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Heterogeneous Players

Aqsa Shehzadi Akbar , Hassan Jaleel , Member, IEEE, Waseem Abbas , Member, IEEE,
and Jeff S. Shamma , Fellow, IEEE

Abstract—We consider stochastic learning dynamics in
games and present a novel notion of robustness to hetero-
geneous players for a stochastically stable action profile. A
standard assumption in these dynamics is that all the play-
ers are homogeneous, and their decision strategies can be
modeled as perturbed versions of myopic best or better
response strategies. We relax this assumption and propose
a robustness criteria, which characterizes a stochastically
stable action profile as robust to heterogeneous behav-
iors if a small fraction of heterogeneous players cannot
alter the long-run behavior of the rest of the population.
In particular, we consider confused players who randomly
update their actions, stubborn players who never update
their actions, and strategic players who attempt to manip-
ulate the population behavior. We establish that radius–
coradius based analysis can provide valuable insights into
the robustness properties of stochastic learning dynamics
for various game settings. We derive sufficient conditions
for a stochastically stable profile to be robust to a con-
fused, stubborn, or strategic player and elaborate these
conditions through carefully designed examples. Then we
explore the role of network structure in our proposed no-
tion of robustness by considering graphical coordination
games and identifying network topologies in which a single
heterogeneous player is sufficient to alter the population’s
behavior. Our results will provide foundations for future
research on designing networked systems that are robust
to players with heterogeneous decision strategies.

Index Terms—Game theory, heterogeneous agents,
Markov processes, stochastic systems.

I. INTRODUCTION

AN IMPORTANT objective in evolutionary game theory
is to understand how collective behaviors evolve when
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independent players with bounded rationality repeatedly inter-
act with each other [1]–[3]. A variety of learning behaviors
have been presented in the literature that can be classified as
variations of imitation or playing best or better response to
the actions of other players (see [4]–[6] for a detailed account
of various behavioral rules). We consider stochastic learning
dynamics in which players update their actions according to
learning behavior such as best/better response but make errors
on rare occasions for exploring the action space. These dynamics
are popular because they assume bounded rationality and have
equilibrium selection properties. Moreover, stochastic learning
dynamics have applications in designing multiagent systems in
engineering applications as discussed in [7]–[11]. An example
of stochastic learning dynamics is log-linear learning (LLL), in
which the probability of selecting an action is proportional to its
utility [2] and [12].

An important assumption in the standard setup of these dy-
namics is that all the players are homogeneous in the sense that
they play myopic best or better response with a high probabil-
ity [1], [13], [14]. We claim that this assumption can be overly
restrictive for population settings comprising a large number of
players. To establish our claim, we relax this assumption and
ask the following question: If a small number of heterogeneous
players, whose decision strategies cannot be modeled as noisy
best response, are included in the population, what will be the
impact on the long-run behavior of the rest of the population?
In particular, we consider the following three fundamental be-
haviors for the heterogeneous players:

1) confused player who updates his actions uniformly at
random;

2) stubborn player who never updates his action;
3) strategic player who is not myopic and can adjust his influ-

ence on players to manipulate the population’s behavior
to his advantage.

To quantify the impact of heterogeneous players, we present
a novel notion of robustness of stochastically stable action
profiles. We say that a stochastically stable profile is robust to a
particular type of heterogeneous behavior if replacing a subset of
players in the population with heterogeneous players of that type
does not alter the long-run behavior of the rest of the population.
Using radius–coradius analysis from [15] and [16], we explicitly
derive scenarios in which even a single heterogeneous player
can alter the entire population’s behavior. The fact that even a
single heterogeneous player can impact the global population
behavior provides a strong motivation for a detailed analysis of
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stochastic learning dynamics in various heterogeneous settings.
Initial results were presented in [17] in which we proposed the
notion of robustness and analyzed the setup with confused and
stubborn players.

Robustness analysis of stochastically stable profiles is an
important research topic in the literature on learning in games.
For instance, in [18] and [19], the impacts of slowly varying
environments and noisy measurements on the stochastically
stable behavior under LLL were analyzed. In [20], the authors
investigated the robustness of stochastically stable action pro-
files against specific structural properties of different stochastic
learning dynamics such as player revision protocols or tie-
breaking rules. In [21], it was shown that the stochastically stable
equilibria under the imitation dynamics of [13] were not robust
to the player interaction patterns. However, we are interested
in scenarios in which a small number of heterogeneous players
with different decision behaviors are included in a population of
myopic players, and our objective is to analyze the robustness of
the stochastically stable behavior of the rest of the population.

Heterogeneity in various aspects of decision rules in stochas-
tic learning dynamics has been considered in the literature.
In [22], a notion of degree of rationality was introduced based on
the levels of iterative reasoning that a player can process for de-
veloping conjectures about other players. Players with a higher
level of rationality in [22], which were termed as clever agents
in [23], could incorporate sophisticated models for opponents’
behavior and could best respond to these sophisticated models.
A similar setup was considered in [24], in which one rational
player was included in the population who knew that all the
other players were myopic planners, and could plan over future
to manipulate the population’s behavior. These works provide
a motivation for our definition of a strategic player but do not
consider confused or stubborn players. Moreover, the results
in [23] were presented for Young’s bargaining model [25] and the
analysis in [24] was for the setup in which myopic players follow
fictitious play with limited memory [26]. In [27], the author an-
alyzed the impact of heterogeneous behaviors on an asymmetry
property, which was presented in [28], in coordination games.
Similarly, the authors in [29] analyzed coordination games in
which players were heterogeneous with respect to their payoffs
and preferences. In [30]–[32], the impact of adversarial players
on population behavior under various information settings was
analyzed for graphical coordination games over generalized ring
networks.

Contribution Statement: We present a framework for ana-
lyzing the robustness of stochastically stable behaviors against
heterogeneous players for general normal form games for a class
of noisy best response dynamics. Our framework for analyz-
ing the robustness of stochastically stable profiles is based on
radius–coradius (Rd-CR) criteria as presented in [16], which
is an important contribution since our framework is applicable
to a class of finite normal form games in which stochastically
stable profiles satisfy this criterion. Rd-CR result was initially
presented in [15] for noisy best response dynamics with mis-
take model and was later extended to a generalized version of
LLL in [16]. Therefore, although we consider standard LLL
as presented in [2], our results can easily be extended to the
class of dynamics discussed in [15] and [16]. The article can

be divided into two parts. In Section III, we present qualitative
conditions for scenarios in which a single player of a particular
type can change the behavior of the rest of the population. These
results are supported by carefully designed examples in which
the impacts of our conditions are highlighted and discussed for
deeper insights. In Section IV, we consider graphical coordi-
nation games, which is one of the most important game setups
and has been studied extensively, particularly in the context of
innovation diffusion in social networks [1], [33]–[35].

Coordination games have been a focus of existing literature
on stochastic dynamics with heterogeneous players such as [29]
and [36]–[39]. Similarly, some of the previous works on robust-
ness have focused entirely on coordination games for specific
networks like random networks [24] and generalized ring net-
works [31] and [30]. We consider graphical coordination games
in a population setting for several important network topologies
such as path graph, ring graph, 2-D grid, and wheel network and
determine whether these topologies are robust to heterogeneous
decision strategies or not. We analyze the robustness of these
topologies and identify which of these topologies are robust to
a confused, stubborn, or strategic player. We also consider the
setup in which, at each decision time, the network is generated
randomly according to the Erdős–Rényi (ER) graph model.

Outline: Section II defines notations and provides the re-
lated background discussion on stochastic learning dynamics
and resistance tree analysis. Section III presents our notion of
robustness and derives sufficient conditions using the radius–
coradius result. Section IV considers graphical coordination
games over networks and analyzes the robustness of various
network topologies. Finally, Section V concludes the article.

II. BACKGROUND

In this section, we define the notations used throughout the ar-
ticle and present the background material on stochastic learning
dynamics.

A. Notation

The distance between any two vectors u and v in Rn is the
Hamming distance

d(u, v) = |{p |up �= vp}|

where up and vp are the pth elements in vectors u and v,
respectively. We consider finite state Markov chains with state
space S. Let P0 be the transition matrix of an unperturbed
Markov chain and let Pε represent a family of perturbed Markov
chains, where ε is the perturbation parameter. We will refer to
a Markov chain by its transition matrix. A perturbed Markov
chain Pε is a regular perturbation of an unperturbed chain P0 if
the following properties are satisfied.

1) Pε is ergodic for sufficiently small perturbations ε.
2) For any state pair x and y in S, limε→0 Pε(x, y) =

P0(x, y), where Pε(x, y) and P0(x, y) are the transition
probabilities from x to y for perturbed and unperturbed
Markov chains, respectively.
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3) For any state pair x and y in S and for any ε > 0, a
resistance function R(x, y) exists such that

Pε(x, y) > 0 ⇒ 0 < lim
ε→0

Pε(x, y)

εR(x,y)
< ∞.

Here, R(x, y) is the resistance in transition from x to y.
A state x in S is stochastically stable if and only if

limε→0 πε(x) > 0, where πε is the stationary distribution of
Pε. A path ωS is a sequence of distinct states (ω1, ω2, . . . , ωk)
such that ωi ∈ S, Pε(ωi, ωi+1) > 0, and d(ωi, ωi+1) = 1 for all
i ∈ {1, 2, . . . , k − 1}. We will drop the superscript S when the
set in which the path exists is clear from the context. We denote
a path between any two states x and y in S as ωS

x,y such that
ω1 = x, ωk = y. Given a subset A of S, a path ω belongs to A if
ωi ∈ A for all i ∈ {1, 2, . . . , |ω|}, where |ω| is the path length.

The set of all paths between x and y is Ω(x, y). For any two
sets A and B in S, Ω(A,B) is the set of all paths starting from
states in A and terminating on states in B, i.e.,

Ω(A,B) = {ωx,y for all x ∈ A and y ∈ B}.
The resistance of a path ω is

Rpath(ω) =

|ω|−1∑
i=1

R(ωi, ωi+1). (1)

For any state pair x and y such that either Pε(x, y) = 0 or there
exist multiple paths from x to y, the resistance from x to y is

Rmin(x, y) = min{Rpath(ωx,y) ∀ωx,y ∈ Ω(x, y)}. (2)

Thus, Rmin(x, y) is the minimum resistance between x and y.
In a regularly perturbed Markov chain, there always exists a
bounded resistance path between any two states in S.

B. Game Setup

We consider a standard setup of normal form games with a fi-
nite set of players Sp = {1, 2, . . . , n} such that each player i has
a finite set of actions Ai = {1, 2, . . . ,mi} and has preferences
over the set of joint action profilesA defined through utility func-
tions Ui : A → R, where A = A1 ×A2 × · · · ×An. Given a
joint action profile a ∈ A, we represent it with respect to some
player i as a = (ai, a−i), where ai is the action of player i in a
and a−i represents the actions of all the other players. Here, a−i

belongs to the setA−i = A1 × · · · ×Ai−1 ×Ai+1 × · · · ×An.
We also represent an action profile a with respect to a subset
H ⊂ Sp as a = (aH , a−H), where aH and a−H are the actions
of the players in the sets H and Sp\H , respectively. Given any
a−i in A−i, the best response set of i is

Bi(a−i) = {ai ∈ Ai |Ui(ai, a−i) ≥ Ui(a
′
i, a−i) ∀ a′i ∈ Ai}.

An action profile α∗ = (a∗1, a
∗
2, . . . , a

∗
n) is a Nash equilibrium

(NE) if and only if a∗i belongs to the best response set Bi(a
∗
−i)

for every i. Thus, an action profile is a NE if no player has any
incentive to unilaterally change his action. The neighborhood of
an action profile a is

N (a) = {a′ ∈ A | d(a, a′) = 1} (3)

i.e., N (a) is the set of all action profiles in which exactly one
player is playing an action that is different from his action in a.

The player-specific neighborhood of a is

Ni(a) = {a′ ∈ A | a′i ∈ Ai\ai and a′−i = a−i}. (4)

A game is a potential game if there exists a global potential
function φ : A → R such that for any two action profiles a =
(ai, a−i) and a′ = (a′i, a−i) that differ in the action of one player
only, the following condition holds:

Ui(a)− Ui(a
′) = φ(a)− φ(a′).

Thus, a game is a potential game if local utilities of all the players
are aligned with some global potential function.

Let ωA
a,a′ = (ω1, . . . , ωk) be a path from action profile a to a′

having total resistance as defined in (1). Then, the contribution
of a player h ∈ Sp in the resistance of this path is

Rh(ω
A
a,a′) =

∑
j∈Ih(ωA

a,a′ )

R(ωj , ωj+1), (5)

where

Ih(ω
A
a,a′) = {j ∈ {1, . . . , k − 1} |wj = (ah, a−h) and

wj+1 = (a′h, a−h) for any ah and a′h in Ah}
i.e., Ih(ωA

a,a′) is the set of indices for the path ωA
a,a′ that corre-

spond to player h updating his action. Here, Ah is the action set
of player h.

C. Stochastic Learning Dynamics

In stochastic learning dynamics, each player uses a com-
bination of exploration and exploitation for selecting actions.
We consider the setup in which players update their actions at
discrete time instances. In this setup, a player assumes that all
the other players repeat their actions from the previous time step.
Then, he selects a noisy version of best/better response to the
assumed actions of the other players. In the noisy best response
dynamics, a player plays an action from his best response set with
high probability. However, with a small but nonzero probability,
he randomly selects an action from his action set. In this work,
we will consider LLL as a representative dynamics from the
class of stochastic learning dynamics.

Log-linear-learning, as presented in [2], is an exam-
ple of noisybest response dynamics. Let a(t− 1) = (ai(t−
1), a−i(t− 1)) be the action profile at time t− 1. Then the steps
involved in decision making at t are as follows.

1) A player i is randomly selected from Sp such that every
player has a nonzero probability of being selected.

2) The other players repeat their actions, i.e., a−i(t) =
a−i(t− 1).

3) Player i selects an action ai from Ai with probability

pLLL
i (ai, a−i(t)) =

e−
1
T [Ui(a

∗
i,a−i(t))−Ui(ai,a−i)]

Zi(a−i)
,

Zi(a−i) =
∑
āi∈Ai

e−
1
T [Ui(a

∗
i,a−i)−Ui(āi,a−i)] (6)

where Zi(a−i) is a normalizing constant and a∗i is an
action from the best response set Bi(a−i(t)).

In (6), parameter T determines the level of noise in decision
making. When T approaches infinity, players randomly select
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actions from their action sets with uniform distribution. How-
ever, as T approaches zero, players select actions from their best
response sets with a probability approaching one.

In LLL, action profile at time t only depends on the action
profile at time t− 1 and decision at time t. Therefore, the
evolution of action profiles under LLL can be modeled as a
Markov chain over the set of joint action profiles A. Let PLLL

be the transition matrix for the Markov chain induced by LLL.
The transition probability between any two action profiles a and
a′ is

PLLL(a, a′) =
1

n

{
0 d(a, a′) > 1,
pLLLi (ai,

′ a−i) a′ ∈ Ni(a).

Here, the resistance in transition from a to a′ is

RLLL(a, a′) =
{
Ui(a

∗
i , a−i)− Ui(a

′) a′i �= ai, a
′
−i = a−i,

∞ otherwise
(7)

where a∗i ∈ Bi(a−i). We will consider LLL for our analysis in
this work, and, therefore, the resistance function will be

R(a, a′) = RLLL(a, a′)

throughout the article.
1) Radius–Coradius Analysis: Resistance tree analysis, as

presented in [1], completely characterizes stochastic stability
for a wide class of stochastic learning dynamics. However,
computing stochastically stable states through this approach is
computationally intensive since it requires evaluating resistances
of all the possible trees rooted at all the states. To address
this issue, an alternative approach was presented in [15] for
a particular noisy best response dynamics in which players
select a noisy action with uniform distribution. In [16], the
approach was extended to a generalized version of LLL, in
which the probability of a noisy action is proportional to its
utility. In this approach, two quantities, namely radius (Rd) and
coradius (CR) are computed for states that are candidates for
being stochastically stable. Then a simple comparison between
Rd and CR provides a sufficient condition for stochastic stability.

Next, we define the terms involved in radius–coradius
(Rd-CR) based analysis from [16] and a brief discussion on its
significance.

Definition II.1 Consider a Markov chain over the set of joint
action profiles A.

1) The basin of attraction of an action profile a, BA(a), is
the set of all action profiles a′ in A such that there exists
a path of zero resistance from a′ to a.

2) The recurrent class of a profile a, L(a), is the set of all
profiles a′ such that a and a′ are connected to each other
through paths of zero resistances.

3) The radius of an action profile a is

Rd(a) = min{Rmin(a, a
′) | a′ ∈ BAc(a)} (8)

where BAc(a) = A\BA(a) is the complement of the set
BA(a) and Rmin(a, a

′) is the resistance as defined in (2).
Thus, Rd(a) is the minimum resistance of leavingBA(a).

4) The coradius of an action profile a is

CR(a) = max{Rmin(a,
′ a) | a′ ∈ BAc(a)}. (9)

Fig. 1. Induced Markov chain under LLL for an identical interest game
with five players and two actions each {0, 1}. The game is a potential
game and φ(ai) is the potential of the state ai.

Based on the definitions in (8) and (9), the radius of a is
a measure of how easy it is to leave a and coradius of a is a
measure of how difficult it is to reach a if the Markov chain is
initialized randomly at a profile outside of BA(a). Given any
subset B of A, the definitions of radius and coradius can be
extended to B as follows:

Rd(B) = min{Rd(a) | a ∈ B}, and

CR(B) = min{CR(a) | a ∈ B}. (10)

Using the concepts of radius and coradius, the following criteria
for stochastically stable states in LLL was presented in [16,
Prop. 2].

Proposition 1 ([16]): Let a be an action profile in A that
satisfies Rd(a) > CR(a). Then, stochastically stable states are
exactly those in L(a).

The condition in Proposition 1 is a sufficient condition for
an action profile to be stochastically stable. Moreover, if an
action profile a ∈ A satisfies the Rd-CR criteria, then it was
also established in the proof of [16, Prop. 2] that no action profile
outside of the equivalent class L(a) can be stochastically stable.
In this work, we will use this result extensively for verifying
stochastic stability of various states.

2) Illustrative Example: We present a simple example to
illustrate the implications of the basin of attraction, radius, and
coradius in stochastic stability analysis. The basic setup of our
example is presented in Fig. 1. We consider a game with five
players in which each player has two actions {0, 1}. The state of
the system is the number of players playing action 0. Thus, the
state space is S = {a0, a1, . . . , a5}, where ak is the state with
k players playing 0. The links between the states correspond
to valid transitions under a stochastic learning dynamics. The
game is an identical interest game in which all the players have
the same utility at a particular state, which leads to a potential
game setup. Here, φ(·) is the global payoff function, which is
also a potential function for identical interest games.

We assume that the players update their actions according
to LLL. Based on the payoff structure in Fig. 1, the set of NE
is {a2, a5}. Moreover, for potential games, potential function
maximizers are stochastically stable, which imply that a5 is the
unique stochastically stable state. We will also arrive at this
solution using Rd-CR result. The one step resistance between
any two states under LLL is given in (7). The resulting resistance

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 08,2023 at 03:14:37 UTC from IEEE Xplore.  Restrictions apply. 



AKBAR et al.: ROBUSTNESS OF LEARNING IN GAMES WITH HETEROGENEOUS PLAYERS 1557

matrix is

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 ∞ ∞ ∞ ∞
3 3 0 ∞ ∞ ∞
∞ 3 0 2 ∞ ∞
∞ ∞ 0 2 1 ∞
∞ ∞ ∞ 4 3 0

∞ ∞ ∞ ∞ 3 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

where R(ai, aj) is the resistance between ai and aj for i and j
in {0, 1, . . . , 5}. The basin of attractions of the two NEs are

BA(a2) = {a0, a1, a2, a3} and BA(a5) = {a4, a5}.
Since φ(a2) > φ(a4), the best response from a3 is to transi-
tion to a2 instead of a4. Therefore, R(a3, a2) = 0, whereas
R(a3, a4) = φ(a2)− φ(a4) = 1. The only path leavingBA(a2)
is (a2, a3, a4) and the only path leaving BA(a5) is (a5, a4, a3).
Therefore

Rd(a2) = 3 and Rd(a5) = 7.

The resistance of the path (a5, a4, a3, a2), which is the only
path from a5 to a2, is 7. Similarly, the resistance of the path
(a2, a3, a4, a5), which is the only path from a2 to a5, is 3. Thus

CR(a2) = 7 and CR(a5) = 3.

Since Rd(a5) > CR(a5), statea5 is the only stochastically stable
state.

III. ROBUSTNESS IN GAMES WITH HETEROGENEOUS

PLAYERS

In this section, we start by presenting our new notion of robust-
ness for stochastic learning dynamics. These learning dynamics
are often employed in population settings that comprise a large
number of players. In such scenarios, assuming a population of
homogeneous players may be overly restrictive because human
populations generally have idiosyncratic individuals with strong
tendencies to defy standard decision-making practices. Such
individuals may or may not have an impact on the decisions
of the rest of the population. Similarly, in the engineering
applications of multiagent systems, some agents may be faulty
or are compromised by an adversarial attack.

We assume a population in which a set of heterogeneous
players has a different decision strategy than the rest of the
players. Having a heterogeneous player in the population raises
several interesting questions regarding the long-run behavior
of the population under stochastic learning dynamics. For in-
stance, can a small group of heterogeneous players affect the
long-run behavior of the entire population, and how to quantify
and analyze this impact? To investigate the impact of player
heterogeneity, we consider three types of behaviors.

1) Confused player: Randomly updates his actions.
2) Stubborn player: Never updates his action.
3) Strategic player: Can update his actions strategically to

alter the stochastically stable behavior of the population.
We refer to the setups with and without heterogeneous players

as the heterogeneous and standard setups, respectively. Let Θ be

the set of possible heterogeneous behaviors. In this work, we
consider

Θ = {cnf, stb, str}
where cnf , stb, and str refer to confused, stubborn, and strategic
behaviors, respectively.

Definition III.1: LetAss ⊂ A be the set of stochastically stable
action profiles for a stochastic learning dynamics in the standard
setup, and let s belong to Ass.

1) Suppose all the players in a subset H ⊂ Sp are replaced
with θ ∈ Θ players, and let Aθ,H

ss be the set of stochas-
tically stable action profiles in the heterogeneous setup.
Then, s = (sH , s−H) is robust to θ players in H if there
exists an s′ in Aθ,H

ss such that s′−H = s−H .
2) A stochastically stable action profile s ∈ S is robust to

θ ∈ Θ players if s is robust to θ players in any subset H
of Sp.

3) A stochastic learning dynamics is robust to θ ∈ Θ players
if all stochastically stable profiles in the set S are robust
to θ players.

Thus, a stochastically stable action profile under the standard
setup is robust to a heterogeneous behavior if replacing any sub-
set of players H with heterogeneous players of that type cannot
affect the behavior of other players in the population. To analyze
the impact of player heterogeneity on the long-run behavior, we
thoroughly investigate the three types of heterogeneous players
in the set Θ.

In our analysis, we restrict our attention to LLL and a simple
scenario in which a single player, say player h, is replaced with
a heterogeneous player, i.e., H = {h} for some h ∈ Sp. We es-
tablish that even a single heterogeneous player can significantly
alter the long-run behavior of the entire population under certain
conditions. Then, we present several insightful examples that
provide a better understanding of the conditions in which a single
heterogeneous player can change the population’s behavior.

A. Confused Player: Random Action Updates

We begin with the case of a confused player who randomly
updates his action whenever given the opportunity. To keep the
analysis simple, we assume that for all s ∈ Ass, the equivalence
class L(s) is a singleton. The main results related to the addition
of a confused player are as follows.

1) Under certain scenarios, a stochastically stable profile s
is not robust to a single confused player.

2) There exist scenarios in which s is robust if player h
is confused but is not robust if some other player h′ is
confused.

3) There exist scenarios in which an action profile a that
was not stochastically stable under the standard setup may
become stochastically stable after replacing a player with
a confused player.

Proposition 2: Let s be a stochastically stable action profile
in the standard case such that Rd(s) > CR(s). Then, s is robust
to a confused player h ∈ Sp if

Rd(Lcnf(s, h)) > CR(Lcnf(s, h))
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Fig. 2. Game with three players {a, b, c}. Players a and b select the
rows and columns of the matrices and player c selects between left and
right matrix. Players a and b have identical interest with utilities given in
the matrices. The utility of c1 is 10 and c2 is 5, i.e., c1 is the dominant
action for c.

where

Lcnf(s, h) =
⋃

s′∈Nh(s)

s,′ (11)

and Nh(s) is the neighborhood of s defined in (4).
Since a confused player randomly updates his actions, all the

transitions that involve h have zero resistance, i.e.,

Rcnf(a, a′) =

{
0 a′ ∈ Nh(a)

R(a, a′) a′ /∈ Nh(a).

Thus, by replacing hwith a confused player, transitions between
s and any member of the set Nh(s) have zero resistance, which
can change the radius and coradius of s−h. Therefore, the Rd-CR
based sufficient condition for stochastic stability will be defined
on the set Lcnf instead of a single state in the case of a confused
player.

We illustrate the implications of the result in Proposition 2
through an example for which the matrix form is presented in
Fig. 2. Consider a game with three players Sp = {a, b, c}. In
the standard setup, players a and b have identical interests, i.e.,
their utilities are identical for all action profiles. For player c,
action c1 strictly dominates c2. Thus, the game has two pure
NEs in the standard setup, which areα∗

1 = (a1, b1, c1) andα∗
2 =

(a3, b3, c1). To check for stochastically stable states, we need to
compute radius and coradius for both of the NEs. The basin of
attraction of α∗

1 contains all the states except α∗
2. The minimum

resistance path from α∗
1 to BAc(α∗

1) is

ωα∗
1,α

∗
2
= ((a1, b1, c1), (a1, b3, c1), (a3, b3, c1)). (12)

The minimum resistance path entering BA(α∗
1) from outside is

((a3, b3, c1), (a1, b3, c1)). Therefore

Rd(α∗
1) = 3 and CR(α∗

1) = 2.

Since Rd(α∗
1) > CR(α∗

1), equilibriumα∗
1 is stochastically stable

based on the Rd-CR criteria.
Next, we study the impact of replacing one of the players with

a confused player. We will have s = (a1, b1, c1) in the two cases
below.

Case 1: Player c is confused.
If player c is confused, i.e.,h = c, then the transitions between

the entries from the left matrix to the right matrix have zero resis-
tance. To verify the robustness of the stochastically stable state
s with c as confused player, we apply the result of Proposition
2. We start with the set Lcnf(s, c). The neighborhood Nc(s) has

Fig. 3. Matrix form representation of a three-player game with Sp =
{a, b, c}. Player a selects rows, player b selects columns, and player c
selects left or right matrix.

one member only, which is (a1, b1, c2). Thus

Lcnf(s, c) = {(a1, b1, c1), (a1, b1, c2)}.
To compute the radius and coradius ofLcnf(s, c), we observe that
the minimum resistance path leaving Lcnf(s, c) is still ωα∗

1,α
∗
2

in
(12). Similarly, the easiest access to Lcnf(s, c) is also through
(a1, b1, c1). Therefore

Rd(Lcnf(s, c)) = 3 and CR(Lcnf(s, c)) = 2.

Since Rd(Lcnf(s, c)) > CR(Lcnf(s, c)), the set Lcnf(s, c) is
stochastically stable and the action profile s is robust if c is
confused.

Case 2: Player b is confused.
If player b is confused, then

Lcnf(s, b) = {(a1, b1, c1), (a1, b2, c1), (a1, b3, c1)}.
In this case, player c will still play action c1 with high proba-
bility. A minimum resistance path from Lcnf(s, b) to α∗

2 will
be ((a1, b3, c1), (a3, b3, c1)), which has a resistance of zero.
Similarly, a minimum resistance path from α∗

2 to Lcnf(s, b)
will be ((a3, b3, c1), (a3, b1, c1), (a1, b1, c1)), which again has
a resistance of zero. Therefore, in the case with b as confused
player

Acnf,b
ss = Lcnf(s, b) ∪ {(a3, b1, c1), (a3, b2, c1), (a3, b3, c1)}.

Since s−b = (a1, c1) belongs to Acnf,b
ss , we say that s is robust

if b is confused. However, the size of the set of stochastically
stable strategies Acnf,b

ss has significantly increased.
Proposition 3: Let s be an action profile that is not stochas-

tically stable under the standard setup. Then, there can exist a
player h ∈ Sp such that replacing it with a confused player can
result in Lcnf(s, h) to become stochastically stable.

Proof: By replacing player h with a confused player,
Rd(Lcnf(s, h)) in the heterogeneous setup cannot be greater that
Rd(s) under the standard setup because a confused player can
only reduce the resistance of a path. Therefore, for Lcnf(s, h)
to be stochastically stable, we need to show that it is possible to
reduce the coradius such that the Rd-CR criteria is satisfied. We
establish our claim through a simple example.

Consider a three-player game with each player having two
actions. The matrix form representation of the game is given in
Fig. 3.

The game has two NEs, which are α∗
1 = (a1, b1, c1) and a∗2 =

(a2, b2, c2). We assume that the players are updating their actions
according to LLL. The basin of attraction of α∗

1 includes all the
action profiles except (a2, b2, c2) and (a1, b2, c2). The paths that
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determine the Rd(α∗
1) and CR(α∗

1) are

ωα∗
1,α

∗
2
= ((a1, b1, c1), (a2, b1, c1), (a2, b1, c2), (a2, b2, c2)),

ωα∗
2,α

∗
1
= ((a2, b2, c2), (a2, b1, c2), (a1, b1, c2), (a1, b1, c1)).

Then, the radius and coradius of α∗
1 are

Rd(α∗
1) = 3 and CR(α∗

1) = 2

which implies that α∗
1 is stochastically stable and α∗

2 is not
stochastically stable. Forα∗

2, Rd(α∗
2) = Rpath(ωα∗

2,α
∗
1
) = 2 and

CR(α∗
2) = Rpath(ωα∗

1,α
∗
2
) = 3.

Now suppose that player a is replaced with a confused player,
i.e., h = a. Then

Lcnf(α∗
1, a) = {(a1, b1, c1), (a2, b1, c1)}, and

Lcnf(α∗
2, a) = {(a2, b2, c2), (a1, b2, c2)}.

The radius and coradius of Lcnf(α∗
2, a) under the heterogeneous

setup are the following:

Rd(Lcnf(α∗
2, a)) = 2, CR(Lcnf(α∗

2, a)) = 0.

Thus, replacing a with a heterogeneous player reduced the
coradius of α∗

2 and resulted in Lcnf(α∗
2, a) to be stochastically

stable, which verifies the proposition statement. �
The important takeaway from this section is that the presence

of even a single confused player can significantly alter the long-
term behavior of the entire population.

B. Stubborn Player: No Action Updates

A stubborn player is the one who never updates his action
irrespective of the number of revision opportunities he receives.
Consequently, having a stubborn player restricts the state space
over which the Markov chain induced by a stochastic learning
dynamics evolves. Let A be the set of joint action profiles in
the standard setup. Replacing player h with a stubborn player
restricts A to Astb(h), where

Astb(h) = {a ∈ A | a = (astb, a−h) for all a−h ∈ A−h}.
Here, astb is the action of the stubborn player. Because of a
stubborn player, the resistance between action profiles is updated
as follows:

Rstb(a, a′) =
{
R(a, a′) if ah = a′h = astb,
∞ otherwise.

Proposition 4: Suppose player h is replaced with a stubborn
player having action astb and let s = (sh, s−h) be a stochasti-
cally stable action profile under the standard setup.

1) There exist scenarios in which s is not robust to a stubborn
player h.

2) Even if sh = astb, there exist conditions in which s =
(sh, s−h) is not robust to a stubborn player h.

Proof: To prove the statement, we present two conditions in
which s will not be robust to the addition of a stubborn player,
i.e., we will provide sufficient conditions in which (astb, s−h)
will not be stochastically stable.

Condition 1: Suppose sh �= astb, i.e., player h had a different
action in the stable profile under the standard setup. If there

Fig. 4. Matrix form representation of a three-player game with
Sp = {a, b, c}.

exists an action profile a = (astb, a−h) such that the Ham-
ming distance d(s−h, a−h) = 1, R((astb, s−h), (a

stb, a−h)) =
0, and Rmin((a

stb, a−h), (a
stb, s−h)) > 0, then (astb, s−h) is

not stochastically stable. If this condition is satisfied, then
(astb, s−h) cannot be stochastically stable because there will be
a zero resistance path from (astb, s−h) to (astb, a−h), whereas
all the paths from (astb, a−h) to (astb, s−h) will have nonzero
resistance. In this condition, playerh had an important role in the
standard setup since the resistance from (sh, s−h) to (astb, s−h)
was large enough to keep (sh, s−h) stochastically stable. How-
ever, the stubborn behavior of h reduced this resistance to zero,
which shifted the behavior of the population away from s−h.

Condition 2: Let sh = astb, i.e., s = (astb, s−h) be stochas-
tically stable in the standard setup. Even in this case, we
cannot guarantee that (astb, s−h) will be stochastically stable
under the heterogeneous setup. Consider the matrix game in
Fig. 4 with three players. The game has two NEs, which are
α∗
1 = (a1, b1, c1) and α∗

2 = (a1, b1, c1). The minimum resis-
tance paths between α∗

1 and α∗
2 are

ωα∗
1,α

∗
2
= ((a1, b1, c1), (a2, b1, c1), (a2, b1, c2)) and

ωα∗
2,α

∗
1
= ((a2, b1, c2), (a2, b2, c2), (a2, b2, c1), (a2, b1, c1),

(a1, b1, c1)).

The radius and coradius of α∗
1 are

Rd(α∗
1) = Rpath(ωα∗

1,α
∗
2
) = 3 and

CR(α∗
1) = Rpath(ωα∗

2,α
∗
1
) = 1.

Since Rd(α∗
1) > CR(α∗

1), α
∗
1 is stochastically stable.

Next, we replace player b with a stubborn player with astb =
b1. Note that b1 is the action of b in the stochastically stable
profile, i.e., sh = astb, as in condition 2. With player b fixed at
b1, the game is now restricted to the first columns of the left and
right matrices. For this restricted game, the minimum resistance
paths between α∗

1 and α∗
2 are

ωstb
α∗

1,α
∗
2
= ((a1, b1, c1), (a2, b1, c1), (a2, b1, c2)) and

ωstb
α∗

2,α
∗
1
= ((a2, b1, c2), (a1, b1, c2), (a1, b1, c1))

and the resulting radius and coradius of α∗
2 are

Rd(α∗
2) = Rpath(ω

stb
α∗

2,α
∗
1
) = 6 and

CR(α∗
2) = Rpath(ω

stb
α∗

1,α
∗
2
) = 3.

Thus, in the heterogeneous case with player b as a stubborn
player fixed at b1, the stochastically stable profile switched to
α∗
2, i.e.,α∗

1 was not robust to the replacement of bwith a stubborn
player. The key observation here is that the minimum resistance
exit path from α∗

2 required player b to transition from b1 to b2.
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This transition only had a resistance of one, but the resulting
action profile (a2, b2, c2) was in the basin of attraction of α∗

1.
When player b restricted itself to b1, this low resistance path was
no longer available. The remaining options to leave the basin of
attraction of α∗

2 were either a transition by player a to a1 or a
transition by player c to c1, and both of these transitions had a
resistance of 6. �

Conditions 1 and 2 are not the only conditions under which
a stochastically stable profile is not robust to a stubborn player.
However, these conditions establish the fact that even a single
stubborn player can be sufficient to alter the behavior of the
entire population. Even if sh = astb, the behavior of the rest of
the population can be impacted by the stubborn nature of the
heterogeneous player.

C. Strategic Player

In this section, we assume that player h is replaced with a
strategic player interested in achieving some desired behavior.
In the case of confused or stubborn players, the heterogeneous
players could not control their impact over the long-run behavior
of the system because their strategies were independent of the
population state. However, strategic players are fundamentally
different from the other two types because they can adapt their
strategies to steer the global behavior toward their desired be-
havior. Thus, the potential impact of a strategic player should
be more serious than the impact of a stubborn or a confused
player.

The desired behavior of a strategic player will depend on the
details of the game setup. For instance, in 2× 2 coordination
games, in which the risk dominant NE is stochastically stable,
the desired behavior of the strategic player may be to move the
population away from the stable profile or to steer the population
toward the other NE [30], [31]. Similarly, in the Nash bargaining
game considered in [23], the objective of strategic players can
be to increase their shares as compared to the NE. Thus, in
general, we can say that a strategic adversary’s desired behavior
is to either stop the population from reaching an equilibrium
behavior or to steer the population toward specific behavior.

In Propositions 5 and 6, we present a set of sufficient con-
ditions that are based on the qualitative description of the path
resistances and highlight the requirements on strategic adver-
saries for achieving their objective. Then, in Section IV-B, we
explore two specific models for strategic players in the context of
graphical coordination games. In the first model, we assume that
the strategic adversary is rational and can plan over the future as
was modeled in [24]. In the second model, we explore the role of
network connectivity of a strategic adversary on the robustness
of coordination games over ER random networks.

Proposition 5: Let s be a stochastically stable profile under
the standard setup and let player h be replaced with a strategic
adversary. If any of the statements below are true, s is not robust
to a strategic player h.

1) For an action ah �= sh of player h, there exist profiles a =
(ah, s−h) and a′ = (ah, a−h) such that d(s−h, a−h) = 1
and R(a, a′) = 0 but Rmin(a,

′ a) > 0.

2) There exists an action profile a ∈ A such that for
each ω ∈ Ω(a, s), there is an index j ∈ {0, 1, . . . , |ω −
1|} such that ωj = (ah, a−h), ωj+1 = (a′h, a−h), and
d(a−h, s−h) > 1.

Proof: The argument for statement 1) is similar to the argu-
ment in condition 1 of Proposition 4. However, in this case, we
argue that the strategic adversary will switch from sh to ah with
probability one, i.e., he will reduce R(s, a) = 0. From a, there
is a zero resistance path to a′, but all the paths from a′ to a
have nonzero resistance because of which s will not be robust
to strategic behavior of h.

In statement 2), the set Ω(a, s) is the set of all paths from a
to s. If in each ω ∈ Ω(a, s), the strategic player h is involved,
his strategy will be to not update his action and increase the
resistance of all the paths in Ω(a, s) to infinity. Moreover, at the
transition that involves the adversary, the action profile of rest
of the population a−h is at least one Hamming distance away
from the stochastically stable action profile s−h. Consequently,
there will be no path from a−h to s−h which implies that s will
not be robust to strategic behavior of h. �

Proposition 6: Letα∗ be an NE in the standard setup such that
α∗ /∈ Ass. Let player h be replaced with a strategic player. The
strategic player can steer the global behavior to α∗, i.e., make
α∗ stochastically stable, if either of the following statements are
true.

1) Let ΩCR(α∗,BAc(α∗)) be the set of all paths ω from
α∗ to BAc(α∗) such that Rpath(ω) < CR(α∗). In each
ω ∈ ΩCR(α∗,BAc(α∗)), there exists a transition from ωj

to ωj+1 such that ωj = (ah, a−h) ∈ BA(α∗), ωj+1 =
(ah,

′ a−h), where a′h is any action in Ah, i.e., player h
has to update his action to leave BA(α∗).

2) For each a ∈ BAc(α∗), the set Ω(a, α∗) is the set of all
paths from a to α∗. There exists an ω ∈ Ω(a, α∗) such
that Rpath(ω)−Rh(ω) < Rd(α∗) for all a ∈ BAc(α∗).

Proof: In statement 1), ΩCR(α∗,BAc(α∗)) is the set of all
paths from α∗ to outside the basin of attraction and have
resistance less than or equal to CR(α∗). If in each ω ∈
ΩCR(α∗,BAc(α∗)), strategic adversary is required to update his
action to leave BA(α∗), his strategy would be to not update his
action. As a result of this strategy, the resistance of all the paths
in ΩCR(α∗,BAc(α∗)) will become infinity and Rd(α∗) will be
guaranteed to be greater than CR(α∗).

The condition in 2) states that for each a that does not belong
to BA(α∗), there exists at least one path ω ∈ Ω(a, α∗) such that
Rpath(ω)−Rh(ω) < Rd(α∗), where Rh(ω) is the contribution
of player h in the resistance of the path as defined in (5). If the
strategic adversary decides to update his actions involved in ω
with probability one, he will reduce his contribution Rh(ω) to
zero and the resistance of the path will be less than Rd(α∗). If
this condition is satisfied for all a ∈ BAc(α∗), we can guarantee
CR(α∗) < Rd(α∗), which implies that α∗ will be stochastically
stable. �

The conditions in Proposition 6 appear restrictive for pop-
ulation settings, which is expected because only one strategic
player is assigned the task of changing the behavior of the entire
population. These conditions signify the degree of influence that
a single strategic player should possess in the network in order to
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Fig. 5. Payoff matrix of a 2× 2 coordination game.

steer the population behavior toward his desired behavior. Using
Rd-CR results, the conditions state that the strategic player can
lead the population to a desired profile α∗ if he has the ability to
change the radius and/or the coradius ofα∗ to the desired values.
Condition 1) represents the scenario in which the strategic player
can increase the resistance for leaving the basin of attraction of
the desired profile, which, in turn, will increase the radius of
α∗ from its coradius. Condition 2) represents the scenario in
which for every action profile a outside the basin of attraction of
α∗, there exists at least one path ωa,α∗ such that the strategic
player can reduce the resistance of this path below Rd(α∗),
which will reduce the coradius of α∗ from its radius and will
lead to the desired result. Thus, if either of the two conditions in
the proposition statement is satisfied, the strategic player has the
capability to achieve his objective and steer the global behavior
to α∗.

IV. NETWORK TOPOLOGY AND ROBUSTNESS

In the previous section, we presented sufficient conditions
for a single heterogeneous player to alter the behavior of the
rest of the population. In this section, we extend our analysis
to population settings comprising a large number of players. In
particular, we consider the setup of coordination games played
over a network of N players. First, in Section IV-A, we will
analyze the robustness against stubborn and confused players
in the case of path graph, cycle graph, grid graph, Peterson
graph, and a class of networks with diameter D > 1. Then, in
Section IV-B, we will consider strategic players and investigate
their robustness properties for wheel graph and ER random
networks.

In a standard setup of a two-player coordination game, each
player has two actions A and B and the payoff matrix is as
shown in Fig. 5. In this game setup, (A,A) and (B,B) are the
two NEs and α ∈ (0, 1) is the added benefit of coordinating
on action A as compared to B. Thus, (A,A) is Pareto optimal
as well as risk dominant. In any 2× 2 coordination game, the
risk dominant NE, which in our case is (A,A), is stochastically
stable as shown in [1]–[3]. We will consider the setup in which
the game is played over a network that is represented by a graph
G(V,E). In the network scenario, each player i ∈ Sp plays the
game against all the players in his neighborhood set NG(i),
where NG(i) is the set of all vertices adjacent to vertex i in the
network, i.e.,

NG(i) = {j ∈ Sp | (i, j) ∈ E}. (13)

Let ηA(i) and ηB(i) be the fraction of players with actionsA and
B in the neighborhood set NG(i). These fractions will depend
on time t as well, but we will suppress time dependence for

notational convenience. The utility function of player i is

Ui(A, a−i) = ηA(i)(1 + α) and Ui(B, a−i) = ηB(i) (14)

where ηB(i) = 1− ηA(i). Then, given a−i

A ∈ Bi(a−i) if ηA(i) >
1

2 + α
, and

B ∈ Bi(a−i) if ηB(i) >
1 + α

2 + α
. (15)

Since α belongs to the open interval (0,1), ηA(i) and ηB(i)
satisfy the following bounds:

1

3
< ηA(i) <

1

2
and

1

2
< ηB(i) <

2

3

for all i. In the network setup, the population state at any time
corresponds to the number of players with actions A and B. We
will use the notations 1A and 1B to represent the states in which
all the players play actions A and B, respectively. Moreover,
starting from 1A, let 1k

A represent the situation when k players
have switched to action B while the remaining players are still
playing action A. Similarly, starting from 1B , let 1k

B represent
the situation when k players have switched to action A while
the remaining players are still playing action B.

This setup of network coordination games was considered
in [36] for best response dynamics and various conditions were
derived on network structure that will cause risk dominant or
risk dominated equilibrium to spread as a contagion. In this
work, we consider LLL, which is asynchronous noisy best
response dynamics, and investigate certain fundamental network
structures and verify the robustness of the stochastically stable
profile 1A after including a heterogeneous player of the three
types.

A. Stubborn and Confused Players

1) Path Network: A path network of N players has N − 1
total edges such that all the inner players have two neighbors and
the two end players have one neighbor only. According to the
condition in (15), action A is the best response of a player if the
fraction of his neighbors playing A is greater than 1/(2 + α).
Thus, in a path network, a player would choose action A with
zero resistance as long as one of his neighbors is playing action
A. On the other hand, a player has action B as his best action if
the fraction of neighbors playing action B is greater than (1 +
α)/(2 + α). Therefore, a player would switch to actionB if both
of his neighbors are already playing action B. The end players
have one neighbor only, which implies that placing a stubborn
player next to an end player will change his behavior. A confused
player will be unable to change the action of the end player from
B to A because of the higher payoff of A. Thus, a path network
is robust to a single stubborn player if the stubborn player is not
placed in the neighborhood of the end players. Moreover, a path
network is robust to a confused player.

2) Cycle Network: A cycle network of N players is a two-
regular network and is constructed by connecting the end players
of a path network. The conditions for an action to be best
response for a given player are the same as presented in the
case of path network. Since there are no end players in a cycle
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Fig. 6. Minimum resistance paths between the states 1A and 1B in the Peterson graph. The shaded nodes are the players with action B, the
clear nodes are the players with action A, and the top shaded square is the stubborn player playing action B. (a) Minimum resistance path from 11

A

to 1B . (b) Minimum resistance path from 1B to 11
A.

network, this network is robust to a single stubborn or a confused
player.

3) Grid Network: In a 2-D grid network, all the inner players
have four neighbors. Thus, the condition in (15) implies that B
will be the best response if more than half of the neighboring
players are already playing B. Thus, a player in a 2-D grid
network would choose B with zero resistance if three of his
neighbors are already playing B, which renders this network
robust to the presence of a single confused player.

The robustness of path, cycle, and grid networks can easily
be established through Rd-CR criteria or the resistance tree
analysis. We have omitted the detailed analysis of these cases
because of its simplicity. Next, we will present examples of
networks that are not robust to a stubborn player. Our analysis
will be based on the Rd-CR criteria as presented in Proposition 1.
For coordination games over networks, action profiles 1A and
1B are the two candidates for stochastically stable states. Let
ω1A,1B

and ω1B ,1A
be the minimum resistance paths from 1A

to 1B and 1B to 1A, respectively. Then radius and coradius of
1A and 1B are

Rd(1A) = Rpath(ω1A,1B
), Rd(1B) = Rpath(ω1B ,1A

),

CR(1A) = Rpath(ω1A,1B
), CR(1B) = Rpath(ω1B ,1A

).

Since the radius of 1A is the coradius of 1B and the radius of 1B

is the coradius of1A, proving one of these states as stochastically
stable implies that the other one is not stochastically stable.

4) Peterson Graph: Peterson graph is a special undirected
graph with 10 nodes and 15 edges as shown in Fig. 6. The
network is such that each node has three neighbors. This graph
is popular in graph theory since it serves as example and counter
example for various network phenomena.

Proposition 7: Peterson graph is not robust to a stubborn
player for α < 1/4.

Proof: We consider Peterson graph as shown in Fig. 6 in
which the top player, which is represented by a shaded square,
is replaced with a stubborn player that always plays B, i.e.,
astb = B. To prove that the network is not robust, we need
the minimum resistance paths ω1B ,11

A
and ω11

A,1B
and show

that Rpath(ω1B ,11
A
) > Rpath(ω11

A,1B
) for α < 1/4. Minimum

resistance paths from 11
A to 1B and 1B to 11

A are shown in

Fig. 6(a) and (b), respectively. Based on these paths, the radius
and coradius of 1B are

Rd(1B) = 7− 4α, CR(1B) = 4 + 8α.

The maximum value ofα for which radius of1B remains greater
than its coradius turns out to be 1/4. We want to highlight here
that there exist many paths of least resistance between 1B and
11
A. However, it can be easily verified that the paths considered

in Fig. 6 are indeed the least resistance paths. �
5) Wheel Network: Wheel network is constructed by adding

a node to a cycle graph such that the additional node is connected
to all the players on the cycle. We will refer to the additional node
as the central node and the cycle nodes as the peripheral nodes.
Thus, the central node has N − 1 neighbors and a peripheral
node has three neighbors. An important aspect of this network
is that the players can be divided into two categories based on
their importance. The central player has a global influence over
the network, whereas any peripheral node has a local influence
only.

Proposition 8: Wheel network is robust to a peripheral stub-
born player but not robust to a central stubborn player.

Proof: The impact of a peripheral stubborn player is localized
to his two neighbors on the periphery and the central node. Since
the central node hasN − 1neighbors, the impact on the stubborn
player is of limited nature, particularly for large values of N .
Although the stubborn player does reduce the resistance of his
peripheral neighbors in switching from A to B, this impact on
resistance is not sufficient to change the stochastically stable
states. For action B to become the best response of a peripheral
player, at least two of his three neighbors should play B. Thus,
introducing a single stubborn player on the periphery cannot
induce a change in the global behavior.

Next, we consider the case of central stubborn player with
action B. Starting from 11

A, each peripheral node has one
neighbor (central player) with action B and two players with
action A. Thus, the resistance faced by a peripheral player in
switching his action from A to B is

Rmin

(
11
A,1

2
A

)
= 2(1 + α)− 1 = 1 + 2α.

After the first peripheral player switches to B, each of his
peripheral neighbors now have two neighbors playing action
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Fig. 7. Minimum resistance paths between the states 11
A and 1B in the wheel network. The shaded nodes are the players with action B, the clear

nodes are the players with action A, and the central shaded square is the stubborn player playing action B. (a) Minimum resistance path from 1A

to 1B . (b) Minimum resistance path from 1B to 1A.

B, which implies that B is now their best response. Thus, after
the switch of the first peripheral node, action B spreads with
zero resistance as shown in Fig. 7(a), which implies that

Rpath

(
ω11

A,1B

)
= 1 + 2α.

If the initial configuration is 1B with the central stubborn
player, the first peripheral node will have a resistance of 3 for
choosing action A. After the first switch to A, all the subsequent
nodes will have a resistance of 1− α as shown in Fig. 7(b). Thus

Rpath

(
ω1B ,11

A

)
= 3 + (N − 2)(1− α).

Since Rd(1B) = R(ω1B ,11
A
) and CR(1B) = R(ω11

A,1B
), the

Rd-CR criteria implies that 1B is stochastically stable if the
central player is stubborn. �

Proposition 9: Wheel network is robust to a confused player.
Proof: Recall that a confused player selects an action from

his action set uniformly at random. In the coordination game,
the confused player will select A or B with equal probability. If
the confused player is on the periphery, then his response will
be limited to his immediate neighbors and the central player. In
this case, the confused player cannot alter the behavior of the
rest of the population.

If the confused player is placed at the central node, then he
influences the behavior of all the players. We can verify through
Rd-CR analysis that the confused player will not change the
stochastically stable state 1A. Intuitively, since the confused
player selects his actions with uniform probability, the impact
of acnf = A will be higher as compared to acnf = B because A
has a higher payoff. Thus, the steady-state behavior of the rest
of the players will not be impacted by a confused player and we
can declare wheel network to be robust to a confused player. �

6) Network With Diameter D > 1: Next, we present a class
of networks for any diameter D that is not robust to a stubborn
player.

Proposition 10: Given a positive integer D > 1, there exists
a graph with diameter D such that the graph is not robust to one
stubborn player for 0 < α < 1.

Proof: For a given D, we construct the graph as follows:
Consider two perfect binary trees X and Y , each of height D −
1, with root nodes x and y, respectively. Let the leaf nodes of X
be denoted by 	xi where i ∈ {1, 2, . . . , 2D−1}. Moreover, 	xi and
	xi+1 have a common parent if i is odd. Similarly, we denote the
leaf nodes of Y by 	yi . In each tree, we create edges between leaf
nodes having a common parent. In other words, if i is odd, we
create edges between 	xi and 	xi+1 in X and between 	yi and 	yi+1

in Y . Then, we also add an edge between root nodes x and y.
Additionally, consider another node s and create edges between
s and 	xi , ∀i. Similarly, we add edges between s and 	yi , ∀i. A
general construction is shown in Fig. 7(a). Note that the graph
obtained will have 2D+1 − 1 nodes and diameter D.

We assume that the central player s is stubborn with astb = B
and we need to compute minimum resistance paths ω1B ,11

A
and

ω11
A,1B

between 11
A and 1B . In Fig. 8(b) and (c), we present

these minimum resistance paths for the case of D = 3. For a
general analysis, we start with the state 11

A. For each i, 	xi player
(similarly, 	yi player) is connected to the stubborn player s in ad-
dition to his parent and sibling players. Thus, the neighborhood
of each player 	xi (similarly, 	yi ) has two players with action A
and one player with actionB. Forω11

A,1B
, we require one player

in each pair 	xi , 	xi+1 (similarly, 	yi , 	yi+1), where i is odd, to play
the noisy response with resistance 1 + 2α and switch toB. From
a population state in which each pair of nodes 	xi , 	xi+1 (similarly,
	yi , 	yi+1), where i is odd, contains one player with action B and
the other with action A, action B will spread in the population
with zero resistance. Since there are a total of 2D−1 such node
pairs in the graph, the total resistance of a path from 11

A to 1B

will be

Rpath

(
ω11

A,1B

)
= (1 + 2α)2D−1.

Next, we start with the state 1B . Since the central player is
stubborn with astb = B, action A will be a noisy response for
all 	xi and 	yi . Within each pair of nodes 	xi and 	xi+1 (similarly, 	yi
and 	yi+1), where i is odd, the resistance of the player selecting
action A first will be 3, and the resistance of the player selecting
action A second will be 1− α. Thus, the total resistance for
a pair of players 	xi , 	

x
i+1 (similarly, 	yi and 	yi+1), where i is

odd, to switch from B to A will be 4− α. Once all the players
	xi and 	yi have switched their actions, action A will spread in
the population with zero resistance. Thus, the resistance of a
minimum resistance path from 1B to 11

A is

Rpath

(
ω1B ,11

A

)
= (4− α)2D−1.

Comparing the two resistances, the Rd-CR criteria imply that
1B is stochastically stable, which concludes the proof. �

B. Strategic Player

In this section, we present a setup for evaluating the impact
of a strategic player on the population behavior with particular
focus on the following.
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Fig. 8. Minimum resistance paths between the states 11
A and 1B in the proposed network with diameter D and N = 2D+1 − 1. The shaded

nodes are the players with action B, the clear nodes are the players with action A, and the central shaded square is the stubborn player playing
action B. (a) Network configuration. (b) Minimum resistance path from 1B to 1A. (c) Minimum resistance path from 1B to 1A.

Fig. 9. Matrix form representation of a two-player and three-action
game.

1) We compare the impact of a strategic player who is a
myopic planner with a strategic player who can plan a
strategy over the game horizon.

2) We analyze the significance of resources and network
influence required by a strategic player to achieve his
objective.

For the first item, we will consider a network coordination
game with three actions in which a myopic strategic adversary
will not succeed, but a fully rational player, who can plan a strat-
egy over the game horizon, will succeed. For the second item, we
will present a random network setup in which a strategic player
can succeed if he has a relatively higher degree of influence over
the network.

1) Wheel Network With a Strategic Player: We consider
a wheel network in which the central player is replaced with
a strategic player. Moreover, the players are now engaged in a
three-action game with payoff matrix in Fig. 9. In the standard
setup, the game has three Nash equilibria: {1A,1B ,1C}. Ap-
plying the Rd-CR result, we can easily verify that 1C is the
unique stochastically stable state in the standard setup.

Suppose that the objective of the strategic player is to shift
the action of all the players to B. If the strategic player is a
myopic planner, his strategy will be to select an action which
will maximally improve the utility of action B for the rest of
the players in one step. If astr = B, where astr is the action of
the strategic player, then the neighborhood of every peripheral
player will have one player with action B and two players with

action C, i.e., a−i = (B,C,C). This neighborhood configura-
tion will result in

Ui(B, a−i) = Ui(B,B) + Ui(B,C) + Ui(B,C) = 13.

However, if astr = A, then a−i = (A,C,C) for the peripheral
players and

Ui(B, a−i) = 5 + 6 = 11.

Thus, the strategy of a myopic player will be astr = B for all
times. However, the stochastically stable profile 1C is robust to
the central strategic player if astr = B.

If the strategic player is fully rational, i.e., plans his long-run
strategy, then he will select astr = A for all times. Then, each
peripheral player will have one neighbor with action A and two
neighbors with action C, i.e., for any player i, the neighbors’ ac-
tion profile is a−i = (A,C,C) and the resulting utility function
is

Ui(A, a−i) = 6, Ui(B) = 11, Ui(C, a−i) = 16.

The resistance for any player to switch to B will be equal to
5. After the first peripheral player switches to B, its immediate
neighbors will have a−i = (A,B,C) and the resulting utility
function will be

Ui(A, a−i) = 6, Ui(B, a−i) = 15, Ui(C, a−i) = 13.

Thus, for the immediate neighbors of the peripheral player who
selected B, switching to B will have zero resistance. Therefore,
action B will spread throughout the peripheral network with a
total resistance of 5.

Once all the peripheral players are switched to B and the
central strategic player is playingA, a player who wants to switch
to C will face a resistance of 9 because

Ui(A, a−i) = 0, Ui(B, a−i) = 19, and Ui(C, a−i) = 10

where a−i = (A,B,B) for all the peripheral players. The min-
imum resistance path from all B to all C will have a higher

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 08,2023 at 03:14:37 UTC from IEEE Xplore.  Restrictions apply. 



AKBAR et al.: ROBUSTNESS OF LEARNING IN GAMES WITH HETEROGENEOUS PLAYERS 1565

Fig. 10. Population behavior for wheel network with the game structure in Fig. 9 and a strategic player placed at the center node. Simulation
parameters are N = 100, noise T = 0.07, and simulation iterations 5× 105. (a) and (b) represent scenarios with standard setup, astr = B, and
astr = A, respectively. Vertical axes represent fraction of players playing A (ηA), B (ηB), and C (ηC). (a) Standard setup. (b) Myopic strategic
player with action B. (c) Rational strategic player with action A.

resistance as compared to the minimum resistance path from all
C to B if the central strategic player always plays A. Therefore,
a fully rational strategic player can achieve his objective in this
scenario although his strategy of selectingastr results in an initial
decrease in utility.

We verified these results through MATLAB simulations, and
the results are presented in Fig. 10. In the simulations, we
considered a wheel network over N = 100 players for the game
setup in Fig. 9 and the game was simulated for 5× 105 iterations
with T = 0.07. In Fig. 10(a)–(c), the vertical axes correspond to
ηA, ηB , and ηC , which are the fractions of players with actions
A, B, and C, respectively. We started the simulations with the
standard setup and Fig. 10(a) shows that 1C is stochastically
stable. Then, we placed a strategic player at the central node with
astr = B. Fig. 10(b) shows that the network is robust to strategic
player with astr = B. Finally, the strategic player switched his
action to astr = A and Fig. 10(c) shows that the network is not
robust to the strategic player in this case.

2) ER Networks: The standard setup in graphical coordina-
tion games assumes a fixed network structure, which implies
that the neighborhood sets of all the players remain the same.
However, when modeling interactions in a large population
setting, random sampling of players at each time instant is
also a well-studied model in game theory literature (see for
instance [1] and [24]). Next, we consider ER-network model,
which is suitable to model random interactions among players.
In this section, we will refer back to the two-player coordination
game presented in Fig. 5.

In an ER random network model, player interactions are
determined by the model parameter p, where p is the probability
of an undirected edge between any two players in Sp. Thus, p
determines the degree of connectivity of the network. Once the
network is setup, a player is randomly selected to update his
action while all the other players repeat their actions from the
previous time step. The randomly selected player observes the
actions of his current neighbors and responds according to LLL
by selecting an action with probability in (6). In the ER network
model, the parameter p can be interpreted as the degree of in-
fluence that the players have on each other. For the coordination
game played over ER network, we can show through the Rd-CR
criteria that the population state 1A is stochastically stable for
the standard coordination game in Fig. 5.

In our setup, we introduce a strategic adversary by replacing
a random player h ∈ Sp with a strategic player whose objective
is to drive the system to 1B , i.e., change the stochastically

stable state. To achieve his objective, the strategic player has
to influence the behaviors of the others. Since the strategic
player himself is not impacted, his influence is modeled by
directed edges from the strategic player to the other players. If
the strategic player has the same level of influence as the other
players in the population, then it will not be possible for him
to alter the behavior of the entire population when the number
of players N is large enough. Therefore, we assume that the
strategic player can have a higher level of influence than the rest
of the population. This higher influence is modeled by having ph
to be greater than p, where ph is the probability that the strategic
player has a directed connection to a player i for all i ∈ Sp\h.
We present a sufficient condition on ph that will ensure that the
network is not robust to the strategic player.

Proposition 11: An ER random network is not robust to a
strategic player if

ph
p

>
(N − 2)α

2
and ph ≤ 1. (16)

Proof: We assume that the strategy of the strategic player is
to always play action B, i.e., astr = B. In the random network
setup, the utility function of any player, say player i, is the
expected utility. Let nA and nB be the number of homogeneous
players other than i playing actions A and B, respectively, such
that nA + nB = N − 2. Then, the utility function of player i is

Ui(A, a−i) = p
nA

N − 1
(1 + α),

Ui(B, a−i) = p
nB

N − 1
+ ph

1

N − 1
. (17)

Consider the case when all players are initially playing action
B. Then, the resistance of going from 1B to 11

B can be computed
as follows. Suppose player i switches action from B to A when
all the other players including the strategic player are playing
B, i.e., nA = 0 and nB = N − 2. Then, from (17)

R
(
1B ,1

1
B

)
=

p(N − 2) + ph
N − 1

.

In general, for any k ≥ 0, the resistance of going from 1k
B to

1k+1
B , when nA = k and nB = N − 2− k, is

R
(
1k
B ,1

k+1
B

)
= max

{
0,

p(N − 2− k) + ph
N − 1

− p(1 + α)k

N − 1

}
.

(18)
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On the other hand, when all players except the strategic player
are playing A and the initial network configuration is 11

A, the
resistance of going from 1k

A to 1k+1
A , where k ≥ 1, is either

R
(
1k
A,1

k+1
A

)
=

p(N − (k + 1))(1 + α)

N
− ph + p(k − 1)

N
(19)

or the resistance is zero if the right-hand side in the above
equation is nonpositive. Note that in (18) and (19), there is an
offset in the value of k because of the effect of strategic adversary
when starting from 11

A. To prove the stochastic stability of the
state 1B in the presence of a strategic player, we need to show
that the overall resistance of going from 1B to 11

A is greater than
the resistance of going from 11

A to 1B , i.e.,

Rpath

(
ω1B ,11

A

)
> Rpath

(
ω11

A,1B

)
.

If ph is equal to p, i.e., the influence of strategic player is the same
as any other player, then the above condition can never be true.
However, if ph is allowed to be greater than p, then under certain
conditions, we can find ph that will satisfy the desired condition.
A sufficient condition for 1B to be stochastically stable is that
the resistance of each transition in the path ω1B ,11

A
is greater

than the resistance of the corresponding transition in the path
ω11

A,1B
, i.e.,

R
(
1B → 11

B

)
> R

(
11
A → 12

A

)
,

R
(
11
B → 12

B

)
> R

(
12
A → 13

A

)
,

...

R
(
1k−1
B → 1k

B

)
> R

(
1k
A → 1k+1

A

)
.

Using (18) and (19), it is straightforward to prove that all the
above inequalities hold if

ph
p

>
(N − 2)α

2
.

In addition to the above inequality, the condition ph ≤ 1 has to
be imposed to ensure that ph is a probability.

The result in Proposition 11 quantifies the degree of influence
that the strategic adversary must possess to impact the popula-
tion behavior. For large N , this condition requires the strategic
adversary to have significantly higher influence as compared to
the rest of the players. To verify the result in the proposition,
we simulated a population with N = 50 players. At each time,
a random network was generated with parameter p = 6/N − 1,
i.e., each player was connected to six other players on average.
The coordination game parameter was α = 0.3. The players
updated their actions using LLL with T = 0.25. A strategic
player was included in the population with ph = 0.8, which
was selected according to the condition in Proposition 11. The
value of this parameter signifies that the strategic player needs to
influence majority of the players directly to achieve his objective.
The results of the simulation are presented in Fig. 11. The system
was initialized at 11

A and was simulated for 106 iterations. The
vertical axis represents the fraction of players playing action
A. The simulation clearly depicts that the strategic player was

Fig. 11. Evolution of behavior in graphical coordination game over ER
random network model with parameters N = 50, α = 0.3, p = 6/N − 1,
noise T = 0.25. For the strategic player, the parameter ph = 0.88 ac-
cording to the condition in Proposition 11.

successful in changing the behavior of the population from 11
A

to 1B .

V. CONCLUSION

In this article, we presented a new notion of the robustness of
stochastic learning dynamics to heterogeneous decision strate-
gies of players in games. By analyzing three types of heteroge-
neous players, including confused, stubborn, and strategic play-
ers, we demonstrated, using our proposed notion of robustness,
that the presence of even a single player can alter the behavior
of an entire population. We then presented qualitative results
and concrete examples of standard game setups and network
structures to show the impact of a single heterogeneous agent.
The results presented were not restricted to coordination game
setup like most of the previous related works.

This article identifies an interesting set of problems in the
important domain of stochastic learning dynamics in games.
The article also presents a basic framework that should serve as
a starting point for future research. Some interesting research
directions are as follows:

1) to develop graph theoretic notions to categorize networks
that are robust or not robust to heterogeneous players for
various game setups;

2) to explore the role of different update rules in stochastic
learning dynamics in the context of our notion of robust-
ness;

3) to analyze the impact of multiple heterogeneous players
with different behaviors on the population behavior.
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