VANDERBILT UNIVERSITY $\sqrt[5]{\sqrt{3}}$ School of Engineering

Discrete Structures
 CS 2212
 (Fall 2020)

9 - Sets

Chapter 3

Sets

- So far, we have looked at Logic and Proof techniques?
- Then, we applied this machinery to proving statements involving numbers.
- Next, we will see another extremely important mathematical object, that is Sets.
- What are sets, set-theoretic operations, and other relevant ideas?

Sets

Set: A set is a collection of objects.
Element: The objects in a set are called elements.
Notation: A set with elements x_{1}, \ldots, x_{n} is denoted as $\left\{x_{1}, \ldots, x_{n}\right\}$ $\boldsymbol{x} \in \mathbf{S} \quad$ means x is a member of set S. $\boldsymbol{x} \notin \mathbf{S} \quad$ means x is not a member of set S.

Sets

Empty set: A set with no element is empty set and denoted by \emptyset. Null set: The empty set is also referred to as the null set and can be denoted by \{ \}.

What is $\{\varnothing\}$? Is it an empty set?

Singleton: A set with a single element.
Finite set: A finite set has a finite number of elements.
Infinite set: An infinite set has an infinite number of elements.
Cardinality: The cardinality of a finite set A, denoted by $|A|$, is the number of elements in A.

Sets - Properties

Sets can also be described by properties which all of the elements satisfy.
If P is a property, then we use the expression $\{x \mid P\}$ to denote the set of all x that satisfy P.

Example:

The set of odd natural numbers can be represented by either of the following.

- $x=\{1,3,5, \ldots\}$
- $\{x \mid x=2 k+1$ for some $k \in N\}$

Venn Diagram

Sets are often represented pictorially with Venn diagrams.

$$
\begin{aligned}
& A=\{1,2,3\} \\
& 1 \in A \quad 4 \notin A \\
& 2 \in A \\
& 3 \in A \\
& B=\{2,3,4\}
\end{aligned}
$$

Subsets

We say that set A is a subset of B, denoted $\boldsymbol{A} \subseteq \boldsymbol{B}$, if every element of A is an element of B.

Examples:

- $N \subseteq Z \subseteq Q \subseteq R$
- $S \subseteq S$ for any set S
- $\emptyset \subseteq S$ for any set S

Subsets

Question: Let $\mathrm{A}=\{2 k+7 \mid k \in Z\}$ and

$$
B=\{4 k+3 \mid k \in Z\}
$$

Is $\mathrm{A} \subseteq \mathrm{B}$? Justify your answer.

Answer: No,

- By definition, in order for $A \subseteq B$, every value in A must also be in B.
- However, the $9 \in A$ (when $k=1$), but $9 \notin B$.
- The value $7 \in B$ (when $k=1$) and the next subsequent value $11 \in B(k=2)$.
- Therefore we can conclude that $9 \notin B$.

Subsets

Prove: If $\mathrm{A}=\{2 k+7 \mid k \in Z\}$ and $\mathrm{B}=\{4 k+3 \mid k \in Z\}$, then $\mathbf{B} \subseteq \mathbf{A}$
To show that $B \subseteq A$, we use a direct proof to demonstrate that if an element is in B, then that element must also be in A.

$\mathbf{B} \subseteq \mathbf{A}$

Let $x \in \mathrm{~B}$
$x=4 k+3$
$x=4 k-4+7$
$x=2(2 k-2)+7$
$(2 k-2) \in Z$ so $x \in A$
Therefore $\mathrm{B} \subseteq \mathrm{A}$
QED

Proper Subset

If $A \subseteq B$ and there is an element of B that is not an element of A (i.e., $A \neq B$), then A is a proper subset of B, denoted as $\mathbf{A} \subset \mathbf{B}$.

$$
\begin{gathered}
A=\{1,2,3,4\} \\
B=\{2,4\} \\
B \subseteq A \\
3 \in A \quad 3 \notin B
\end{gathered}
$$

$$
\begin{gathered}
A=\{1,2,3,4\} \\
C=\{2,4,5\} \\
5 \in C \quad 5 \notin A \\
C \notin A
\end{gathered}
$$

$$
\begin{gathered}
A=\{1,2,3,4\} \\
D=\{1,2,3,4\} \\
A \subseteq D, \quad D \subseteq A \Rightarrow A=D
\end{gathered}
$$

Equality of Sets

Set equality - We say that sets A and B are equal, that is $\mathbf{A}=\mathbf{B}$, if they have the same elements.
Order and duplicates do not matter when it comes to sets.

- $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}=\{\mathrm{c}, \mathrm{b}, \mathrm{a}\}$
- $\{\mathrm{a}, \mathrm{a}, \mathrm{b}, \mathrm{c}\}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$

We can also say set A is equal to set B (i.e., $A=B$) if and only if

- $\mathrm{A} \subseteq \mathrm{B}$ and
- $\mathrm{B} \subseteq \mathrm{A}$

Equality of Sets

Prove: If $\mathrm{A}=\{2 k+5 \mid k \in Z\}$ and $\mathrm{B}=\{2 k+3 \mid k \in Z\}$, then $\mathbf{A}=\mathbf{B}$
By definition, set A is equal to set B (i.e., $\mathrm{A}=\mathrm{B}$) iff $\mathrm{A} \subseteq \mathrm{B}$ and $\mathrm{B} \subseteq \mathrm{A}$.

$\mathbf{A} \subseteq \mathbf{B}$

Let $x \in \mathrm{~A}$
$x=2 k+5$
$x=2 k+2+3$
$x=2(k+1)+3$
$k+1 \in Z$ so $x \in B$
Therefore $\mathrm{A} \subseteq \mathrm{B}$ QED
$\mathbf{B} \subseteq \mathbf{A}$
Let $x \in \mathrm{~B}$
$x=2 k+3$
$x=2 k+3+2-2$
$x=2 k-2+5$
$x=2(k-1)+5$
$k-1 \in Z$ so $x \in A$
Therefore $\mathrm{B} \subseteq \mathrm{A}$
QED

Set of Sets

$$
\begin{gathered}
A=\{\{1,2\}, 1,2,\{1,2,3\}\} \\
\{1,2\} \in A \\
1 \in A \quad|A|=4 \\
2 \in A \\
\{1,2,3\} \in A \\
\{\{1,2\}, 1\} \subset A
\end{gathered}
$$

Power Set

The power set of a set A, denoted $\mathbf{P}(\mathbf{A})$, is the set of all subsets of A.

```
A={O,\square,\triangle}
List all subsets:
\begin{tabular}{ll} 
size 0 & \(\varnothing\), \\
size 1 & \(\{O\},\{\square\},\{\triangle\}\), \\
size 2 & \(\{O, \square\},\{O, \triangle\},\{\square, \triangle\}\), \\
size 3 & \(\{O, \square, \Delta\}\)
\end{tabular}
P(A) = {\varnothing,{O},{\square},{\Delta},{O,\square},{O,\Delta},{\square,\Delta},{O,\square,\Delta}}
```


Set of Sets

Let A be a finite set of cardinality n. Then the cardinality of the power set of A is $|\mathbf{P}(\mathbf{A})|=\mathbf{2}^{\mathbf{n}}$

True or False?

- $|\mathrm{P}(\mathrm{X})|=17$
- $|P(x)|=0$

Intersection of Sets

The intersection of A and B, denoted $\mathbf{A} \cap \mathbf{B}$ is the set of all elements that are elements of both A and B .

$$
\mathbf{A} \cap \mathbf{B}=\{\mathbf{x} \mid \mathbf{x} \in \mathbf{A} \text { and } \mathbf{x} \in \mathbf{B}\}
$$

$$
\begin{aligned}
& A=\{a, b, c, e, f\} \\
& B=\{d, e, f, g\} \\
& A \cap B=\{e, f\}
\end{aligned}
$$

Union of Sets

The union of two sets, A and B, denoted $\mathbf{A} \cup \mathbf{B}$ is the set of all elements that are elements of A or B.

$$
\mathbf{A} \cup \mathbf{B}=\{\mathbf{x} \mid \mathbf{x} \in \mathbf{A} \text { or } \mathbf{x} \in \mathbf{B}\}
$$

$$
\begin{aligned}
& A=\{a, b, c, e, f\} \\
& B=\{d, e, f, g\} \\
& A \cup B=\{a, b, c, e, f, d, g\}
\end{aligned}
$$

Difference Between Sets

The difference between two sets A and B, denoted $\mathbf{A}-\mathbf{B}$, is the set of elements that are in A but not in B .

$$
\{\mathbf{x} \| \mathbf{x} \in \mathbf{A} \text { and } \mathbf{x} \notin \mathbf{B}\}
$$

$$
\begin{aligned}
& A=\{a, b, c, d, f\} \\
& B=\{d, e, f, g\} \\
& A-B=\{a, b, c\}
\end{aligned}
$$

Symmetric Difference Between Sets

The symmetric difference between two sets, A and B, denoted $\mathbf{A} \oplus \mathbf{B}$, is the set of elements that are a member of exactly one of A and B , but not both. $\{\mathbf{x} \mid \mathbf{x} \in A$ or $\mathbf{x} \in \mathrm{B}$ but not both $\}$

$$
\begin{aligned}
& A=\{a, b, c, q, f\} \\
& B=\{d, x, x, g\} \\
& A \oplus B=\{a, b, c, d, g\}
\end{aligned}
$$

Complement of a Set

Given a universe U and $\mathrm{A} \subseteq \mathrm{U}$, we write complement of A as $\mathbf{A}^{\prime}=\mathbf{U}-\mathbf{A}$.

$$
\begin{aligned}
\mathrm{U}=\{1,2,3,
\end{aligned}
$$

Sets: Some More Proofs

Prove $\mathbf{A}=\mathbf{B}$

We show that

- $\mathrm{A} \subseteq \mathrm{B}$

AND

- $\mathrm{B} \subseteq \mathrm{A}$

Prove $x \in(A \cup B)$
We show that

- $x \in \mathrm{~A}$

OR

- $x \in \mathrm{~B}$

Prove $\mathbf{x} \in(\mathbf{A} \cap \mathbf{B})$
We show that

- $x \in \mathrm{~A}$

AND

- $x \in B$

Prove $\mathbf{A} \cap \mathbf{B} \neq \varnothing$
Find an element x s.t.

- $x \in \mathrm{~A}$

AND

- $x \in \mathrm{~B}$

Counting Sets: Inclusion and Difference Rules

When trying to determine the size (cardinality) of a set expression, there are a couple of helpful rules:

1. Inclusion-Exclusion (aka Union) Rule:

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

2. Difference Rule:

$$
|A-B|=|A|-|A \cap B|
$$

Inclusion-Exclusion with 3 Sets

For finite sets A, B and C :
$|A \cup B \cup C|$
$=|A|+|B|+|C|$
$-|A \cap B|-|A \cap C|-|B \cap C|$
$+|A \cap B \cap C|$

Inclusion-Exclusion with 3 Sets

$$
\begin{aligned}
& |\mathbf{A} \cup \mathbf{B} \cup \mathbf{C}| \\
= & |A \cup(B \cup C)| \\
= & |A|+|B \cup C|-|A \cap(B \cup C)| \\
= & |A|+|B|+|C|-|B \cap C|-|A \cap(B \cup C)|
\end{aligned}
$$

Inclusion-Exclusion with 3 Sets

$$
\begin{aligned}
& |\mathbf{A} \cup \mathbf{B} \cup \mathbf{C}| \\
= & |A \cup(B \cup C)| \\
= & |A|+|B \cup C|-|A \cap(B \cup C)| \\
= & |A|+|B|+|C|-|B \cap C|-|A \cap(B \cup C)|
\end{aligned}
$$

Inclusion-Exclusion with 3 Sets

$$
\begin{aligned}
& |\mathbf{A} \cup \mathbf{B} \cup C| \\
= & |A \cup(B \cup C)| \\
= & |A|+|B \cup C|-|A \cap(B \cup C)| \\
= & |A|+|B|+|C|-|B \cap C|-|A \cap(B \cup C)| \\
= & |A|+|B|+|C|-|B \cap C|-|(A \cap B) \cup(A \cap C)|
\end{aligned}
$$

Inclusion-Exclusion with 3 Sets

$|\mathbf{A} \cup \mathbf{B} \cup \mathbf{C}|$

$$
\begin{aligned}
& =|A \cup(B \cup C)| \\
& =|A|+|B \cup C|-|A \cap(B \cup C)| \\
& =|A|+|B|+|C|-|B \cap C|-|A \cap(B \cup C)| \\
& =|A|+|B|+|C|-|B \cap C|-|(A \cap B) \cup(A \cap C)|
\end{aligned}
$$

Lets, compute
$|(A \cap B) \cup(A \cap C)|=|A \cap B|+|A \cap C|-|A \cap B \cap C|$
Plugging it back in the above equation.
$=|A|+|B|+|C|-|B \cap C|-|A \cap B|-|A \cap C|+|A \cap B \cap C|$

Examples

- Let's say for each $\mathrm{n} \in \mathrm{N}$ let $\mathbf{D}_{\mathbf{n}}=\{\boldsymbol{x} \in \mathrm{N} \| \boldsymbol{x}$ divides $\mathbf{n}\}$. (In other words, D_{n} is the set of positive divisors of n.)
- Using this definition, some examples of the previously mentioned set expressions are:

$$
\begin{aligned}
& D_{5}=\{1,5\}, D_{6}=\{1,2,3,6\}, \text { and } D_{9}=\{1,3,9\} \\
& D_{5} \cup D_{6}=\{1,2,3,5,6\} \\
& D_{5} \cap D_{6}=\{1\} \\
& D_{9}-D_{6}=\{9\} \\
& D_{5} \oplus D_{6}=\{2,3,5,6\}
\end{aligned}
$$

Set Identities

Name	Identities	
Idempotent laws	$\mathrm{A} \cup \mathrm{A}=\mathrm{A}$	$\mathrm{A} \cap \mathrm{A}=\mathrm{A}$
Associative laws	$(\mathrm{A} \cup \mathrm{B}) \cup \mathrm{C}=\mathrm{A} \cup(\mathrm{B} \cup \mathrm{C})$	$(A \cap B) \cap C=A \cap(B \cap C)$
Commutative laws	$A \cup B=B \cup A$	$A \cap B=B \cap A$
Distributive laws	$A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$	$A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
Identity laws	$A \cup \emptyset=A$	$\mathrm{A} \cap U=\mathrm{A}$
Domination laws	$A \cap \emptyset=\varnothing$	A $\cup U=U$
Double Complement law	$A^{\prime \prime}=A$	
Complement laws	$\begin{aligned} & \mathrm{A} \cap \mathrm{~A}^{\prime}=\varnothing \\ & \mathrm{U}^{\prime}=\varnothing \end{aligned}$	$\begin{aligned} & \mathrm{A} \cup \mathrm{~A}^{\prime}=U \\ & \varnothing^{\prime}=\mathrm{U} \end{aligned}$
De Morgan's laws	$(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$	$(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$
Absorption laws	$A \cup(A \cap B)=A$	$A \cap(A \cup B)=A$

Set Identities

$$
\begin{aligned}
x \in \overline{\mathrm{~A} \cap \mathrm{~B}} & \longleftrightarrow \neg(x \in \mathrm{~A} \cap \mathrm{~B}) \\
& \longleftrightarrow \neg(x \in \mathrm{~A} \wedge x \in \mathrm{~B}) \\
& \equiv \neg(x \in \mathrm{~A}) \vee \neg(x \in \mathrm{~B}) \\
& \longleftrightarrow x \in \overline{\mathrm{~A}} \vee \mathrm{x} \in \overline{\mathrm{~B}} \\
& \longleftrightarrow \mathrm{x} \in(\overline{\mathrm{~A}} \cup \overline{\mathrm{~B}}) \\
\overline{\mathrm{A} \cap \mathrm{~B}} & =\overline{\mathrm{A}} \cup \overline{\mathrm{~B}}
\end{aligned}
$$

Definition of complement
Definition of intersection
De Morgan's law for proposition
Definition of complement
Definition of Union
De Morgan's set identity

DeMorgan's Law

Set Partitions

Partition: A partition of a non-empty set A is a collection of non-empty subsets of A such that: each element of A is in exactly one of the subsets.

$$
\{1,2,3, a, b, 8, \$\}
$$

Set Partitions

Partition: A partition of a non-empty set A is a collection of non-empty subsets of A such that: each element of A is in exactly one of the subsets.

$$
\begin{gathered}
\{1,2,3, \mathrm{a}, \mathrm{~b}, 8, \$\} \\
\{1,2,3\} \quad\{\mathrm{a}, \mathrm{~b}\} \quad\{8, \$\}
\end{gathered}
$$

Set Partitions

In other words,

$A_{1}, A_{2}, \ldots, A_{n}$ is a partition of a non-empty subset A if

- $\cup_{i=1}^{n} A_{i}=A_{1} \cup A_{2} \cup \ldots A_{n}=A$
- $A_{i} \cap A_{j}=\emptyset$, for all $\mathrm{i} \neq \mathrm{j}$
(disjointness)
- $A_{i} \neq \emptyset$, for all i.

Set Partitions (Example)

$$
\begin{aligned}
& A=\{1,2,3,4,5,6\} \\
& A_{1}=\{1,4,5\} \\
& A_{2}=\{2,3\} \\
& A_{3}=\{6\}
\end{aligned}
$$

$A_{1} A_{2}$ and A_{3} form a partition of A

Set Partitions (Example)

$B_{1} B_{2}$ and B_{3} form a partition of R

Cartesian Product

Ordered Pair: An ordered pair of items is written (x, y).

Note that, (x, y) is not same as (y, x).
Order of terms matter here.

Cartesian Product: For two sets, A and B, the Cartesian product of A and B , denoted $\mathbf{A} \times \mathbf{B}$, is the set of all ordered pairs in which the first entry is in A and the second entry is in B.

Cartesian Product

$$
A=\{1,2\}, \quad B=\{a, b, c\}
$$

$\mathbf{A} \times \mathbf{B}$
(1, a)
$(1, b)$
$(2, b)$
$(1, c)$
$(2, c)$
$\mathbf{B} \times \mathbf{A}$

$(1, \mathrm{a})$	$(1, \mathrm{~b})$	$(1, \mathrm{c})$
$(2, \mathrm{a})$	$(2, \mathrm{~b})$	$(2, \mathrm{c})$

$(a, 1)$	$(a, 2)$
$(b, 1)$	$(b, 2)$
$(c, 1)$	$(c, 2)$

