Research-Based Mathematics Instruction

MA+!:

Sarah R. Powell, Ph.D.

Associate Professor
The University of Texas at Austin

srpowell@utexas.edu

@sarahpowellphd

> Describe your strengths in supporting mathematics.

Describe an opportunity for growth.

Teachers should use systematic and explicit instruction to help students develop a strong foundation for specific mathematics skills.

Students require modeling and practice on how to use the language of mathematics.

Students should use hands-on tools, virtual manipulatives, drawings, and other visuals to understand mathematics concepts and procedures.

Teachers should use fluency building activities to build counting fluency and fluency with the operations.

Students should learn how to set up and solve word problems by combining an attack strategy with a focus on word-problem schemas.

Myths

[x A $+1 \div$

Myths That Undermine
Maths Teaching Maths Teaching

Sarah R. Powell, Elizabeth M. Hughes, and Corey Peltier

Centre for Independent Studies

+ THE SCIENCE OF \&MATH

MISCONCEPTION

Some educators believe students should not be exposed to procedural instruction until they have demonstrated adequate conceptual understanding of a topic.

TRUTH
Conceptual knowledge supports procedural knowledge AND procedural knowledge supports conceptual knowledge. They should be taught together!

WHEN TEACHING MATH

Teaching and practicing conceptual understanding can help with the selection and use of problem-solving procedures. ${ }^{\text {c }}$

Teaching and practicing procedures helps to develop and deepen understanding of concepts. Procedures include more than algorithms. ${ }^{\text {d }}$

Teaching conceptual and procedural knowledge together can help strengthen each over time. ${ }^{\text {e }}$

MISCONCEPTION

Many educators believe algorithms promote memorization, and this would contribute to a superficial understanding of steps, conventions, and rules.
This belief leads to the idea that students should not be taught algorithms.

TRUTH

An algorithm is a step-by-step procedure for solving a problem. Using an algorithm requires conceptual understanding of what is happening in the porblem and procedural knowledge to accurately solve. Algorithms can serve as a link between conceptual understanding and procedural knowledge.

Examples of algorithms

23			
$\times 6$			
120	192	$100+100=200$	711
$+\quad 18$	$90+30=120$	$\boxed{817}$	
138	$2+3=5$	$-\quad 653$	
	$200+120+5=325$		

MISCONCEPTION

Inquiry-based instruction should be the primary tactic used to teach math. Explicit instruction only is beneficial for struggling learners. Explicit instruction is an instructional tactic where students are provided with correct answers and and this only promotes rote learning.
TRUTH
Explicit instruction offers value through sequencing of tasks in increments of difficulty, fluency building that promotes effective practice, and scaffolded opportunities for students to combine learned skills with new knowledge. Explicit instruction facilitates creativity and is effective for all learners ${ }^{\text {a }}$.

HOW DOES EXPLICIT INSTRUCTION PROMOTE CREATIVITY?

Explicit instruction provides sequences of instruction tied to students' needs to promote mastery of the fundamental skill and provide opportunities to expand new understandings.

The process of mastering fundamental skills and demonstrating new knowledge is identical to that followed by athletes, musicians, artists, and experts in all fields.

MISCONCEPTION

Many educators believe that struggling or grappling with challenging math tasks causes students to gain a deeper understanding than would be achieved if they learned the same skill without a struggle.

TRUTH

Productive struggle does not deepen understanding, grit, or creative problem solving. Productive struggle can lead to frustration and cause students to develop misconceptions. ${ }^{\text {a }}$ In addition, the 'false starts' involved in struggling with challenging tasks without adequate support or guidance lead to lost instructional time and inefficiency. ${ }^{\text {b }}$

REFRAMING PRODUCTIVE STRUGGLE

Using productive struggle for generalization involves providing effective explicit instruction for learning and building proficiency with new math content first.

After verifying students have learned the content, teachers can provide practice opportunities for productive struggle in which students work to generalize their learning to a novel, challenging problem or task (i.e., moving the 'struggle' from the beginning to the end of the instructional sequence).

MISCONCEPTION

Many educators believe interventions targeting a growth mindset will
improve academic achievement.
Many educators are concerned with fostering a growth mindset (i.e., "I can work hard to
improve my success in math each day") rather than a fixed mindset (i.e., "I'm just not good
at math") in students to promote math achievement.

TRUTH

Intervention research on stand-alone growth mindset interventions yield minimal gains on GPA in mathematics courses ${ }^{\text {a }}$ and replication attempts have failed. ${ }^{\text {b }}$ The most effective way to improve academic achievement is to deliver skill-building intervention.c

What is Growth

Mindset Theory (GMT)?
In GMT, teachers support students to:
Individuals who believe intelligence is malleable will obtain higher attainment than students who view intelligence as fixed.

ADVICE FOR USING GROWTH MINDSET IN INTERVENTIONS

Use praise statements based on students' effort, understanding, and persistence on challenging math work. ${ }^{\text {d }}$

Encourage students to master skills by providing choice of interventions, feedback, and goals on learning, and opportunities to monitor their own progress, reflect on learning goals, and record learning accomplishments.e

MISCONCEPTION

Targeted interventions on increasing executive functioning will increase mathematics performance. Many people believe that improving executive functioning through direct training (e.g., working memory, cognitive training programs) will improve mathematics achievement.
TRUTH
Most evidence suggests there is a small to negligible relationship between cognitive measures and student response to intervention. ${ }^{\text {a }}$ In the few studies examining the causal link between executive function interventions and academic outcomes, researchers only found improvements on measures of executive function but no improvements on academic achievement. ${ }^{\text {b }}$

What Does the Evidence Support?

Students at-risk for
math disabilities also may have difficulties with attention, motivation, selfregulation, and working memory. ${ }^{\text {cd }}$

Interventions should be tailored and intensified according to students' needs using direct evaluation of students' math skills to make low-inference decisions about intervention tactics.

Effective use of evidence-based instructional approaches negates the potential influence of executive function difficulties. ${ }^{\text { }}$

IMPLICATIONS FOR PRACTICE

Interventions should:

(1) include self-regulation and reinforcement strategies;
(2) minimize cognitive load on working memory through explicit instruction and breaking down problems into smaller, more manageable parts;
(3) minimize language load by using visual representations;
(4) include fluency-building practice.f

MISCONCEPTION

Many educators believe math anxiety is caused by instructional activities and timed tests.

In schools, educators may interpret students disengaging in math activities or saying they dislike math as math anxiety. Educators may reduce the difficulty of a math lesson or remove timed tests as a way to reduce math anxiety.

TRUTH

No studies have determined that timed tests cause math anxiety - defined as feelings of apprehension, tension, or fear that may interfere with performance on math-related tasks. ${ }^{\text {a }}$ In fact, timed tactics improve math performance. ${ }^{\text {b }}$

HOW DO YOU ADDRESS MATH ANXIETY?

 Promote skill development through effective instruction. ${ }^{\text {e }}$

Centre for Independent Studies

Share misconceptions and truths you have encountered.

Instructional Platform

$x \mathrm{~A}+\dot{1}$

Instructional Platform

INSTRUCTIONAL DELIVERY

INSTRUCTIONAL STRATEGIES
Fluency building

Explicit Instruction

$\times A+1 \dot{1}$

Instructional Platform

INSTRUCTIONAL DELIVERY

Explicit instruction

INSTRUCTIONAL STRATEGIES

Over a half century of research supports explicit (i.e., direct, systematic) instruction. (Stockard et al., 2018)

When compared to discovery approaches, explicit instruction demonstrates higher outcomes. (Alfieri et al., 2011; Kroesbergen et al., 2004; Poncy et al., 2010)

Numerous meta-analyses and large-scale studies have identified explicit instruction as essential for the teaching and learning of mathematics. (Chodura et al., 2015; Ennis \& Losinski, 2019; Jitendra et al., 2018; Kong et al., 2021; Morgan et al., 2015; Nelson \& McMaster, 2019; Powell et al., 2021).

MODELING

Step-by-step explanation

PRACTICE

Guided practice

Independent practice
Planned examples

SUPPORTS

Ask high-level and low-level questions
Eliciting frequent responses
Providing affirmative and corrective feedback

Modeling is a dialogue between the teacher and students.	MODELING Step-by-step explanation Planned examples	PRACTICE Guided practice Independent practice
	SU Ask high-level Eliciting fre Providing affirmativ	RTS w-level questions t responses corrective feedback

| Modeling |
| ---: | :---: | :---: |
| includes a |\quad MODELING \quad PRACTICE

"Today, we are learning about addition. This is important because sometimes you have different amounts - like money - and you want to know how much money you have altogether."

9

"Let's solve this problem. What's the problem?"
"To solve 26 plus
79 , first decide
about the operation.
Should we add, subtract, multiply, or divide?"
"How did you know we want to add?"
"There's a plus, sign."
"The plus sign tells us we want to add. To add, let's use the partial sums strategy. What strategy?"
"What might partial mean?"
"Part of."

"We'll find parts - or partial sums - then add them together. With the partial sums strategy, we start adding in the greatest place value. What's the greatest place value in this problem?"

"So, let's add the tens. What's 20 plus 70? Use your base10 blocks or other tools."
"20 plus 70 equals 90. Let's write 90 right here below the equal line. What will we write?"
"90 is the partial sum when you add the tens. What does 90 represent?"
"Now, let's add the ones. What should we add?"
"It's the partial sum of adding 20 plus 70 ."
"6 plus 9."
"How did you get 15?"
"Let's write 15 below the 90 . Where do we write the 15?"
"15 is the partial sum when you add the ones. Now, let's add the partial sums together. What will we add?"
"We knew we had 9, then we added on 6."

"How did you add those addends?"
"So, when you add 26 plus 79 , the sum is 105. Who can share how we solved this problem?"
"I added 90 plus 10 then added 5 more.
"We used the partial sums strategy. We added the tens then added the ones. Then we added the
tial sums." partial sums."
 "105." $\square \square \square$

What did you observe?

How would you improve this example?

MODELING

Step-by-step explanation

Planned examples

SUPPORTS

Ask high-level and low-level questions
Eliciting frequent responses
Providing affirmative and corrective feedback

Select a math problem. Work with a partner to outline a step-by-step explanation.

MODELING
 Step-by-step explanation
 Planned examples
 PRACTICE
 Guided practice
 Independent practice
 SUPPORTS
 Ask high-level and low-level questions
 Eliciting frequent responses

Providing affirmative and corrective feedback
"Let's work on a problem together."

MODELING
 Step-by-step explanation
 Planned examples
 SUPPORTS
 Ask high-level and low-level questions
 Eliciting frequent responses
 Providing affirmative and corrective feedback
 "Now, you'll practice a problem on your own. Use your attack strategy!"

PRACTICE

Guided practice

Independent practice

Independent practice is practice in which the students practice independently with teacher support.

MODELING

Step-by-step explanation

Planned examples

SUPPORTS

Ask high-level and low-level questions
Eliciting frequent responses
Providing affirmative and corrective feedback

Describe how you would engage students in practice.

MODELING
 Step-by-step explanation
 PRACTICE
 Guided practice
 Independent practice
 Planned examples
 SUPPORTS
 Ask high-level and low-level questions
 Eliciting frequent responses
 Providing affirmative and corrective feedback

These Supports should be used in both Modeling and Practice.

MODELING

Step-by-step explanation

PRACTICE

Guided practice

Independent practice

Planned examples

SUPPORTS

Ask high-level and low-level questions
Eliciting frequent responses
Providing affirmative and corrective feedback

During Modeling and Practice, it is essential to engage students and check for understanding.

MODELING

Step-by-step explanation

PRACTICE

Guided practice

Independent practice

Planned examples

SUPPORTS

Ask high-level and low-level questions
Eliciting frequent responses
Providing affirmative and corrective feedback
"What is 7 times 9?"

MODELING

Step-by-step explanation

PRACTICE

Guided practice

Independent practice

Planned examples

SUPPORTS

Ask high-level and low-level questions

Eliciting frequent responses

Providing affirmative and corrective feedback
"Why do you use zero pairs?"
"Because a positive 1 and a negative 1 봅ㅂ equal 0 . I use the zero pair to help me subtract."
$x A+H$

MODELING

Step-by-step explanation

PRACTICE

Guided practice
Independent practice
Planned examples

SUPPORTS

Ask high-level and low-level questions

Eliciting frequent responses

Providing affirmative and corrective feedback

During Modeling and Practice, students should frequently respond. The frequent responses keeps student attention and keeps student learning active.

MODELING

Step-by-step explanation

PRACTICE

Guided practice

Independent practice

Planned examples

SUPPORTS

Ask high-level and low-level questions

Eliciting frequent responses

Providing affirmative and corrective feedback

MODELING

Step-by-step explanation

PRACTICE

Guided practice

Independent practice
Planned examples

SUPPORTS

Ask high-level and low-level questions
Eliciting frequent responses

Providing affirmative and corrective feedback

During Modeling and Practice, students should receive immediate feedback on their responses.

MODELING

Step-by-step explanation

PRACTICE

Guided practice

Independent practice

Planned examples

SUPPORTS

Ask high-level and low-level questions
Eliciting frequent responses

Providing affirmative and corrective feedback

"Nice work using your word problem attack strategy."

MODELING

Step-by-step explanation

PRACTICE

Guided practice

Independent practice

Planned examples

SUPPORTS

Ask high-level and low-level questions
Eliciting frequent responses

Providing affirmative and corrective feedback

"Let's look at that again.
Tell me how you added in the hundreds column."

MODELING

Step-by-step explanation

PRACTICE

Guided practice

Independent practice

Planned examples

SUPPORTS

Ask high-level and low-level questions
Eliciting frequent responses
Providing affirmative and corrective feedback

Provide several of your questions.
Provide examples of your feedback.

MODELING

Step-by-step explanation

PRACTICE

Guided practice
Independent practice

SUPPORTS

Ask high-level and low-level questions

Eliciting frequent responses

Providing affirmative and corrective feedback develop a strong foundation for specific mathematics skills.

What are your strengths with explicit instruction?

What are the opportunities for growth?

What are your immediate next steps?

Teachers should use systematic and explicit instruction to help students develop a strong foundation for specific mathematics skills.

Students require modeling and practice on how to use the language of mathematics.

Students should use hands-on tools, virtual manipulatives, drawings, and other visuals to understand mathematics concepts and procedures.

Teachers should use fluency building activities to build counting fluency and fluency with the operations.

Students should learn how to set up and solve word problems by combining an attack strategy with a focus on word-problem schemas.

Mathematical Language

$x A+1 \cdot 1$

Instructional Platform

INSTRUCTIONAL DELIVERY

INSTRUCTIONAL STRATEGIES

Significant correlation $(r=.49)$ between mathematics vocabulary and mathematics performance. Mathematics vocabulary appears most important for word-problem performance ($r=$.58).
(Lin et al., 2021)

Early mathematics vocabulary related to

 mathematics and literacy. (Hornburg et al., 2018; Purpura et al., 2017)Students who experience difficulty with mathematics demonstrate lower mathematics vocabulary performance.
(Hughes et al., 2020; Powell \& Nelson, 2017; Powell et al., 2017; Unal et al., 2021)

1. Some math terms are shared with English but have different meanings

right
degree
2. Some math terms are shared with English but have different meanings
3. Some math words are shared with English with similar meanings (but a more precise math meaning)

4. Some math terms are shared with English but have different meanings
5. Some math words are shared with English with similar meanings (but a more precise math meaning)
6. Some math terms are only used in math

7. Some math terms are shared with English but have different meanings
8. Some math words are shared with English with similar meanings (but a more precise math meaning)
9. Some math terms are only used in math
10. Some math terms have more than one meaning
\square

Rubenstein \& Thompson (2002)

1. Some math terms are shared with English but have different meanings
2. Some math words are shared with English with similar meanings (but a more precise math meaning)
3. Some math terms are only used in math
4. Some math terms have more than one meaning
5. Some math terms are similar to other content-area terms with different meanings
variable vs.
variably cloudy
6. Some math terms are shared with English but have different meanings
7. Some math words are shared with English with similar meanings (but a more precise math meaning)
8. Some math terms are only used in math
9. Some math terms have more than one meaning
10. Some math terms are similar to other content-area terms with different meanings
11. Some math terms are homographs

eight vs. ate

sum vs. some

1. Some math terms are shared with English but have different meanings
2. Some math words are shared with English with similar meanings (but a more precise math meaning)
3. Some math terms are only used in math
4. Some math terms have more than one meaning
5. Some math terms are similar to other content-area terms with different meanings
6. Some math terms are homographs
7. Some math terms are related but have distinct meanings
factor vs. multiple
hundreds vs. hundredths
```
numerators vS. denominator
```

1. Some math terms are shared with English but have different meanings
2. Some math words are shared with English with similar meanings (but a more precise math meaning)
3. Some math terms are only used in math
4. Some math terms have more than one meaning
5. Some math terms are similar to other content-area terms with different meanings
6. Some math terms are homographs
7. Some math terms are related but have distinct meanings
8. An English math term may translate into another language with different meanings

mesa vs.

tabla

1. Some math terms are shared with English but have different meanings
2. Some math words are shared with English with similar meanings (but a more precise math meaning)
3. Some math terms are only used in math
4. Some math terms have more than one meaning
5. Some math terms are similar to other content-area terms with different meanings
6. Some math terms are homographs
7. Some math terms are related but have distinct meanings
8. An English math term may translate into another language with different meanings
9. English spelling and usage may have irregularities
10. Some math terms are shared with English but have different meanings
11. Some math words are shared with English with similar meanings (but a more precise math meaning)
12. Some math terms are only used in math
13. Some math terms have more than one meaning
14. Some math terms are similar to other content-area terms with different meanings
15. Some math terms are homographs
16. Some math terms are related but have distinct meanings
17. An English math term may translate into another language with different meanings
skip count vs. multiples
18. English spelling and usage may have irregularities
19. Some math concepts are verbalized in more than one way
20. Some math terms are shared with English but have different meanings
21. Some math words are shared with English with similar meanings (but a more precise math meaning)
22. Some math terms are only used in math
23. Some math terms have more than one meaning
24. Some math terms are similar to other content-area terms with different meanings
25. Some math terms are homographs
26. Some math terms are related but have distinct meanings
27. An English math term may translate into another language with different meanings
28. English spelling and usage may have irregularities

rhombus vs. diamond

10. Some math concepts are verbalized in more than one way
11. Informal terms may be used for formal math terms

Use formal math language

Use terms precisely

What number is in the tens place?

What digit is in the tens place? What is the value of the digit in the tens place?

135

Why this is important...

- A number refers to the entire amount.
- The 3 in the tens place value is not a number, but rather a digit in the number 135 .
- Reinforces conceptual understanding of place value.
- Emphasizes that 3 is part of the number 135 with a value of 30 .

The alligator eats the bigger number

is less than OR

 is greater thanWhy this is important...

- Students must learn how to read and write the inequality symbols.
- Students must learn to read equations correctly from left to right because < and > are two distinct symbols.

Four point seven Four point oh seven

$$
\begin{array}{r}
4.7 \\
4.07
\end{array}
$$

Why this is important...

- Accurately shares the magnitude of the decimal.
- Emphasizes place value.

flips, slides, turns

reflections, translations, rotations

Why this is important...

- The informal language helps children remember the actions, but this vocabulary is not used on assessments.
- Use the formal mathematical terms.

Use formal math language

Use terms precisely

Use Terms With Precision

Strategies for Teaching Mathematics Language

What are your strengths?

What are your opportunities for growth?

What are your immediate next steps?

Improper fraction Proportion

$$
\frac{8}{5}
$$

Mixed number

$$
1 \frac{3}{5}
$$

Proper fraction $\frac{2}{9}$

$$
\frac{2}{5}=\frac{8}{20}
$$

Ratio
$4: 3$
Unit fraction
$\frac{1}{6}$

Equation $9 x-4=7 x$
Expression 9x - 4
Formula $a^{2}+b^{2}=c^{2}$
Function $\quad f(x)$
Inequality $9 x-4>6 x$

Quadrilaterals

Kite

Parallelogram

Rectangle \square

Rhombus

Square

Trapezoid

Acute angle

Obtuse angle $\xrightarrow[\text { angle }]{\longrightarrow}$

Straight angle

Acute triangle

Obtuse triangle

Right triangle

Equilateral triangle

 ΔIsosceles triangle

Scalene triangle

C

Adjacent angles

Alternate angles

Complementary angles

Corresponding angles

Supplementary angles

$$
=180^{\circ}
$$

Vertical angles

Congruent figures
$\square_{\text {Similar figures }}^{\square}$

I

What are your opportunities for growth?

What are your immediate next steps?

Use formal math language

Use terms precisely

Students require modeling and practice on how to use the language of mathematics.

What are your strengths with mathematical language?

What are the opportunities for growth?

What are your immediate next steps?

Teachers should use systematic and explicit instruction to help students develop a strong foundation for specific mathematics skills.

Students require modeling and practice on how to use the language of mathematics.

Students should use hands-on tools, virtual manipulatives, drawings, and other visuals to understand mathematics concepts and procedures.

Teachers should use fluency building activities to build counting fluency and fluency with the operations.

Students should learn how to set up and solve word problems by combining an attack strategy with a focus on word-problem schemas.

Multiple Representations

$x A+1 \cdot 1$

Instructional Platform

INSTRUCTIONAL DELIVERY

INSTRUCTIONAL STRATEGIES

Multiple Representations

Hands-on manipulatives contribute to increases in mathematics performance.
(Bouck \& Park, 2018; Carbonneau et al., 2013; Namkung \& Bricko, 2021; Sherman \& Bisanz, 2009; Strickland \& Maccini, 2012)

Virtual manipulatives contribute to increases in mathematics performance. (Bouck et al., 2020; Satsangi et al., 2016)

Other visuals (e.g., graphic organizers) contribute to increases in mathematics performance. (Jitendra et al., 2009; Sharp \& Dennis, 2017; van Garderen. 2007. Xin, 2008)

Two-dimensional images

MA+

Two-dimensional images

Modeling Fractions with Cuisenaire Rods

Two-dimensional images

Explore 3 virtual manipulatives.

Share with a partner.

Numerals and symbols and words

$$
2+8=10 \quad 34=3 \text { tens and } 4 \text { ones }
$$

$$
x-6=8
$$

$$
4,179
$$

$$
\begin{array}{r}
569 \\
+\quad \\
\hline
\end{array}
$$

Fraction Models

What are your strengths?

What are your opportunities for growth?

What are your immediate next steps?

LENGTH

SET

LENGTH

Fractions are appropriated by length

$\frac{2}{3}$| | | | |
| :--- | :--- | :--- | :---: |
| | | | |

Fraction tiles/bars

LENGTH

Fractions are appropriated by length

$\frac{2}{3}$

Cuisenaire rods
$x \mid A+H_{1}$

LENGTH
 Fractions are appropriated by length

Shapes divided into equal sections

$\frac{2}{3}$

Fraction circles

MA+:

Shapes divided into equal sections

$\frac{2}{3}$

Geoboards
$\times \mathrm{x}+\dot{1}$

Shapes divided into equal sections

$\frac{2}{3}$

Pattern blocks

Shapes divided into equal sections

$\frac{2}{3}$

Legos

SET

Individual shapes match the fraction

Two-color counters
$x \mathrm{~A}+\cdots$

SET

Individual shapes match the fraction

$\frac{2}{3}$

LENGTH

AREA

SET

Show a fraction using all three models.

Reflect upon explicit instruction and using mathematical language.

Students should use hands-on tools, virtual manipulatives, drawings, and other visuals to understand mathematics concepts and procedures.

What are your strengths with multiple representations?

What are the opportunities for growth?

What materials do you need?

Teachers should use systematic and explicit instruction to help students develop a strong foundation for specific mathematics skills.

Students require modeling and practice on how to use the language of mathematics.

Students should use hands-on tools, virtual manipulatives, drawings, and other visuals to understand mathematics concepts and procedures.

Teachers should use fluency building activities to build counting fluency and fluency with the operations.

Students should learn how to set up and solve word problems by combining an attack strategy with a focus on word-problem schemas.

Building Fluency

$\times \mathrm{x}+\dot{1}$

Instructional Platform

INSTRUCTIONAL DELIVERY

INSTRUCTIONAL STRATEGIES
Fluency building

Fluency
Research and Information

Fact Fluency

Mathematics fluency, particularly fluency with facts and computation, is related to overall mathematics performance.
(Bailey et al., 2012; Cirino et al., 2019; Koponen et al., 2007, 2017; Vukovic et al., 2014

Fact fluency practice improves mathematics fact performance.

 (Burns et al., 2010; Codding et al., 2011; McCallum et al., 2004; Nelson et al., 2013; Poncy et al., 2010; Schutte et al., 2015; Stocker \& Kubina, 2017)Fluency is doing mathematics easily and accurately.

Fluency in mathematics makes mathematics easier.

Fluency provides less stress on working memory.

Fluency helps
students build confidence with
mathematics.

With fluency, it is important to emphasize both conceptual learning and procedural learning.

Fluency
Research and Information

Fact Fluency

100 addition facts

Single-digit addends sum to a single- or double-digit number

> | 5 | (addend) |
| ---: | :--- |
| +4 | (addend) |
| 9 | $($ sum $)$ |

Total

Addition

Count one set, count another set, put sets together, count sum

$$
2+3=5
$$

Change

Addition

Start with a set, add the other set, count sum

$$
2+3=5
$$

Total

Parts put together into a total

Karly saw 4 cardinals and 5 blue jays. How many birds did Karly see?

Addition

Addition

An amount that increases or decreases

Premila had \$4. Then they earned \$5 for cleaning their room. How much money does Premila have now?

$3+9=$

If you have brown eyes:
What's a Total story to show addition?
If you don't have brown eyes: What's a Change/Join story to show addition?

100 subtraction facts

Subtrahend and difference are single-digit numbers and minuend is single- or double-digit number

> (minuend)
> (subtrahend)
> (difference)

Change

Start with a set, take away from that set, count difference

$$
5-3=2
$$

Difference

Compare two sets, count difference

$$
5-3=2
$$

Change

An amount that increases or decreases

Bronwyn had 9 cookies. Then they ate 2 of the cookies. How many cookies does Bronwyn have now?

Difference

Greater and lesser amounts compared for a
difference

Rachel has 9 apples. Jodie has 2 apples. How many more apples does Rachel have? (How many fewer does Jodie have?)

$9-5=$

 show subtraction?100 multiplication facts

Multiplication of single-digit factors results in a single- or double-digit product

$$
\begin{aligned}
2 & \text { (factor) } \\
\times 3 & \text { (factor) } \\
\hline 6 & \text { (product) }
\end{aligned}
$$

Show the groups, show the amount for each group, count product

$3 \times 2=6$

Equal Groups

Show the groups, show the amount for each group, count product
$3 \times 2=6$

Comparison

Show a set, then multiply the set

$$
3 \times 2=6
$$

Groups multiplied by number in each group for a product

Rhiannon has 2 boxes of crayons. There are 12 crayons in each box. How many crayons does Rhiannon have altogether?

Comparison

Set multiplied by a number of times for a product

Vivienne had 12 stickers. Jessica had 2 times as many stickers as Vivienne. How many stickers did Jessica have?

$2 \times 5=$

If you wear glasses:
What's an Equal Groups story to show multiplication?
If you don't wear glasses:
What's a Comparison story to show multiplication?

Division

90 division facts

Divisor and quotient are single-digit numbers and dividend is single- or double-digit number

$$
\begin{array}{cccc}
8 & \div & 4 & 2 \\
\text { (dividend) } & \text { (divisor) } & \text { (quotient) }
\end{array}
$$

Equal Groups (Partitive Division)

Show the dividend, divide equally among divisor, count quotient

앙

0

아

$$
8 \div 2=4
$$

Show the dividend, make groups of the divisor, count groups

$$
8 \div 2=4
$$

Equal Groups

Groups multiplied by number in each group for a product
Stefanie has 12 pencils. She wants to share them equally among her 2 friends. How many pencils will each friend receive?

Nicole has 12 pencils. She put them into pencil pockets with 6 pencils each. How many pencil pockets did Nicole use?

$12 \div 4=$

5

If you watch Stranger Things: What's a Partitive story to show division?

If you watch Ted Lasso:
What's a Quotative story to show division?

Addition
 Subtraction

Multiplication
Division

Build fluency with math facts.

- Addition: single-digit addends
- Subtraction: single-digit subtrahend
- Multiplication: single-digit factors
- Division: single-digit divisor

$$
\begin{array}{r}
5 \\
+\quad 8 \\
\hline
\end{array} \begin{array}{r}
6 \\
\times \quad 7 \\
\\
\hline
\end{array} \quad 56
$$

Addition	Subtraction
Multiplication	Division

What are five ways you help students build fact fluency?

Fluency
Computational Fluency

What are your strengths?

What are your opportunities for growth?

What are your immediate next steps?

Build fluency with whole-number computation

$\begin{array}{r}1009 \\ -\quad 724 \\ \hline\end{array}$
7250
$\begin{array}{r}7 \quad 15 \\ \hline\end{array}$

Build fluency with rational-number computation

$$
\begin{array}{rr}
1.4 & \frac{2}{3} \times \frac{3}{4} \\
+\quad 3.9 & \\
\hline
\end{array}
$$

$\frac{9}{4}-\frac{3}{8}$
7.892
$\div 0.14$

Build fluency with integer computation

$$
\begin{array}{rr}
1.4 & 6 \\
+\quad-3.9 \\
\hline
\end{array}
$$

$$
-14-(-7)=
$$

$-135 \div 2=$

Partial Sums

A.
74
$\begin{array}{r}78 \\ +\quad 18 \\ \hline 80\end{array}$
80
+12
+92
8. $\quad 725$

$$
\begin{array}{r}
365 \\
\hline
\end{array}
$$

$$
1,000
$$

$$
80
$$

$$
\begin{array}{r}
10 \\
\hline
\end{array}
$$

$$
1,090
$$

$\begin{array}{r}227 \\ +\quad 185 \\ \hline\end{array}$

Opposite Change
A. $74 \xrightarrow{-4} 70$

$$
+18 \stackrel{+4}{\rightarrow+22} 92
$$

8. $\quad 725 \stackrel{+5}{\longrightarrow} 730$
$+365^{-5} \xrightarrow{T, 090}$

Partial Differences

$$
\text { A. } \begin{array}{r}
62 \\
-\quad 17 \\
\hline+50 \\
-\quad 5 \\
\hline 45
\end{array}
$$

8. 305
-96
-300
$+300$ -90
-1
209

232
 $\begin{array}{r}232 \\ -\quad 164 \\ \hline\end{array}$

Same Change

$$
\text { A. } \begin{array}{r}
62 \stackrel{+3}{\longrightarrow} 65 \\
-\quad 17 \xrightarrow{+3-20} \\
\hline 45
\end{array}
$$

8. $\quad 305 \xrightarrow{+4} 309$

$$
-96 \xrightarrow{+4}-\frac{100}{209}
$$

Add Up

Partial Products

A.
24
$\times, 43$
$\times 800$
160
60
$\begin{array}{r}160 \\ +\quad 12 \\ \hline 1,032\end{array}$
B.
132
53
$\times \quad 0$
5000
1500
300
90
66
$+\quad 6996$

$\begin{array}{r}13 \\ \times \quad 47 \\ \hline\end{array}$
 $x A+H$

Area (Array)

Lattice

Partial Quotients
A. $12 \begin{array}{r}158 \\ -120 \\ \hline \begin{array}{r}38 \\ -36 \\ 2\end{array}+\frac{3}{13 R 2}\end{array}$

$$
\text { B. } \begin{array}{r}
4 \begin{array}{r}
8970 \\
-680 \\
\hline 290 \\
-170 \\
\hline 1720 \\
102 \\
\hline 18
\end{array} \\
\hline 20 \\
\hline 28 R 18
\end{array}
$$

Lattice

8. $3 4 \longdiv { 9 7 0 }$ R 18

Teachers should use fluency building activities to build counting fluency and fluency with the operations.

What are your strengths with building fluency?

What are the opportunities for growth?

What are your immediate next steps?

Teachers should use systematic and explicit instruction to help students develop a strong foundation for specific mathematics skills.

Students require modeling and practice on how to use the language of mathematics.

Students should use hands-on tools, virtual manipulatives, drawings, and other visuals to understand mathematics concepts and procedures.

Teachers should use fluency building activities to build counting fluency and fluency with the operations.

Students should learn how to set up and solve word problems by combining an attack strategy with a focus on word-problem schemas.

Word-Problem Solving

MA+

Instructional Platform

INSTRUCTIONAL DELIVERY

INSTRUCTIONAL STRATEGIES
Fluency building

Key words tied to operations is an ineffective word-problem strategy. (Karp et al., 2019; Powell et al., 2022)

Using a meta-cognitive strategy improves wordproblem performance.
(Freeman-Green et al., 2015; Krawec et al., 2012; Montague et al., 2011; Swanson et al., 2014)

A focus on schemas improves word-problem performance.
(Alghamdi et al., 2020; Cook et al., 2020; Flores et al., 2016; Fuchs et al., 2021; Griffin et al., 2019; Jitendra et al., 2013; Lein et al., 2020; Peltier et al., 2020; Powell et al., 2022; Xin \& Xhang, 2009; Zheng et al., 2013)

1.Keywords tied to operations

> Lincoln had 8 pencils fewer than Roscoe. If Roscoe had 18 pencils, how many pencils did Lincoln have?

Lincoln had 8 pencils fewer than Roscoe. If Lincoln had 18 pencils, how many pencils did Roscoe have?

Description of Single-Step Word Problems ($n=132$)

Schema	Occurrence of schema		Any keyword		Schemaspecific keywords ${ }^{\text {a }}$		Multiple keywords ${ }^{3}$		Keyword(s) led to correct solution ${ }^{\text {a }}$	
	n	\%								
Total	27	20.5	26	96.3	23	88.5	5	19.2	21	80.8
Difference	17	12.9	17	100.0	14	82.4	2	11.8	12	70.6
Change	11	8.3	7	63.6	5	71.4	5	71.4	2	28.6
Equal groups	29	22.0	26	89.7	22	84.6	18	69.2	8	30.8
Comparison	10	7.6	9	90.0	9	100.0	4	44.4	5	55.6
Ratios or proportions	29	22.0	23	79.3	9	39.1	9	39.1	6	26.1
Product of measures	9	6.8	9	100.0	8	88.9	1	11.1	5	55.6
${ }^{3}$ When a problem featured a keyword.										

Schema	Occurrence of schema ${ }^{\text {a }}$		Any keyword		Keyword(s) led to correct solution ${ }^{\text {b }}$	
	n	\%	n	\%	n	\%
Total	40	47.6	39	97.5	3	7.7
Difference	11	13.1	11	100.0	1	9.1
Change	21	23.8	19	95.0	1	5.3
Equal groups	49	58.3	48	98.0	1	2.1
Comparison	7	8.3	7	100.0	0	0.0
Ratios or proportions	22	25.0	16	76.2	1	6.3
Product of measures	7	8.3	7	100.0	2	28.6

${ }^{3}$ Sum across schemas does not equal 100 because each word problem featured more than one schema.
${ }^{\text {b }}$ When a problem featured a keyword.

Mr. Rivera's taxable income is $\$ 20$ each hour before taxes are taken out. Mr. Rivera worked a total of 40 hours each week for 50 weeks.

What is the dollar amount, to the nearest dollar, taken out for taxes based on Mr. Rivera's taxable income?

The temperature of a substance decreased by $24^{\circ} \mathrm{C}$ per minute for 3 minutes. What was the overall change of the temperature of the substance?

Keywords are important to identify and understand

Keywords are the mathematical vocabulary that help an students understand what the story is about and what they need to do

Talk about keywords
("What does more than tell you about?")

But, do not tie a keyword to a specific operation!
2. Presenting problems by operation

Addition Word Problems

Teach an attack strategy

Teach about schemas

x

RIDE

Read the problem.
Identify the relevant information.
Determine the operation and unit for the answer.
Enter the correct numbers and calculate, then check the answer.

RIDGES

Read the problem.
I know statement.
Draw a picture.
Goal statement.
Equation development. Solve the equation.

RICE

Read and record the problem.
Illustrate your thinking.

STAR

Stop and read the problem carefully.
Think about your plan and the strategy you will use.
Act. Follow your plan and solve the problem.
Review your answer.

SUPER

Slowly read the story problem twice.
Underline the question and circle the numbers you need.
Picture it. Draw the scenario to show what is happening.
Explain the problem with a number sentence.
Rewrite the answer in a sentence.

SHINES

Slowly and carefully read the problem. Highlight or underline key information. Identify the question by drawing a circle around it. Now solve the problem. Show your work.
Examine your work for precision, accuracy, and clarity. Share your answer by writing a sentence.

R-CUBES

Read the problem.

Circle key numbers.
Underline the question.

SOLVE

Study the problem.
Organize the facts.
Line up the plan.
Verify the plan with computation.
Examine the answer.
Box action words.
Evaluate steps.
Solve and check.

Share your favorite attack strategy.

Teach an attack strategy

Teach about schemas

x

Total

Difference

Change

Equal Groups

Comparison

Ratios/Proportions

Schema and Definition	Equations and Graphic Organizers	Examples			Variations
Total (Combine: Part-partwhole) Parts combined for a sum	$\begin{aligned} & P 1+\mathrm{P} 2=\mathrm{T} \\ & (\text { part }+ \text { part }=\text { total) } \end{aligned}$	Sum unknown: Lyle has 11 red apples and 18 green apples. How many apples does Lyle have altogether?	Part unknown: Lyle has 29 red and green apples. If 11 of the apples are red, how many green apples does Lyle have?		More than two parts: Lyle has 34 apples. Of the apples, 11 are red, 18 are green, and the rest are yellow. How many yellow apples does Lyle have?
Difference (Compare) Sets compared for a difference		Difference unknown: Sasha wrote 85 words in her essay. and Tabitha wrote 110 words. How mary fewer words did Sasha write than Tabitha?	Bigger/greater unknown: Tabitha wrote 25 more words than Sasha. If Sasha wrote 85 words, how many words did Tabitha write?	Smaller/lesser unknown: Tabitha wrote 110 words in her essay. Sasha wrote 25 words fewer than Tabitha. How many words did Sasha write?	(None)
Change (Join: Separate) An amount that increases or decreases	$\mathrm{ST}+/-\mathrm{C}=\mathrm{E}$ (start $+\mathcal{L}$ change $=$ end)	End (increase) unknown: Jorge had \$52. Then, he earned $\$ 16$ babysitting. How much money does Jorge have now? End (decrease) unknown: Jorge had \$52. Then, he spent \$29 at the ballpark. How much money does Jorge have now?	Change (increase) unknown: Jorge had \$52. Then, he eamed some money babysitting. Now, Jorge has $\$ 68$. How much did Jorge earn babysitting? Change (decrease) unknown: Jorge had $\$ 52$ but spent some money when he went to the ballpark. Now, Jorge has \$23. How much did Jorge spend at the ballpark?	Start (increase) unknown: Jorge has some money, and then he earned $\$ 16$ for babysitting. Now, Jorge has $\$ 68$. How much money did he have to start with? Start (decrease) unknown: Jorge had some money. Then, he spent $\$ 29$ at the ballpark and has $\$ 23$ left. How much money did Jorge have before going to the ballpark?	Multiple changes: Jorge had \$78. He stopped and bought a pair of shoes for \$42 and then he spent $\$ 12$ at the grocery. How much money does Jorge have now?

What are your strengths?

What are your opportunities for growth?

What are your immediate next steps?

Parts put together into a total

Daniela saw 3 canoes and 8 kayaks. How many boats did Daniela see?

Total

Part

Part

Daniela saw 11 boats. 8 of the boats were kayaks, how many were canoes?

Total

"Are parts put together for a total?"

Total
$P 1+P 2=$ T

(total)

(part)

(part)

Total

B.

In March and April, it rained a total of 11.4 inches. If it rained 3.9 inches in March, how many inches did it rain in April?

$x A+1 \cdot$

Total

Share a Total problem.

Difference

Greater and lesser amounts compared for a difference

Adrianna has 10 pencils. Tracy has 4 pencils. How many more pencils does Adrianna have?

Adrianna has 6 more pencils than Tracy. If Tracy has 4 pencils, how many does Adrianna have?

Tracy has 6 fewer pencils than Adrianna. Adrianna has 10 pencils. How many pencils does

Difference

Tracy have?

Total

"Are parts put together for a total?"

Difference

"Are amounts compared for a difference?"

Difference

Difference

Jana has 107 wooden beads and 68 glass beads. How many more wooden beads than glass beads does Jana have?

Enter your answer in the response box.

	U	$G-L=D$
	P	$107-68=?$
	S	$?=39$ more
wooden beads		

Difference

Share a Difference problem.

Change

An amount that increases or decreases

Nickole had 6 notebooks. Then, she bought 3 notebooks. How many notebooks does Nickole have now?

End amount
Nickole had 6 notebooks. Then, she bought a few more notebooks. Now, Nickole has 9 notebooks. How many notebooks did she buy?

Nickole had some notebooks. Then, she bought 3

Change amount

Start amount notebooks. Now, Nickole has 9 notebooks. How many notebooks did she have to start with?

Change

An amount that increases or decreases

Samantha baked 20 cookies. Then, she ate 3 of the cookies. How many cookies does Samantha have now?

End amount

Samantha baked 20 cookies. Then, she ate some of the cookies. Now, she has 17 cookies. How many cookies did Samantha eat?

Samantha baked some cookies. She ate 3 of the

Change amount

Start amount cookies and has 17 cookies left. How many cookies did Samantha bake?

Total

"Are parts put together for a total?"

Difference

"Are amounts compared for a difference?"

Change
"Does an amount increase or decrease?"

Change

$$
+1-
$$

(start)
(change)
(end)

Change

28 There were 25 people in a library. Some people left the library and went home. Then there were 13 people remaining in the library. Which number line represents one way to determine the number of people who left the library?

$?=12$ people left

Change

Share a Change problem.

-
 -
 \square
 Schema Check!

Change

Pablo goes to a stamp show where he can share, buy, and sell stamps.

26. Part A

The first day, Pablo starts with 744 stamps. He buys 27 stamps from his friend. He then sells 139 stamps.

What is the total number of stamps that Pablo has after the first day of the stamp show?

Difference

The graph below shows the number of pounds of plastic the Keller family recycled for five months.

Recycled Plastic

Each \square means 20 pounds.
Based on the graph, how many more pounds of plastic did the family recycle in July than in April?

Mr. Conley delivers packages. The bar graph shows the total number of packages he delivered on five days last week.

10. Part A

What is the total number of packages Mr. Conley delivered on Monday and Tuesday?
(4) 300
(8) 340
(c) 350
(2) 360

Total

Difference

Change

Equal Groups

Comparison

Ratios/Proportions

Schema and Definition	Graphic Organizers	Examples			Variations
Equal Groups (Vary) A number of equal sets or units		Product unknown: Maria bought 5 cartons of eggs with 12 eggs in each carton. How many eggs did Maria buy?	Groups unknown: Maria bought 60 eggs. The eggs were sold in cartons with 12 eggs each. How many cartons of eggs did Maria buy?	Number unknown: Maria bought 5 cartons of eggs for a total of 60 eggs. How many eggs were in each carton?	With rate: Maria bought 5 cartons of eggs. Each carton cost $\$ 2.95$. How much did Maria spend on eggs?
Comparison One set as a multiple or part of another set		Product unknown: Malik picked 7 flowers. Danica picked 3 times as many flowers. How many flowers did Danica pick?	Set unknown: Danica picked 3 times as many flowers as Malik. If Danica picked 21 flowers, how many flowers did Malik pick?	Times unknown: Malik picked 7 flowers. Danica picked 21 flowers. How many times more flowers did Danica pick?	With fraction: Malik picked 25 red and yellow flowers. If $1 / 5$ of the flowers were yellow, how many were red?
Proportions		Subject unknown: Sally typed 56 words in 2 minutes. How many words could Sally type in 7 minutes? Base unknown: Justin baked cookies and brownies. The ratio of cookies to brownies was $3: 5$. If he baked 15 cookies, how many brownies did he bake?	Object unknown: Sally typed 56 words in 2 minutes. How many minutes would it take Sally to type 192 words? Compared unknown: Justin baked cookies and brownies. The ratio of cookies to brownies was $3: 5$. If he baked 25 brownies, how many cookies did he bake?	Ratio unknown: Justin baked 15 cookies and 25 brownies. What's the ratio of cookies to brownies?	With percentage: Watson received an 80% on his science quiz. If the test had 40 questions, how many questions did Watson answer correctly? With unit rate: Paula bought 5 boxes of markers. She spent $\$ 9.75$. What is the price of one box of markers?

Equal Groups

Groups multiplied by number in each group for a product

Toni has 2 boxes of crayons. There are 12 crayons in each box. How many crayons does Toni have altogether?

Product

Toni has 24 crayons. They want to place them equally into 2 boxes. How many crayons will Toni place in each box?

Toni has 24 crayons. They put them into boxes with 12 crayons each. How many boxes did Toni use?

Number in each group

Groups

Equal Groups

"Are there groups with an equal number in each group?"

Equal Groups

GR $\times N(E)=$

Equal Groups

Jack has 24 fish. He puts them into 4 bowls. Each bowl has an equal number of fish.

How many fish are in each bowl?

Equal Groups

Share an Equal Groups problem.

Comparison

Set multiplied by a number of times for a product

Brooke ran 6 minutes. Shaleeni ran 4 times longer than Brooke. How many minutes did Shaleeni run?

Product

Equal Groups

"Are there groups with an equal number in each group?"

Comparison

"Is a set compared a number of times?"

Comparison

Comparison

Susan has 3 times as many books as Mary. Mary has 18 books. Which equation can be solved to figure out how many books Susan has?

$$
\begin{aligned}
& \text { (A } \square-3=18 \\
& \text { 的 } 3+18=\square \\
& \text { c. } 18 \div \square=3 \\
& \text { S } \\
& \text { (18) } \times(3)=4 \\
& ?=54 \text { books }
\end{aligned}
$$

Comparison

Share a Comparison problem.

Ratios/Proportions

Description of relationships among quantities

Melissa baked cookies and brownies. The ratio of cookies to brownies was $3: 5$. If she baked 25 brownies, how many cookies did she bake?

Emma typed 56 words in 2 minutes. At this rate, how many words could Emma type in 7 minutes?

Equal Groups

"Are there groups with an equal number in each group?"

Comparison

"Is a set compared a number of times?"

Ratios/Proportions

"Are there relationships among

Ratios/Proportions

-
 -
 \square
 Schema Check!

Equal Groups

Mr. Kowolski ordered 35 boxes of granola bars. Each box contained 24 granola bars.

What is the total number of granola bars Mr. Kowolski ordered?

Ratios/Proportions

A company makes 625 cell phone cases each day. How many cell phone cases does the company make in 31 days?

Comparison

Danielle's full-grown dog weighs 10 times as much as her puppy. The puppy weighs 9 pounds.

Enter the number of pounds the full-grown dog weighs.

Total

Difference

Change

Equal Groups

Comparison

Ratios/Proportions

Teach an attack strategy

Teach about schemas

x

Students should learn how to set up and solve word problems by combining an attack strategy with a focus on word-problem schemas.

What are your strengths with wordproblem solving?

What are the opportunities for growth?

What's one thing you can start doing next week?

Teachers should use systematic and explicit instruction to help students develop a strong foundation for specific mathematics skills.

Students require modeling and practice on how to use the language of mathematics.

Students should use hands-on tools, virtual manipulatives, drawings, and other visuals to understand mathematics concepts and procedures.

Teachers should use fluency building activities to build counting fluency and fluency with the operations.

Students should learn how to set up and solve word problems by combining an attack strategy with a focus on word-problem schemas.

https://intensiveintervention.org/intensive-intervention-math-course

National Center on
INTENSIVE INTERVENTION
at American Institutes for Research

Intensive	Tools	Implementation	Intervention	Information
Intervention -	Charts -	Support •	Materials •	For... -

Intensive Intervention in Mathematics Course Content

NCII, through a collaboration with the University of Connecticut, developed a set of course content focused on developing educators' skills in designing and delivering intensive mathematics instruction This content is designed to support faculty and professional development providers with instructing p
 service and in-service educators who are developing and/or refining their implementation of intensive mathematics intervention.

[^0]

https://www.inclusionintexas.org/apps/pages/index.isp?uREC ID=2155039\&type=d\&pREC ID=2169859

$x \mathrm{~A}+\boldsymbol{j}$

Teaching Math

 in Middle SchoolUsing MTSS to Meet All Students' Needs

Leanne R. Ketterlin-Geller, Sarah R. Powell,

Sarah R. Powell, Ph.D.

Associate Professor
The University of Texas at Austin

srpowell@utexas.edu

@sarahpowellphd

[^0]: Intensive instruction was recently identified as a high-leverage practice in special educations , and DBI is a research based approach to delivering intensive instruction across content areas (NCII, 2013). This course provides learners with an opportunity to extend their understanding of intensive instruction through in-depth exposure to DBI in mathematics, complete with exemplars from actual classroom teachers.

 NCII, through a collaboration with the University of Connecticut and the National Center on Leadership in Intensive Intervention and with support from the CEEDAR Center『, developed course content focused on enhancing educators' skills in intensive mathematics intervention. The course includes eight modules that can support faculty and professional development providers with instructing pre-service and in-service educators who are learning to implement intensive mathematics intervention through data-based individualization (DBI). The content in this course complements concepts covered in the Features of Explicit Instruction Course and so we suggest that users complete both courses.

