Digitalisation and Transformation of Process Analysis

Sundeep Saraf

VP Global Sales - Analytical Yokogawa Electric International

Marcus Trygstad

Consultant, Advanced Analytical Solutions
Yokogawa Corporation of America

IEC Automation Week – Mumbai Nov 17th, 2018

AGENDA

- History and where are we heading with Digitalization Industrie 4.0
- Transformation of Process Analysis to Process Monitoring for Control PM 4.0
- Analyzer-enabled Integrated Solutions
- Technology Fusion IIoT
 Hard/Soft Analyzers

AGENDA

- History and where are we heading with Digitalization Industrie 4.0
- Transformation of Process Analysis to Process
 Monitoring for Control PM 4.0
- Analyzer-enabled Integrated Solutions
- Technology Fusion IIoT
 Hard/Soft Analyzers

"Forward movement is not helpful if what is

needed is a change of direction."

David Fleming
 Lean Logic: A Dictionary for the
 Future and How to Survive It

Living
Through
Shifting
Paradigms... i4.0

Paradigm Shifting...

from Process Analysis
to Process Monitoring for Control

Q1: What's the difference?

– Isn't process analysis for process control?

Q2: Why shift the paradigm?

– Isn't the current one working just fine?

Process Analytics Today (a 50 year old paradigm)

System Integration (Engineering and Packaging)

Process Analytics focuses on the process analytical enterprise

Sample Systems

(Process Application Expertise)

The Stream Data Sheet is the principal vehicle for engagement

Analytical Products (Science & Engineering)

Is Process GC here to stay?

Advantages historically

((Dallarania ari) Arabia

- Highly versatile & configurable
- Relatively low initial cost; ongoing cost of ownership acceptable
- Vendors and users enjoy economies of scale and "sameness"

GC versatility and ubiquity unlikely to ever be repeated

- Yet, sustainability is a growing concern amongst operating companies
- Spectroscopic technology is catching up fast

"Delivering" Analysis	GC	Spectroscopy
Hardware Design	Straightforward	Evolving
Production	Straightforward	Straightforward
Application configurability	Established	Developing
Calibration/Tuning	On site	Upfront
Maintenance	High but Manageable	Low

Industrial Revolutions

Industrie 2.0

Industrie 3.0

Industrie 4.0

Process Monitoring

PM 2.0

PM 3.0

PM 4.0

Conceptual Vocabulary is needed to drive future technology discussions

But First... How did we get here?

How did we get here?

Era	Industrie 2.0	_	— Indu	strie 3.0 ——
Description	Pre- Automation	Early Automat	tion	Mature Automation
Decade	Before 1970	1970s		1980s forward
Sampling, Analysis	Manual, Lab	Online		Online
Process Control	Adjustment by Operators	Adjustm Operato		Closed Loop
Data Reporting	Manual or automatic input into a LIMS Transmitted to DCS		Direct o	utput to the DCS
Increasing Control Resol (CR)	lution			

AGENDA

- History and where are we heading with Digitalization Industrie 4.0
- Transformation of Process Analysis to Process Monitoring for Control PM 4.0
- Analyzer-enabled Integrated Solutions
- Technology Fusion IIoT
 Hard/Soft Analyzers

PM 4.0 Integrates Monitoring into Control

History of Analyzers till PM 3.0

Inception: Automation of **L**aboratory Instruments

- Gas chromatographs
- NIR spectrometers
 - FT- and dispersive
- Mass spectrometers
- Hot/Cold Property Analyzers
 - Reid Vapor Pressure
 - Cloud Point
 - Cold Filter Plug Point
- Elemental analyzers
- Anti-knock index analyzers
- pH, ion-selective electrodes

Purpose built -Type

Conceived and Purpose-Built for Online Implementation

- Infrared and UV-Vis photometers
- Zirconium oxide sensors (O₂)
 Moisture Sensors
 - Aluminum oxide
 - Vibrating quartz crystal

The PM "Decoder Ring"

PM 2.0, PM 3.0

PM 4.0

PM 3.5

Concern: analysis, analyzers, and their operation

Concern: control/optimization, economic realization

Concern: support of and compliance with PM 4.0

PM 3.5 Scorecard

☑ Analysis rate high vs process ☑ Pipe-centric (online)

☑ Permanently Calibrated ☑ "Self-Aware" (Self-Validating)

☑ App-Based Operation ☑ App-Based Monitoring

☑ Auto/Remote Diagnostics ☑ Smart Sampling

☑ Low Maintenance
☑ "Fit and Forget"

☑ An integrated element of the process control system (incl. safety)

☑ Part of a multivariate sensor system

Analyzers in PM 2.0, PM 3.0, and PM 3.5

Some Examples of PM 3.5

H₂O and CO₂ in Natural Gas by TDL

ICOS for Trace Gases

Combustion

Monitoring by TDLS

QCL for Gas Analysis

Fast

GC

OFCEAS for Trace Gases

Fabry-Pérot Interferometry for Bulk Composition

To varying degrees, these technologies are supporting the trend away from shelter-centric deployment

Industrie 3.0 and the existing PM 3.0 Paradigm

Automation and analytical technologies are connected but siloed

Interface Analyzers to the process, then output results to the automation system

Industrie 4.0 and the New PM 4.0 Paradigm

Analytical technology is an element of a digitally integrated manufacturing system

PM 4.0 is not Analyzers

Realization of PM 4.0 relies on PM 3.5 analytical technologies that are PM 4.0-compliant

Industrie 4.0 and the New PM 4.0 Paradigm

Analytical technology is an element of a digitally integrated manufacturing system

PM 4.0 is not Analyzers

 Realization of PM 4.0 relies on PM 4.0-compliant analytical technologies (PM 3.5)

Industry Trends that will define PM 4.0

Intertwined issues: Knowledge, Technology, and Economics	<u>K</u>	Ι	<u>E</u>
Increasing variety and sophistication of Analytical technology			
Increasing numbers of measurement points for Analysis			X
Demographic Shift in Core Process and Analyzer Knowledge			X
Increasing pressure Capex costs			X
Increasing focus on Analyzer availability	X	X	X
Increasing expectation to "fit and forget" type instruments			X
Increasing dependence on vendor expertise		X	X
Increasing motivation to explore Inferential based solutions		X	X

AGENDA

- History and where are we heading with Digitalization Industrie 4.0
- Transformation of Process Analysis to Process
 Monitoring for Control PM 4.0
- Analyzer-enabled Integrated Solutions
- Technology Fusion IIoT
 Hard/Soft Analyzers

Characteristics of PM 4.0

- Increased number of measurements per stream per unit time
- Increased measurement precision (sensitivity to composition changes)
- These enable increased Control Resolution

MEASUREMENTS
ARE INTEGRATED
WITH OTHER DATA

- Analytical measurements are not regarded individually (discretely)
- Reduces overall control uncertainty

ANALYSIS IS INTEGRATED WITH CONTROL

- System conceived as a whole (analyzers not merely an addition)
- The whole >Σ(parts)
- Analyzers are integral to the control / safety / compliance strategy

An Example of PM 4.0 in Action Today

Furnace Optimization and Safety Systems

Comprehensive Solution based on Technology Fusion

PM 4.0 – Drives Convergence of Goals

Technology fusion brings diverse stakeholder concerns to a common table

Stakeholder	Concern	Typical Solution
Ops Mgr	Throughput Efficiency	New Burners, New Tubes, Convection Section
Energy Mgr, Ops Mgr	Fuel Efficiency	One Time Manual Tuning
HSE, Reliability	Safety	Burner Mgmt System, Flame Scanners
HSE	Emissions	SCR*, Low NO _x Burners
Engineering Mgr, Reliability	Asset Sustainability	Scheduled Preventative Maintenance
		* Selective Catalytic Reduction

AGENDA

- History and where are we heading with Digitalization Industrie 4.0
- Transformation of Process Analysis to Process
 Monitoring for Control PM 4.0
- Analyzer-enabled Integrated Solutions
- Technology Fusion IIoT
 Hard/Soft Analyzers

Hard Analyzers – Operational Model

"Hard" Analyzers **Measure** (actual sample used, based on first principles)

Soft Analyzers – Operational Model

"Soft" Analyzers **Predict** (use multivariate statistical correlations)

Hard vs Soft Analyzers

Hard Analyzers	Soft Analyzers
First-Principles, discrete, univariate, ASTM Sanction	Referenced, multivariate, based on data arrays
"Hard" Correlations relate directly to sensor response	"Soft" Correlations (models) are the analyzer, operating on the array
Actual Measurements	Statistical Predictions
Measurement basis well understood, rooted in science	Basis of correlation often not clearly understood
Known to work due to first principles	Correlation is "proof" that "it works"
Calibration based on a few samples	Calibration is population-based
Few measurement per analyzer	One array, many analyzers (models)
Measurement frequency limitations	Substantially Instantaneous
Capital- and maintenance intensive	"Free" (cost to build data set)
Robust across wide range of values	Calibrations generally not robust

Technology Fusion (examples)

Yokogawa awarded patents for both in 2018

Cognitive Quality Manager for Monitoring and Optimisation

Crude Rundown Streams

RVP in Gasoline Blending

Technology Fusion: Beyond the Best of Both

- The speed and adaptability of inferentials
- The "realness" of hard analyzers
- Other non-intuitive benefits
- Not merely "doubling-up" or redundancy
- Exploits the power of regression statistics to "filter" noise (imprecisions) in all variables
- Reduces measurement uncertainty* by >80% vs ASTM reproducibility (hard analyzer method)

^{*} Trygstad, Marcus; Pell, Randy; Roberto, Michael, "Motor Fuel Property Prediction by Inferential Spectrometry 2: Overcoming Limitations", <u>Proceedings of the ISA 60th Analysis Division Symposium</u>, AD.15.04.02, Galveston, Texas, April 26 – 30, 2015.

The Future of Process Monitoring: PM 4.0

