Update on Foot & Ankle Sports Injuries

Richard M Marks, M.D., FACS, FAOA Department of Orthopaedic Surgery University of South Alabama

Conflict of interest

- none related to this talk
- list of consulting in program

Talk objectives

- identify patho-anatomy of common foot and ankle sports injuries
- discuss treatment options
- discuss rehabilitation of the injuries

Foot & Ankle topics

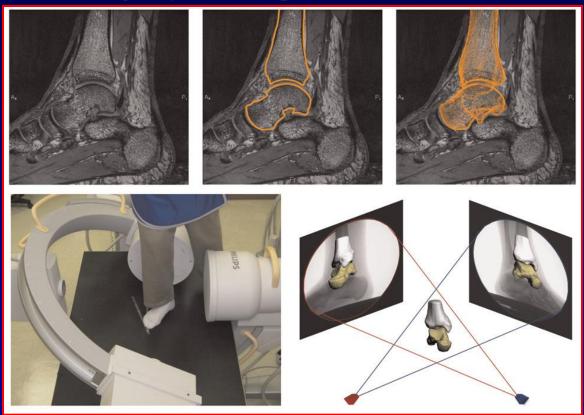
- ankle injuries
- Achilles' tendon
- Jones fracture
- Lisfranc injury

Ankle instability

- acute sprains
- chronic instability concomitant pathology
- high ankle(syndesmotic) injury

Incidence

- 15-20% of all athletic injuries
- most common E.R. ortho injury
- 80-90% respond to rehabilitation



Sequelae of instability

- 72% arthritic changes in joint after 10 yr.
- 15% of ankle djd related to lig. injury
 85% due to lateral injury
- 2° to altered kinematics

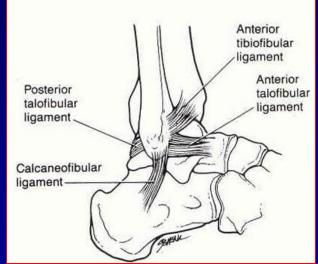
MRI (+) bi-planar fluoro

Caputo, et al: AJSM 37; 2009 Wainright, et al: AJSM 40; 2012

Altered kinematics

- ↑ ant. translation talus (1 mm)
- \uparrow int. rotation talus (6°)
- creates anteromedial shift of the peak cartilage contact strain
- Broström-Gould repair restores normal kinematics

Caputo, et al: AJSM 37; 2009 Wainright, et al: AJSM 40; 2012

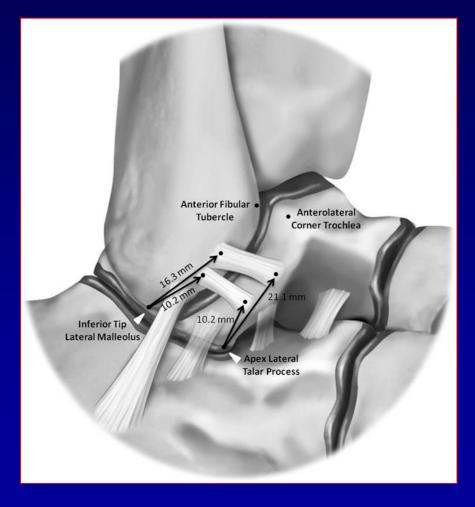

Lateral ligament complex

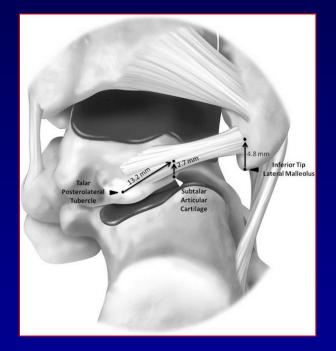
• ATFL

restricts int. rotation talus elongation in pf (138N)

CFL

prevents adduction active in neutral, df (345N)




PTFL

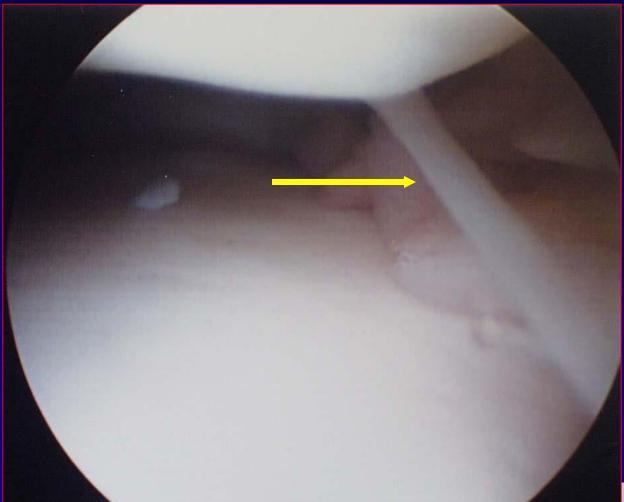
limits int. rotation after ATFL rupture

Anatomy

Clanton, et al: JBJS 98A; 2014

Associated injuries

- OLT
- ALCI
- peroneal tendon
- fracture: lat. process talus ant. process calc.
 5th metarsal base



ALCI

Postraumatic approx. 2% all sprains anterior-inferior tib-fib ligament anterior talo-fib ligament synovial proliferation Bassett, et al: JB

Bassett, et al: JBJS 72a; 1990 Ferkel, et al: AJSM 19; 1991 Meislin, et al: AJSM 21; 1993 Kim, Ha: JBJS 82b; 2000

Peroneal tendinopathy

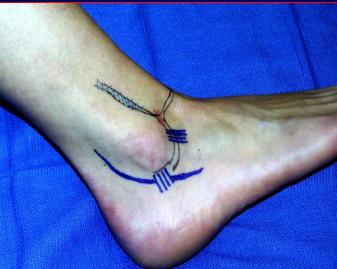
- split lesions noted at tip malleolus
- associated with instability
- #136 Broström
 53% req. peroneal debridement (!?) associated with females

Bonnin, et al: AJSM 25; 1997 Burrus, et al: FAI 35; 2014

Differential diagnosis

- OLT
- ALCI
- peroneal tear
- fracture
- varus heel
- coalition

Examination


Standing orientation double, single heel raise

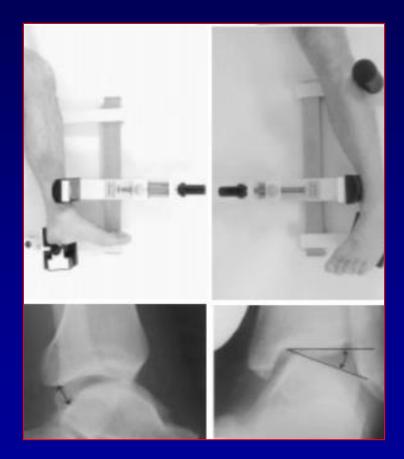
Examination

Sitting ROM peroneals points of tenderness

ant. joint, medial joint, sinus tarsi anterolat. corner, syndesmosis ligaments: ATFL, CFL, deltoid

Examination

Provocative testing anterior drawer (pf) talar tilt (neutral)



Radiographic evaluation

- ankle series
- foot series as indicated
- tibiocalcaneal view if heel varus
- stress views ?
- MRI not routinely obtained reserve for ill-defined pathology

Stress views

Initial treatment

- R.I.C.E.
- immobilization relative to injury
- P.T.

proprioceptive exercises peroneal strengthening

R

Surgery indications

- chronic ankle (or) subtalar instability
- failure of rehabilitation
 4-6 months treatment
- acute grade III tears ?

Reconstruction options

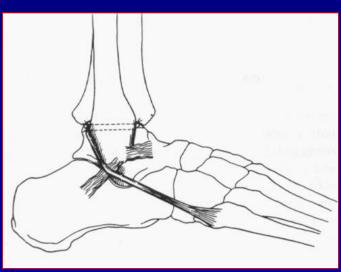
non-anatomic

tenodesis procedures

anatomic

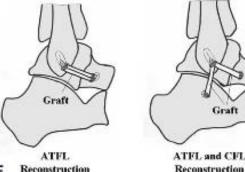
direct repair

anatomic auto-, allograft


augmentation

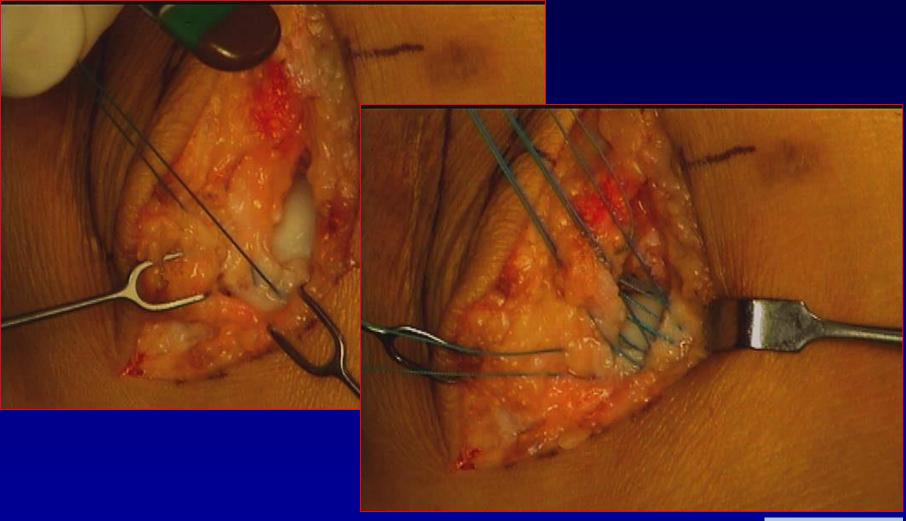
suture-tac, speed bridge, juggerknot

Evans (c.1953)


- p. brevis tenodesis to fibular via suture or bone tunnel
- good for inversion
- poor ant. translation control

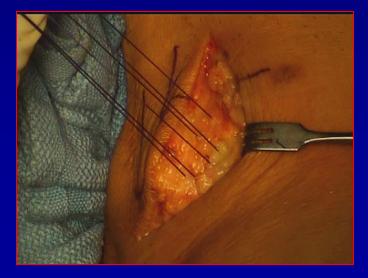
Anatomic repair

- pants-over-vest, detach/advance
- intra-osseous, suture anchor, bone tunnel
- arthroscopic
- role of pre-arthroscopy ?



Broström-Gould (preferred technique)

- repair ligaments
- advance retinaculum
- reinforce with suture anchor
- debride antero-lat corner


Ligament repair

repair options

drill holes, suture anchor

shorten, "pants over vest"

reinforce with anchor construct

Postoperative care

- bulky dressing, bi-valved SLC
- @10 days: boot/SLC, partial WB
- @ 4 weeks: boot; gradual WB PT instituted
- @ 8 weeks: wean from boot \rightarrow stirrup splint
- full activities when peroneals strong

"High" ankle sprains

- represent syndesmotic involvement
- most common with pronation-external rotation injuries
- range from subtle pain vs. gross diastasis

Lateral ankle

syndesmosis
anterolateral impingement

High sprain diagnosis

WB films (when tolerated)

 if diastasis, indication for surgery

 no diastasis

 consider MRI if symptoms persist

 check for medial sided symptoms

Syndesmosis

- ext rotation
- squeeze test

High sprain treatment

- prolonged healing vs. typical sprain
- if diastasis, medial clear space widening stabilization (screw vs. synd. suture)
- if stable x-ray, (+) symptoms
 off-load vs. "Alabama procedure"
 theoretically quicker RTP

Conclusions

- acute rehabilitation
- eval. for assoc. injury if no improvement
- anatomic repair
- reinforce retinaculum
- address assoc. pathology
- organized P.T. post-op

Achilles' tendon injury

- proximal injury
- mid-substance
- insertional

Etiology

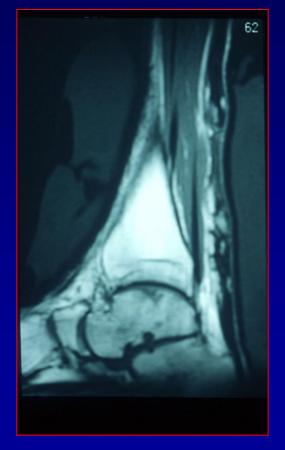
- most common lower ext. tendon injury
- repetitive microtrauma assoc. with running, jumping
- gender: males >> females
- age: changes in collagen cross-linking
 j size, density, cellularity
 j in circulation

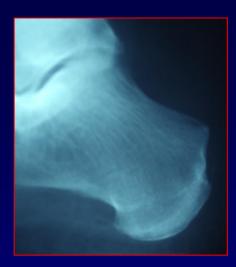
Etiology

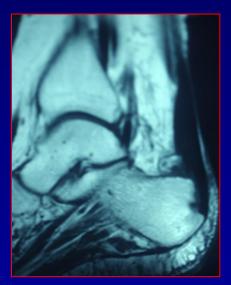
Intrinsic factors hypovascular zone systemic conditions tight heel cords, hamstrings excessive subtalar motion tibia varum, heel valgus

Extrinsic factors

improper training duration, intensity, frequency improper shoewear steroids - systemic (or) injection fluoroquinolone antibiotics


Inclusive classification


I. Tendinopathy (peri-, pantendinopathy) acute (< 3 mo.) chronic (> 3 mo.) II. Rupture acute chronic III. Insertional (impingement, enthesopathy) acute (< 3 mo.) R Marks chronic (> 3 mo.) **IFFAS**, 1998 AusOFAS, 2007



Classification

Examination

- angular/rotational deformity
- planovalgus/cavovarus feet
- ankle ROM heel neutral, knee flex/extend
- subtalar, transverse tarsal motion

Proximal injury

- musculotendinous junction well-perfused high healing potential
- treatment: protected motion
- Durant ??

Treatment

Acute tendinopathy restriction of activities heel lift (or) boot in equinus NSAIDs, modalities heavy load eccentric stretching ? PMF

*avoid steroid injections

Rehabilitation

- stretch, strengthen
- modify training
- address structural abnormalities wedges, orthoses
- 65-95% success

Acute/chronic tendinopathy

Heavy-load eccentric calf strengthening eccentric load with knee flexed, extended no concentric load weight added as tolerated

Alfredson, et al AJSM 26, 1998

Acute/chronic tendinopathy

Heavy-load eccentric training #15, avg 18 mo. symptoms 100% return full activities isokinetic peak torques equal better strength vs. surgical pt.s @ 24 wk

> Alfredson, et al: AJSM, 1998

Nitrodur Patch for Chronic Achilles' Tendinopathy

- #65 pt.s, (84) tendons
- ¹/₄ nitrodur patch applied q 24 hr.
- nitric oxide may stimulate collagen synthesis in fibroblasts

Paoloni, et al JBJS 86a, 2004

Nitrodur Patch for Chronic Achilles' Tendinopathy

- reduced pain @ 3, 6 mo.s
- decr. pain scores after hop test @ 6 mo.
- 78 % asymptomatic @ 6 mo.s
 vs. 49% for control group

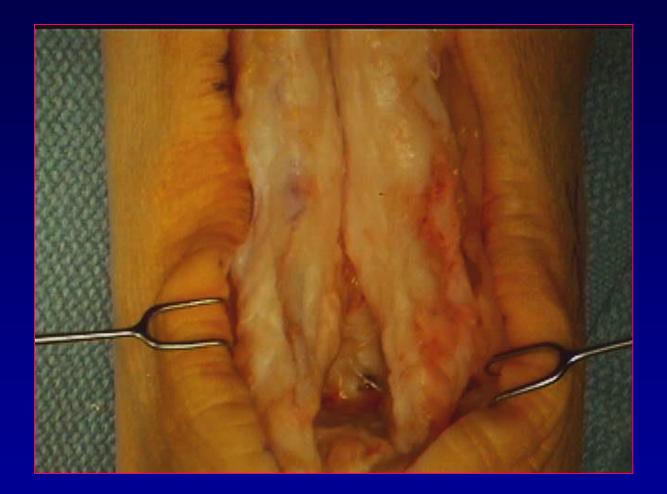
Paoloni, et al JBJS 86a, 2004

Surgical technique

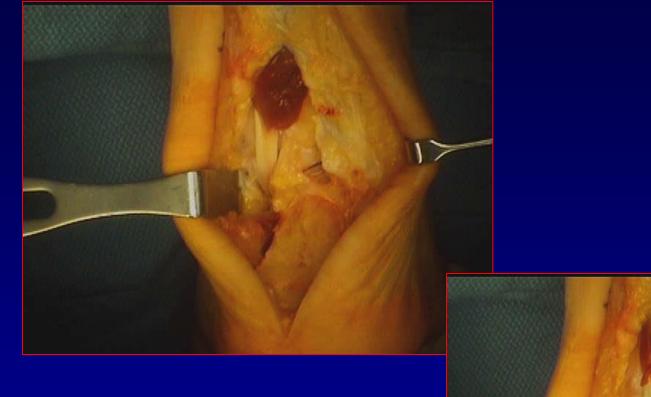
- medial incision
- excise adhesions
- no undermining
- min. ant. dissection

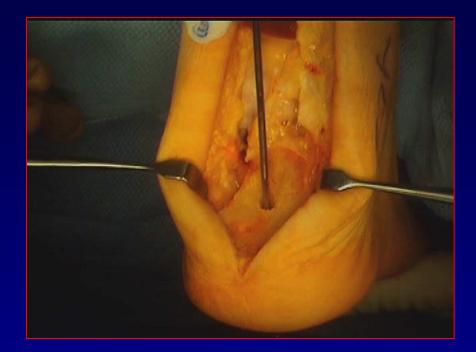
Rehabilitation

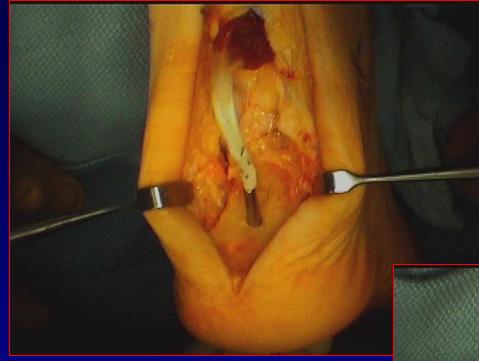
- early motion within "safe zone"
- no difference 2 vs. 6 wk immob.
- lower concentric peak torques
- strength not related to subjective outcome



Chronic extensive tendinopathy


FHL tendon transfer "in phase", proximity to Achilles one incision technique attach with biotenodesis screw

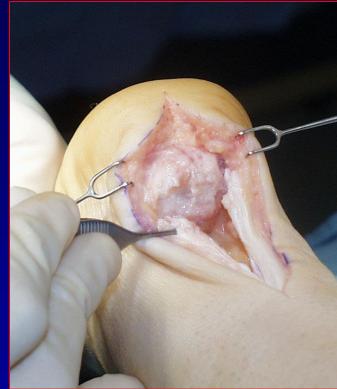






Insertional disorders

Differentiate: Haglund's vs. enthesopathy



Haglund's impingement

Enthesopathy

Acute Achilles' rupture

pre-existing symptoms ?

 indicative of degeneration
 MRI to determine extent degeneration

 examination

 Thompson test
 prone dorsiflexion

Acute rupture treatment

casting

reserved for poor candidates

surgery

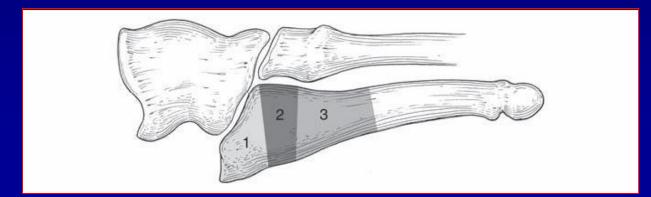
mini-open techniques early R.<u>O.M.</u>

 functional treatment protected plantar-flexion early R.O.M.

Functional treatment

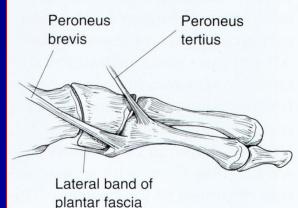
- tendon gap < 5 mm.
 U.S., MRI
- removable boot in equinus heel lifts gradually diminished
- gradual WB
- good results
- not used for competitive athletes

Jones fracture


- contributing factors
- treatment
- return to play

Classification

- tuberosity avulsion (zone I)
- metaphyseal-diaphyseal junction (zone II)
- diaphyseal (zone III)



Classification

Tuberosity avulsion (zone I) "tennis fracture" p. brevis, plantar ligament avulsion presentation variable may involve articular surface

Treatment

Tuberosity (I) symptom driven shoe, boot, cast NWB, WBAT displacement us. not significant rarely fix rarely late excision

Classification

Metaph.-diaphyseal junction (zone II)

"Jones" acute fracture transverse pattern 15 mm distal to tuberosity 2° to adduction force

Treatment

Metaphyseal-diaphyseal (II) cast NWB, min. 6 weeks ORIF high performance athlete desire to RTW/play sooner

Classification

Diaphyseal (zone III) "march fracture" stress fracture assoc. with cavovarus met. adductus

Special consideration

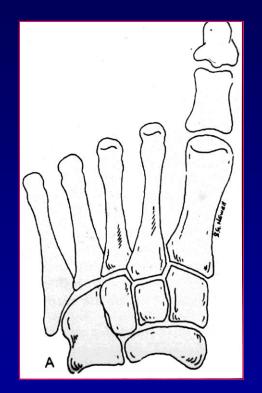
Angular deformity ? varus heel cavovarus foot

Post-operative course

- NWB 6 weeks*
- cast vs. boot
- gradual WB 6 8 weeks*
- clinical healing > radiographic healing
- RTP...

Lisfranc

- mechanism
- diagnosis
- treatment options
- rare injuries

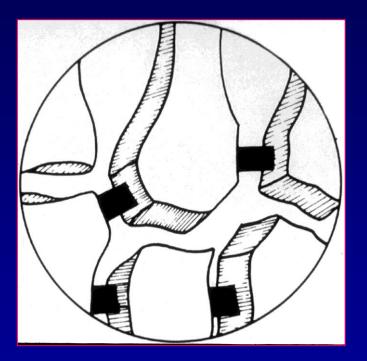

 1:55,000
 4% football players

Anatomy

<u>3 column concept:</u> medial: 1st MT – med. cuneiform 3.5 mm. motion middle: 2^{nd} , 3^{rd} MT – C₂, C₃ more rigid lateral: 4th, 5th MT – cuboid flexible

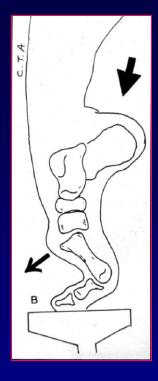
Osseous anatomy

2nd metatarsal


"keystone"; roman arch concept 5 osseous articulations recessed between cuneiforms constrained in sag. plane, pron/sup.

Ligamentous anatomy

- dorsal ligaments
- interosseous ligaments no M₁-M₂ ligament Lisfranc: C₁-M₂,M₃
- plantar ligaments strongest



Mechanism

Indirect

plantar-flexed ankle foot becomes long lever of leg transmission of forces through foot plantar-flexed foot midfoot pushed in cavus dorsal capsule ruptures results in 1° dorsal displacement

Mechanism

Direct high energy associated with open injury concomitant fractures MT shafts, naviculum, cuboid vascular compromise compartment syndrome

Examination

- ~ 20% initially missed
- direct palpation over midfoot
- medial-lateral compression
- abduction stress
- "shuck" test involved columns
- stress under anesthesia ??

Physical exam tests

Sagittal stress

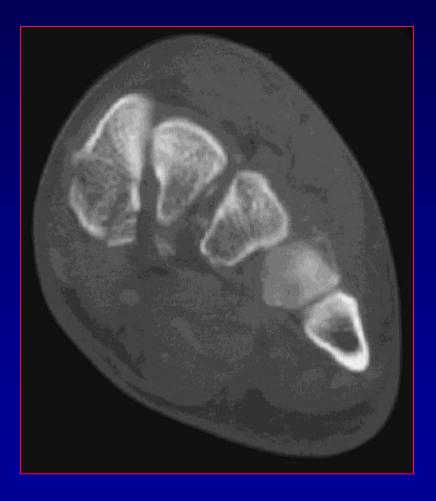
Pronation-abduction

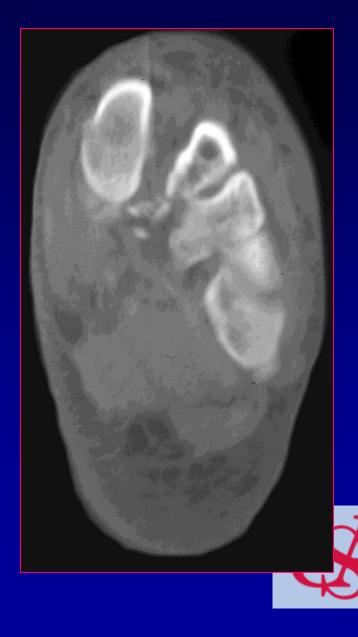
Radiography

- weightbearing films (when possible)
- if unable to WB, → splint return for WB films in 5-7 days
- C.T. scan

helps eval. comminution, sag. disp.

• MRI

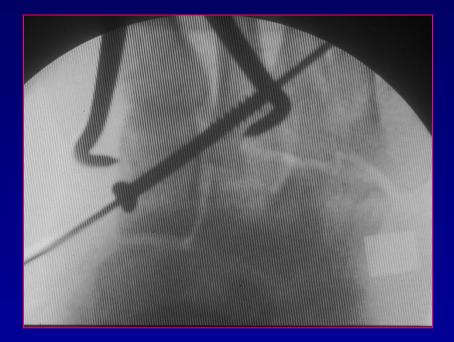

eval. instability in ligamentous injury



Radiography

- "fleck" sign
- associated MT fracture: 74%
- navicular, cuboid fracture: 39%
- lateral film: M₅ C₁

Surgical choices


- closed reduction vs. open reduction
- fixation:

trans-articular screw dorsal plating suture button

primary arthrodesis

Suture button fixation

Conclusions

- high index of suspicion (20% missed)
- WB "stress" x-rays
- ?: role of stress films
- outcome related to accuracy reduction
- suture button = screws (\$\$)
- primary fusion may be indicated

