Math 1497 - Sample Test 3

1. Sketch the following parametric curve and find the equation of the tangent at the point of self intersection

$$
x=\frac{1+t+t^{2}-t^{3}}{1+t^{2}}, \quad y=\frac{2}{1+t^{2}} .
$$

2. Graph the following polar equations

$$
r=2+2 \sin \theta, \quad r=2 \sin 2 \theta, \quad r^{2}=2 \sin 2 \theta .
$$

3. Find the area inside one leaf of the rose described by

$$
r=2 \sin 3 \theta .
$$

4. Find the area of the following:
(i) inside $r=2+2 \sin \theta$,
(ii) inside the outer loop and outside the inner loop of $r=1-2 \sin \theta$,
(iii) outside $r=\cos 2 \theta$ and inside $r=\sin 2 \theta$ on $\left[0, \frac{\pi}{2}\right]$.
5. Find the projection of the vector \vec{u} onto \vec{v} where $\vec{u}=\langle 2,3>$, and $\vec{v}=<4,2>$. Sketch both vectors, the projected vector and the orthogonal complement.
6. Find the area of the triangle whose vertices are located at the points $(1,1,1),(2,4,6)$ and $(-2,3,7)$.
7. (i) Find the equation of the plane that contains the vector $\langle 1,2,4\rangle$ and the points $(1,1,1)$ and $(-2,3,7)$.
(ii) Find the equation of the plane that contains the points $(1,3,5),(2,-1,2)$ and $(0,4,6)$.
8. (i) Find the equation of the line that passes through the points $(1,2,4)$ and $(-2,3,7)$.
(ii) Find the equation of the line perpendicular to the plane $x+2 y-3 z=6$ passing through the point $(1,-1,3)$.
9. Sketch and name the following surfaces
(i) $y-z^{2}=1$,
(ii) $-x^{2}+y^{2}+z^{2}=1$,
(iii) $x^{2}-y+z^{2}=0$.
