermore, the “reader” YTHDF2 has 
been reported to preserve 5′UTR methylation of transcripts 
by limiting the “eraser” FTO under heat-shock stress [105]. 
In cancer cells, the “eraser” ALKBH5 and the “writer” 
METTL14 constitute a positive feedback loop to regulate 
the stability of m6A-target transcripts with the involvement 
of RNA stability factor HuR and miRNA silencing path-
way [120]. Cooperation among writers, erasers, and readers 
ensures the appropriate m6A and proper mRNA processing.

In addition to the m6A modification, another major func-
tional modification located on RNAs is m5C, which is abun-
dant in tsRNAs, rsRNAs, and mRNAs. Interestingly, meth-
ylation of m5C by NSUN2 facilitates the methylation of m6A 
by MTC, which affects protein expression in a coordinated 
manner [21]. m5C also plays an important role in facilitat-
ing mRNA export [121] and preventing mRNA decay [122]. 
Similar to m6A, m5C modification of mRNA serves as a 
DNA damage code to promote homologous recombination 
[123]. The similarity and synergy between the various modi-
fications in RNAs increase the charm of “RNA Epigenetics”.

The changes in the sperm RNA profile in response to 
environmental exposure initially revealed the role of RNA 
modification in coping with external pressure and its impor-
tant role in epigenetic regulation. It would be promising to 
use the sperm RNA profile to assess the disease susceptibil-
ity of offspring. Further development of RNA sequencing 
technology will promote their application in translational 
medicine.
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