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CAP 4630

Artificial Intelligence

Instructor: Sam Ganzfried

sganzfri@cis.fiu.edu
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Schedule

• 11/21: Wrap up multiagent systems (game theory)/elaborate on 

class project. Start machine learning (classification).

• 11/28, 11/30, 12/5: Continue machine learning (regression, 

clustering, deep learning)

• I will still try to discuss topics in Markov decision processes and 

reinforcement learning as they relate to the above topics.

• 12/7: Project presentations and class project due

– Project code due Monday 12/4 at 2PM on Moodle.

• Final exam on 12/14
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Announcements

• HW4 out last week (final homework assignment) due 

12/1 (2:05pm in lecture or 2:00pm on Moodle)

– https://www.cs.cmu.edu/~sganzfri/HW4_AI.pdf
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Gambit

• http://gambit.sourceforge.net/gambit15/gui.html

http://gambit.sourceforge.net/gambit15/gui.html
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Class project

• For the class project students will implement an agent for 3-player 

Kuhn poker. This is a simple, yet interesting and nontrivial, variant 

of poker that has appeared in the AAAI Annual Computer Poker 

Competition. The grade will be partially based on performance 

against the other agents in a class-wide competition, as well as final 

reports and presentations describing the approaches used. Students 

can work alone or in groups of up to 3.

• Link to play against optimal strategy for one-card poker:

– http://www.cs.cmu.edu/~ggordon/poker/

• Paper on Nash equilibrium strategies for 3-player Kuhn poker

– http://poker.cs.ualberta.ca/publications/AAMAS13-3pkuhn.pdf

• https://moodle.cis.fiu.edu/v3.1/mod/forum/discuss.php?d=21801

http://www.computerpokercompetition.org/index.php/75-limit-games
http://poker.cs.ualberta.ca/publications/AAMAS13-3pkuhn.pdf
https://moodle.cis.fiu.edu/v3.1/mod/forum/discuss.php?d=21801
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Multiagent systems (game theory)

• Strategic multiagent interactions occur in all fields

– Economics and business: bidding in auctions, offers in 

negotiations

– Political science/law: fair division of resources, e.g., divorce 

settlements

– Biology/medicine: robust diabetes management (robustness 

against “adversarial” selection of parameters in MDP)

– Computer science: theory, AI, PL, systems; national security 

(e.g., deploying officers to protect ports), cybersecurity (e.g., 

determining optimal thresholds against phishing attacks), 

internet phenomena (e.g., ad auctions)
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• Theorem (von Neumann): In chess, one and only one 

of the following must be true:

i. White has a winning strategy

ii. Black has a winning strategy

iii. Each of the two players has a strategy guaranteeing at least 

a draw.

• Applies to ALL chess matches, not a particular match

• Theorem is significant because a priori it might have 

been the case that none of the alternatives was 

possible; one could have postulated that no player 

could ever have a strategy always guaranteeing a 

victory, or at least a draw.
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Checkers is Solved (Science ’07)

• The game of checkers has roughly 500 billion 

possible positions (5 × 1020). The task of 

solving the game, determining the final result in 

a game with no mistakes made by either player, 

is daunting. Since 1989, almost continuously, 

dozens of computers have been working on 

solving checkers, applying state-of-the-art 

artificial intelligence techniques to the proving 

process. This paper announces that checkers is 

now solved: Perfect play ……
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• The game of checkers has roughly 500 billion possible positions 

(5 × 1020). The task of solving the game, determining the final 

result in a game with no mistakes made by either player, is 

daunting. Since 1989, almost continuously, dozens of computers 

have been working on solving checkers, applying state-of-the-

art artificial intelligence techniques to the proving process. This 

paper announces that checkers is now solved: Perfect play by 

both sides leads to a draw. This is the most challenging popular 

game to be solved to date, roughly one million times as complex 

as Connect Four. Artificial intelligence technology has been 

used to generate strong heuristic-based game-playing programs, 

such as Deep Blue for chess. Solving a game takes this to the 

next level by replacing the heuristics with perfection.
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Connect Four
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Connect Four

• The solved conclusion for Connect Four is first player 

win. With perfect play, the first player can force a win, 

on or before the 41st move by starting in the middle 

column. The game is a theoretical draw when the first 

player starts in the columns adjacent to the center. For 

the edges of the game board, column 1 and 2 on left (or 

column 7 and 6 on right), the exact move-value score 

for first player start is loss on the 40th move, and loss 

on the 42nd move, respectively. In other words, by 

starting with the four outer columns, the first player 

allows the second player to force a win.
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2-player limit Hold’em poker is 

solved (Science 2015)
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Heads-up Limit Hold ‘em Poker is Solved

• Play against Cepheus here http://poker-

play.srv.ualberta.ca/

http://poker-play.srv.ualberta.ca/
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Strategic-form games

• A game in strategic form (or in normal form) 

is an ordered triple G = (N, (Si) i in N, (ui) i in 

N), in which:

– N = {1,2,…,n} is a finite set of players.

– Si is the set of strategies of player i, for every player 

i in N. Denote the set of all vectors of strategies by S 

= S1 x S2 x … x Sn.

– ui : S  R is a function associating each vector of 

strategies s = (si), i in N, with the payoff (utility)

ui(s) to player i, for every player i in N.
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• Games in strategic form are sometimes called 

matrix games

• When n = 2, we call the games bimatrix 

games, as they are given by two matrices, one 

for the payoff of each player.
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Chicken

• The game of chicken models two drivers, both headed for a 

single-lane bridge from opposite directions. The first to swerve 

away yields the bridge to the other. If neither player swerves, the 

result is a costly deadlock in the middle of the bridge, or a 

potentially fatal head-on collision. It is presumed that the best 

thing for each driver is to stay straight while the other swerves 

(since the other is the "chicken" while a crash is avoided). 

Additionally, a crash is presumed to be the worst outcome for 

both players. This yields a situation where each player, in 

attempting to secure his best outcome, risks the worst.
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Chicken
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Chicken
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Security game
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Rock-paper-scissors

rock paper scissors

Rock 0,0 -1, 1 1, -1

Paper 1,-1 0, 0 -1,1

Scissors -1,1 1,-1 0,0
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Prisoner’s dilemma

T > R > P > S 
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Battle of the sexes

• Imagine a couple that agreed to meet this evening, but 

cannot recall if they will be attending the opera or a 

football match (and the fact that they forgot is common 

knowledge). The husband would prefer to go to the 

football game. The wife would rather go to the opera. 

Both would prefer to go to the same place rather than 

different ones. If they cannot communicate, where 

should they go?
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Strategic-form game examples

• Chicken

• Security game

• Rock-paper-scissors

• Prisoner’s dilemma

• Battle of the sexes
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• We saw von Neumann’s theorem in the special case of 

two players and three possible outcomes: victory for 

White, a draw, or victory for Black. 

• Central question of game theory: what “will happen” in 

a given game?
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Central question of game theory

1. An empirical, descriptive interpretation: How do 

players, in fact, play in a given game?

2. A normative interpretation: How “should” players 

play in a given game?

3. A theoretical interpretation: What can we predict will 

happen in a game given certain assumptions regarding 

“reasonable” or “rational” behavior on the part of the 

players?
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Descriptive game theory

• Observations of the actual behavior of players, 

both in real-life situations and in artificial 

laboratory conditions where they are asked to 

play games and their behavior is recorded.

– Behavioral economics, psychology
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Normative interpretation

• Appropriate for a judge, legislator, or arbitrator called 

upon to determine the outcome of a game based on 

several agreed-upon principles, such as justice, 

efficiency, nondiscrimination, and fairness.

• Best suited for the study of cooperative games, in 

which binding agreements are possible, enable 

outcomes to be derived from “norms” or agreed-upon 

principles, or determined by an arbitrator who bases his 

decisions on those principles.
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Theoretical interpretation

• After we have described a game, what can we 

expect to happen?

• What outcomes, or set of outcomes, will 

reasonably ensue, given certain assumptions 

regarding the behavior of the players?
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• For each of the five example games we discussed:

– How will real players act?

– How “should” players act?

– How would theoretically perfectly rational players act?

• Golden Balls: Split or Steal? 

https://www.youtube.com/watch?v=S0qjK3TWZE8



31

Game theory background

• Players

• Actions (aka pure strategies)

• Strategy profile: e.g., (R,p)

• Utility function: e.g., u1(R,p) = -1, u2(R,p) = 1

rock paper scissors

Rock 0,0 -1, 1 1, -1

Paper 1,-1 0, 0 -1,1

Scissors -1,1 1,-1 0,0
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Zero-sum game

• Sum of payoffs is zero at each strategy profile: 

e.g., u1(R,p) + u2(R,p) = 0

• Models purely adversarial settings

rock paper scissors

Rock 0,0 -1, 1 1, -1

Paper 1,-1 0, 0 -1,1

Scissors -1,1 1,-1 0,0
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Mixed strategies

• Probability distributions over pure strategies

• E.g., R with prob. 0.6, P with prob. 0.3, S with 

prob. 0.1
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Best response (aka nemesis)

• Any strategy that maximizes payoff against 

opponent’s strategy

• If P2 plays (0.6, 0.3, 0.1) for r,p,s, then a best 

response for P1 is to play P with probability 1
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Nash equilibrium

• Strategy profile where all players 

simultaneously play a best response

• Standard solution concept in game theory

– Guaranteed to always exist in finite games [Nash 

1950]

• In Rock-Paper-Scissors, the unique equilibrium 

is for both players to select each pure strategy 

with probability 1/3 
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Minimax Theorem

• Minimax theorem: For every two-player zero-sum 

game, there exists a value v* and a mixed strategy 

profile σ* such that:

a. P1 guarantees a payoff of at least v* in the worst case by 

playing σ*1 

b. P2 guarantees a payoff of at least -v* in the worst case by 

playing σ*2 

• v* (= v1) is the value of the game 

• All equilibrium strategies for player i guarantee at 

least vi in the worst case

• For RPS, v* = 0
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Exploitability

• Exploitability of a strategy is difference 

between value of the game and performance 

against a best response

– Every equilibrium has zero exploitability

• Always playing rock has exploitability 1

– Best response is to play paper with probability 1
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Nash equilibria in two-player zero-

sum games

• Zero exploitability – “unbeatable”

• Exchangeable

– If (a,b) and (c,d) are NE, then (a,d) and (c,b) are too

• Can be computed in polynomial time by a linear 

programming (LP) formulation
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Nash equilibria in multiplayer and 

non-zero-sum games
• None of the two-player zero-sum results hold

• There can exist multiple equilibria, each with different 

payoffs to the players

• If one player follows one equilibrium while other 

players follow a different equilibrium, overall profile is 

not guaranteed to be an equilibrium

• If one player plays an equilibrium, he could do worse if 

the opponents deviate from that equilibrium

• Computing an equilibrium is PPAD-hard



40

Imperfect information

• In many important games, there is information 

that is private to only some agents and not 

available to other agents

– In auctions, each bidder may know his own 

valuation and only know the distribution from which 

other agents’ valuations are drawn

– In poker, players may not know private cards held 

by other players
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Extensive-form representation
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Extensive-form games

• Two-player zero-sum EFGs can be solved in 

polynomial time by linear programming

– Scales to games with up to 108 states

• Iterative algorithms (CFR and EGT) have been 

developed for computing an ε-equilibrium that scale to 

games with 1017 states

– CFR also applies to multiplayer and general sum games, 

though no significant guarantees in those classes

– (MC)CFR is self-play algorithm that samples actions down 

tree and updates regrets and average strategies stored at 

every information set 



43



44

WL/12 CC CF FC FF

00 0 0 0 0

01 -0.5 -0.5 1 1

02 -1 1 -1 1

10

11

12

20

21

22
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Extensive-form game

• A game in extensive form is given by a game tree, which 

consists of a directed graph in which the set of vertices 

represents positions in the game, and a distinguished vertex, 

called the root, represents the starting position of the game. A 

vertex with no outgoing edges represents a terminal position in 

which play ends. To each terminal vertex corresponds an 

outcome that is realized when the play terminates at that vertex. 

Any nonterminal vertex represents either a chance move (e.g., a 

toss of a die or a shuffle of a deck of cards) or a move of one of 

the players. To any chance-move vertex corresponds a 

probability distribution over edges emanating from that vertex, 

which correspond to the possible outcomes of the chance move.
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Perfect vs. imperfect information

• To describe games with imperfect information, in 

which players do not necessarily know the full board 

position (like poker), we introduce the notion of 

information sets. An information set of a player is a set 

of decision vertices of the player that are 

indistinguishable by him given his information at that 

stage of the game. A game of perfect information is a 

game in which all information sets consist of a single 

vertex. In such a game whenever a player is called to 

take an action, he knows the exact history of actions 

and chance moves that led to that position.
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• A strategy of a player is a function that assigns to each 

of his information sets an action available to him at that 

information set.  A path from the root to a terminal 

vertex is called a play of the game. When the game has 

no chance moves, any vector of strategies (one for each 

player) determines the play of the game, and hence the 

outcome. In a game with chance moves, any vector of 

strategies determines a probability distribution over the 

possible outcomes of the game.
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Strategies in imperfect-information games

• A strategy of player i is a function from each of his 

information sets to the set of actions available at that 

information set.

• Just as in games with chance moves and perfect 

information, a strategy vector determines a distribution 

over the outcomes of a game.
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• Every extensive-form game can be converted to an equivalent 

strategic-form game, and therefore all the prior concepts and 

theoretical results (e.g., domination, security level, mixed 

strategies, Nash equilibrium, Minmax Theorem) will apply. 

However, this conversion produces a strategic-form game that 

has size that is exponential in the size of the original game tree, 

and is infeasible for large games. Therefore, we would like do 

develop algorithms that operate directly on extensive-form 

games and avoid the conversion to strategic form games.
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WL/12 CC CF FC FF

00 0 0 0 0

01 -0.5 -0.5 1 1

02 -1 1 -1 1

10

11

12

20

21

22
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Gambit

• http://gambit.sourceforge.net/gambit15/gui.html

http://gambit.sourceforge.net/gambit15/gui.html
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Algorithms for game solving

• Two-player zero-sum games: there exists a linear programming 

formulation and it can be solved in polynomial time.

• For two player “general-sum” and games with more than two 

players, it is PPAD-hard (though not NP-hard), and widely 

conjectured no efficient algorithms exist.

• For two-player zero-sum extensive-form games, there also exists 

a linear-programming formulation, despite the fact that 

converting it to normal-form would involve an exponential 

blowup in size of the game tree.
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Computing Nash equilibria of two-

player zero-sum games

• Consider the game G = ({1,2}, A1 x A2, (u1, u2)).

• Let U*i be the expected utility for player i in equilibrium (the 

value of the game); since the game is zero-sum, U*1 = - U*2.

• Recall that the Minmax Theorem tells us that U*1 holds constant 

in all equilibria and that it is the same as the value that player 1 

achieves under a minmax strategy by player 2.

• Using this result, we can formulate the problem of computing a 

Nash equilibrium as the following optimization:

Minimize U*1

Subject to Σk in A2 u1,(a
j
1, a

k
2) * sk

2  <= U*1 for all j in A1

Σk in A2 s
k
2  = 1

sk
2  >= 0 for all k in A2
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Minimize U*1

Subject to Σk in A2 u1(a
j
1, a

k
2) * sk

2  <= U*1 for all j in A1

Σk in A2 s
k
2  = 1

sk
2  >= 0 for all k in A2

• Note that all of the utility terms u1(*) are constants while the 

mixed strategy terms sk
2 and U*1 are variables. 
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Minimize U*1

Subject to Σk in A2 u1(a
j
1, a

k
2) * sk

2  <= U*1 for all j in A1

Σk in A2 s
k
2  = 1

sk
2  >= 0 for all k in A2

• First constraint states that for every pure strategy j of player 1, his expected 

utility for playing any action j in A1 given player 2’s mixed strategy s1 is at 

most U*1. Those pure strategies for which the expected utility is exactly U*1

will be in player 1’s best response set, while those pure strategies leading to 

lower expected utility will not.

• As mentioned earlier, U*1 is a variable; we are selecting player 2’s mixed 

strategy in order to minimize U*1 subject to the first constraint. Thus, player 

2 plays the mixed strategy that minimizes the utility player 1 can gain by 

playing his best response.  
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Minimize U*1

Subject to Σk in A2 u1(a
j
1, a

k
2) * sk

2  <= U*1 for all j in A1

Σk in A2 s
k
2  = 1

sk
2  >= 0 for all k in A2

• The final two constraints ensure that the variables sk
2 are 

consistent with their interpretation as probabilities. Thus, we 

ensure that they sum to 1 and are nonnegative. 
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Learning in games

• In game theory, fictitious play is a learning rule first 

introduced by George W. Brown. In it, each player 

presumes that the opponents are playing stationary 

(possibly mixed) strategies. At each round, each player 

thus best responds to the empirical frequency of play of 

their opponent. Such a method is of course adequate if 

the opponent indeed uses a stationary strategy, while it 

is flawed if the opponent's strategy is non-stationary. 

The opponent's strategy may for example be 

conditioned on the fictitious player's last move.
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Fictitious play

• Simple “learning” update rule

• Initially proposed as an iterative method for computing Nash 

equilibria in zero-sum games, not as a learning model!

• Brown, G.W. (1951) “Iterative Solutions of Games by Fictitious 

Play”

• Algorithm:

Initialize beliefs about the opponent’s strategy

Repeat:

1) Play a best response to the assessed strategy of 

the opponent

2) Observe the opponent’s actual play and update 

beliefs accordingly
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• In fictitious play, the agent believes that his opponent 

is playing the mixed strategy given by the empirical 

distribution of the opponent’s previous actions. That is, 

if A is the set of the opponent’s actions, and for every a 

in A we let w(a) be the number of times that the 

opponent has played action a, then the agent assess the 

probability of a in the opponent’s mixed strategy as

– P(a) = w(a) / ∑a’ in Aw(a’)
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• For example, in a repeated Prisoner’s Dilemma game, if the 

opponent has played C, C, D, C, D in the first five games, before 

the sixth game he is assumed to be playing the mixed strategy 

(0.6, 0.4). 

• In general the tie-breaking rule chosen has little effect on the 

results of fictitious play.

• On the other hand, fictitious play is very sensitive to the players’ 

initial beliefs. This choice, which can be interpreted as action 

counts that were observed before the start of the game, can have 

a radical impact on the learning process. Note that one must pick 

some nonempty prior belief for each agent; the prior beliefs 

cannot be (0,…0), since this does not define a meaningful mixed 

strategy.
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Heads Tails

Heads 1, -1 -1, 1

Tails -1, 1 1, -1
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• As the number of rounds tends to infinity, the empirical 

distribution of the play of each player will converge to 

(0.5,0.5). If we take this distribution to be the mixed 

strategy of each player, the play converges to the 

unique Nash equilibrium of the normal form stage 

game, that in which each player plays the mixed 

strategy (0.5,0.5).
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Machine learning

• An agent is learning if it improves its performance on 

future tasks after making observations about the world. 

Learning can range from the trivial, as exhibited by 

jotting down a phone number, to the profound, as 

exhibited by Albert Einstein, who inferred a new 

theory of the universe. 

• We will start by concentrating on one class of learning 

problem, which seems restricted but actually has vast 

applicability: from a collection of input-output pairs, 

learn a function that predicts the output for new inputs.



76

Machine learning

• Why would we want an agent to learn? If the design of 

the agent can be improved, why wouldn’t the designers 

just program in that improvement to begin with? There 

are three main reasons. 
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• First, the designers cannot anticipate all possible 

situations that the agent might find itself in. For 

example, a robot designed to navigate mazes must 

learn the layout of each new maze it encounters. 
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• Second, the designers cannot anticipate all changes 

over time; a program designed to predict tomorrow’s 

stock market prices must learn to adapt when 

conditions change from boom to bust. 
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• Third, sometimes human programmers have no idea 

how to program a solution themselves. For example, 

most people are good at recognizing the faces of family 

members, but even the best programmers are unable to 

program a computer to accomplish that task, except by 

using learning algorithms.
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Supervised learning

• The task of supervised learning is this: Given a training set of 

N example input-output pairs (x1, y1),(x2, y2),…,(xN, yN),

• Where each yj was generated by an unknown function y = f(x), 

discover a function h that approximates the true function f. 

• Example: xi, can be True/False for whether email says “Prize” in 

it, and yi can be True/False for whether or not it is Spam.

• x and y can be any value, they need not be numbers.

– E.g., x can be {red, green, blue} for jacket color, and y can be price.

• The function h is a hypothesis. Learning is a search through the 

space of possible hypotheses for one that will perform well, 

even on new examples beyond the training set. 
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Supervised learning

• To measure the accuracy of a hypothesis we give it a 

test set of examples that are distinct from the training 

set. 

– What would happen if we tested on the examples that were 

trained on?

• We say a hypothesis generalizes well if it correctly 

predicts the value of y for novel examples. Sometimes 

the function f is stochastic—it is not strictly a function 

of x, and what we have to learn is a conditional 

probability distribution, P(Y|x).
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Supervised learning

• When the output y is one of a finite set of values (such 

as sunny, cloudy, or rainy), the learning problem is 

called classification, and is called Boolean or binary 

classification if there are only two values. When y is a 

number (such as tomorrow’s temperature), the learning 

problem is called regression. (Technically, solving a 

regression problem is finding a conditional expectation 

or average value of y, because the probability that we 

have found exactly the right real-valued number for y 

is 0). 
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Supervised learning
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Supervised learning

• The figure shows a familiar example: fitting a function of a single variable to 

some data points. The examples are points in the (x,y) plane, where y = f(x). 

We don’t know what f is, but we will approximate it with a function h 

selected from a hypothesis space, H, which for this example we will take to 

be the set of polynomials such as x^5 + 3x^2 + 2. Figure a shows some data 

with an  exact fit by a straight line (the polynomial 0.4x + 3). The line is 

called a consistent hypothesis because it agrees with all the data. Figure b 

shows a high-degree polynomial that is also consistent with all the data. This 

illustrates a fundamental problem in inductive learning: how do we choose 

from among multiple consistent hypotheses? The answer is to prefer the 

simplest hypothesis consistent with the data. This principle is called 

Ockham’s razor, after the 14th-century English philosopher William of 

Ockham, who used it to argue sharply against all sorts of complications. 

Defining simplicity is not easy, but it seems clear that a degree-1 polynomial 

is simpler than a degree-7 polynomial, and thus (a) should be preferred to (b). 

We will make this intuition more precise later.
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Supervised learning

• Figure c shows a second data set. There is no consistent straight 

line for this data set; in fact, it requires a degree-6 polynomial for 

an exact fit. There are just 7 data points, so a polynomial with 7 

parameters does not seem to be finding any pattern in the data and 

we do not expect it to generalize well. A straight line that is not 

consistent with any of the data points, but might generalize fairly 

well for unseen values of x, is also shown in c. In general, there is 

a tradeoff between complex hypotheses that fit the training data 

well and simpler hypotheses that may generalize better. In figure 

d we expand the hypothesis space H to allow polynomials over 

both x and sin(x), and find that the data in c can be fitted exactly 

by a simple function of the form ax + b + csin(x). This shows the 

importance of the hypothesis space.
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Homework for next class

• Chapter 22 from Russel/Norvig

• HW3 due Tuesday 11/14

• HW4 out last week due 12/1

• Next lecture: Continue machine learning 

(classification/regression)


