Sample Test 3 - Solutions

1. Sketch the following parametric curve and find the equation of the tangent at the point of self intersection

$$
x=\frac{1+t+t^{2}-t^{3}}{1+t^{2}}, \quad y=\frac{2}{1+t^{2}} .
$$

Solution

From the graph, it appears that they cross at the point $(1,1)$.

Two determine the times where they cross we choose y (its easier) and set it to 1

$$
y=1 \quad \Rightarrow \quad \frac{2}{1+t^{2}}=1 \quad \Rightarrow \quad t^{2}=1 \quad \Rightarrow \quad t= \pm 1
$$

Substituting both $t=-1$ and $t=1$ into x shows both are 1 so yes, $(1,1)$ is the point the curve crosses itself. Next we find derivatives

$$
\frac{d x}{d t}=-\frac{t^{4}+4 t^{2}-1}{\left(t^{2}+1\right)^{2}}, \quad \frac{d y}{d t}=-\frac{4 t}{\left(t^{2}+1\right)^{2}}
$$

and dividing gives

$$
\frac{d y}{d x}=\frac{4 t}{t^{4}+4 t^{2}-1}
$$

At $t=-1, \frac{d y}{d x}=-1$ and at $t=1, \frac{d y}{d x}=1$. So the tangents are

$$
y-1=-1(x-1), \quad y-1=1(x-1)
$$

2. Graph the following polar equations

$$
r=2+2 \sin \theta, \quad r=2 \sin 2 \theta, \quad r^{2}=2 \sin 2 \theta .
$$

Solutions

$r=2+2 \sin \theta$,

$r=2 \sin 2 \theta$,

$r^{2}=2 \sin 2 \theta$

3. Find the area inside one leaf of the rose described by

$$
r=2 \sin 3 \theta
$$

Solution

Here we use

$$
A=\frac{1}{2} \int_{\alpha}^{\beta} r^{2} d \theta
$$

From the picture below, we find that we sweep out the area when $\theta=0 \rightarrow \frac{\pi}{3}$, so these are the limits of integration. Thus,

$$
A=\frac{1}{2} \int_{0}^{\frac{\pi}{3}}(2 \sin 3 \theta)^{2} d \theta=\frac{\pi}{3}
$$

4. Find the area of the following:
(i) inside $r=2+2 \sin \theta$,
(ii) inside the outer loop and outside the inner loop of $r=1-2 \sin \theta$,
(iii) outside $r=\cos 2 \theta$ and inside $r=\sin 2 \theta$ on $\left[0, \frac{\pi}{2}\right]$.

Solutions

(i) $r=2+2 \sin \theta$ The picture is above

$$
A=\frac{1}{2} \int_{0}^{2 \pi}(2+2 \sin \theta)^{2} d \theta=6 \pi
$$

(ii) inside the outer loop and outside the inner loop of $r=1-2 \sin \theta$,

$$
\begin{array}{rr}
\text { InnerLoop } & \frac{2}{2} \int_{\pi / 6}^{\pi / 2}(1-2 \sin \theta)^{2} d \theta=\pi-\frac{3 \sqrt{3}}{2} \\
\text { OuterLoop } & \frac{2}{2} \int_{5 \pi / 6}^{3 \pi / 2}(1-2 \sin \theta)^{2} d \theta=2 \pi+\frac{3 \sqrt{3}}{2} \\
A=2 \pi+\frac{3 \sqrt{3}}{2}-\left(\pi-\frac{3 \sqrt{3}}{2}\right)=\pi+3 \sqrt{3} .
\end{array}
$$

(iii) outside $r=\cos 2 \theta$ and inside $r=\sin 2 \theta$ on $\left[0, \frac{\pi}{2}\right]$.

In the first quadrant, the curves intersect at $\theta=\pi / 8$ and sweeps out half the area between $\theta=\pi / 8$ and $\theta=\pi / 4$. The area is given by

$$
A=\frac{2}{2} \int_{\pi / 8}^{\pi / 4} \sin ^{2} 2 \theta-\cos ^{2} 2 \theta d \theta=\frac{1}{4}
$$

Graphs for 4 (ii) and 4 (iii)
5. Find the projection of the vector \vec{u} onto \vec{v} where $\vec{u}=<2,3>$, and $\vec{v}=<4,2>$. Sketch both vectors, the projected vector and the orthogonal complement.

In the graph, the vectors \vec{u} and \vec{v} are shown

The orthogonal complement is given by

$$
\left.\vec{u}-\operatorname{proj}_{\vec{v}} \vec{u}=<2,3>-\frac{7}{10}<4,2\right\rangle=\left\langle-\frac{4}{5}, \frac{8}{5}\right\rangle .
$$

6. Find the area of the triangle whose vertices are located at the points $P(1,1,1), Q(2,4,6)$ and $R(-2,3,7)$.

Here, we construct the vectors $\overrightarrow{P Q}$ and $\overrightarrow{P R}$. These are given by

$$
\vec{u}=\overrightarrow{P Q}=<1,3,5>, \quad \vec{v}=\overrightarrow{P R}=<-3,2,6>
$$

The cross product

$$
\vec{u} \times \vec{v}=\left|\begin{array}{ccc}
i & j & k \\
1 & 3 & 5 \\
-3 & 2 & 6
\end{array}\right|=<8,-21,11>
$$

and so the area is given by

$$
A=\frac{1}{2}\|\vec{u} \times \vec{v}\|=\frac{1}{2} \sqrt{8^{2}+21^{2}+11^{2}}=\frac{\sqrt{626}}{2} .
$$

7. (i) Find the equation of the plane that contains the vector $\langle 1,2,4\rangle$ and the points $(1,1,1)$ and $(-2,3,7)$.
(ii) Find the equation of the plane that contains the points $(1,3,5),(2,-1,2)$ and $(0,4,6)$.
(i) We first construct a vector between the two points, this is $\langle-3,2,6\rangle$. Next, cross the two vectors

$$
\left|\begin{array}{ccc}
i & j & k \\
1 & 2 & 4 \\
-3 & 2 & 6
\end{array}\right|=<4,-18,8>
$$

The equation of the plane is given by

$$
2(x-1)-9(y-1)+4(z-1)=0 .
$$

(ii) Label the three points $P(1,3,5), Q(2,-1,2)$ and $R(0,4,6)$. find two vectors that connects two pairs, i.e. $\overrightarrow{P Q}=<1,-4,-3>$ and $\overrightarrow{P R}=<-1,1,1>$. The cross product will give the normal

$$
\vec{n}=\left|\begin{array}{ccc}
i & j & k \\
1 & -4 & -3 \\
-1 & 1 & 1
\end{array}\right|=<-1,2,-3>
$$

The equation of the plane is given by

$$
(x-1)-2(y-3)+3(z-5)=0 .
$$

8. (i) Find the equation of the line that passes through the points $(1,2,4)$ and $(-2,3,7)$.
(ii) Find the equation of the line perpendicular to the plane $x+2 y-3 z=6$ passing through the point $(1,-1,3)$.
(i) The line will follow the vector $\langle-3,1,3\rangle$ so the equation of the line is

$$
x=1-3 t, \quad y=2+t, \quad z=4+3 t .
$$

(ii) The line will follow the normal vector $\langle 1,2,-3\rangle$ so the equation of the line is

$$
x=1+t, \quad y=-1+2 t, \quad z=3-3 t
$$

9. Sketch and name the following surfaces
(i) $y-z^{2}=1$,
(ii) $-x^{2}+y^{2}+z^{2}=1$,
(iii) $x^{2}-y+z^{2}=0$.
(i) parabolic cylinder

(ii) hyperboloid of 1 sheet

(iii) paraboloid

