

School of Engineering

Discrete Structures CS 2212 (Fall 2020)

© 2020 Vanderbilt University (Waseem Abbas)

Chapter 3

- So far, we have looked at **Logic and Proof techniques**?
- Then, we applied this machinery to proving statements involving **numbers**.
- Next, we will see another extremely important mathematical object, that is **Sets**.
- What are **sets, set-theoretic operations**, and other **relevant ideas**?

Sets

Set: A set is a collection of objects.

Element: The objects in a set are called elements.

Notation: A set with elements $x_1, ..., x_n$ is denoted as $\{x_1, ..., x_n\}$

- $x \in S$ means x is a member of set S.
- $x \notin S$ means x is *not* a member of set S.

Sets

Empty set: A set with no element is empty set and denoted by Ø.

Null set: The empty set is also referred to as the null set and can be denoted by **{ }**.

What is $\{\emptyset\}$? Is it an empty set?

Singleton: A set with a single element.

Finite set: A finite set has a finite number of elements.

Infinite set: An infinite set has an infinite number of elements.

Cardinality: The cardinality of a finite set A, denoted by |A|, is the number of elements in A.

Sets - Properties

Sets can also be described by **properties** which all of the elements satisfy.

If P is a property, then we use the expression $\{x \mid P\}$ to denote the set of all x that satisfy P.

Example:

The set of odd natural numbers can be represented by either of the following.

•
$$x = \{1, 3, 5, ...\}$$

• {
$$x \mid x = 2k + 1$$
 for some $k \in N$ }

Venn Diagram

Sets are often represented pictorially with **Venn diagrams**.

A = { 1, 2, 3}			
$1 \in A$	4	¢	A
$2 \in A$			
$3 \in A$			
B = {2, 3, 4}			

Subsets

We say that set A is a **subset** of B, denoted $A \subseteq B$, if every element of A is an element of B.

Examples:

- $\bullet \mathbf{N} \subseteq Z \subseteq \mathbf{Q} \subseteq \mathbf{R}$
- $S \subseteq S$ for any set S
- $\emptyset \subseteq S$ for any set S

Subsets

Question: Let $A = \{2k + 7 \mid k \in Z\}$ and $B = \{4k + 3 \mid k \in Z\}$. Is $A \subseteq B$? Justify your answer.

Answer: No,

- By definition, in order for $A \subseteq B$, every value in A must also be in B.
- However, the $9 \in A$ (when k=1), but $9 \notin B$.
- The value $7 \in B$ (when k=1) and the next subsequent value $11 \in B$ (k=2).
- Therefore we can conclude that $9 \notin B$.

Subsets

Prove: If A = $\{2k + 7 | k \in Z\}$ and B = $\{4k + 3 | k \in Z\}$, then **B** \subseteq **A**

To show that $B \subseteq A$, we use a direct proof to demonstrate that if an element is in B, then that element must also be in A.

$\mathbf{B} \subseteq \mathbf{A}$
Let $x \in B$
x = 4k + 3
x = 4k - 4 + 7
x = 2(2k - 2) + 7
$(2k-2) \in \mathbb{Z}$ so $x \in \mathbb{A}$
Therefore $B \subseteq A$
QED

Proper Subset

If $A \subseteq B$ and there is an element of B that is not an element of A (i.e., $A \neq B$), then A is a proper subset of B, denoted as $A \subset B$.

Equality of Sets

Set equality - We say that sets A and B are equal, that is **A** = **B**, if they have the same elements.

Order and duplicates do not matter when it comes to sets.

{a, b, c} = {c, b, a}
{a, a, b, c} = {a, b, c}

We can also say set A is **equal** to set B (i.e., A=B) **if and only if**

- $A \subseteq B$ and
- $\bullet \mathrel{\mathsf{B}} \subseteq \mathsf{A}$

Equality of Sets

Prove: If A = $\{2k + 5 | k \in Z\}$ and B = $\{2k + 3 | k \in Z\}$, then **A** = **B**

By definition, set A is equal to set B (i.e., A = B) iff $A \subseteq B$ and $B \subseteq A$.

$\mathbf{A} \subseteq \mathbf{B}$	
Let $x \in A$	
x = 2k + 5	
x = 2k + 2 + 3	
x = 2(k + 1) + 3	
$k + 1 \in \mathbb{Z}$ so $x \in \mathbb{B}$	
Therefore $A \subseteq B$	
QED	

```
\mathbf{B} \subseteq \mathbf{A}
```

```
Let x \in B

x = 2k + 3

x = 2k + 3 + 2 - 2

x = 2k - 2 + 5

x = 2(k - 1) + 5

k - 1 \in Z so x \in A

Therefore B \subseteq A

QED
```

Set of Sets

 $A = \{\{1, 2\}, 1, 2, \{1, 2, 3\}\}$ $\{1, 2\} \in A$ $1 \in A \qquad |A| = 4$ $2 \in A$ $\{1, 2, 3\} \in A$ $\{\{1, 2\}, 1\} \subset A$

Power Set

The power set of a set A, denoted **P(A)**, is the set of all subsets of A.

A = { \bigcirc , \square , \triangle } List all subsets:

> size 0 \varnothing , size 1 {O}, {D}, {C}, {A}, {A}, size 2 {O, D}, {O, A}, {D, A}, size 3 {O, D, A}

 $\mathsf{P}(\mathsf{A}) = \{ \emptyset, \{\mathsf{O}\}, \{\mathsf{O}\}, \{\mathsf{O}, \mathsf{O}\}, \{\mathsf{O}, \mathsf{O}\}, \{\mathsf{O}, \mathsf{O}\}, \{\mathsf{O}, \mathsf{O}\}, \{\mathsf{O}, \mathsf{O}, \mathsf{O}\}, \{\mathsf{O}, \mathsf{O}, \mathsf{O}\}, \{\mathsf{O}, \mathsf{O}\}, \{\mathsf{O}, \mathsf{O}\}, \{\mathsf{O}, \mathsf{O}\}, \mathsf{O}\} \}$

Set of Sets

Let A be a finite set of cardinality n. Then the cardinality of the power set of A is $|P(A)| = 2^n$

True or False?

- |P(X)| = 17
- |P(x)| = 0

Intersection of Sets

The intersection of A and B, denoted $A \cap B$ is the set of all elements that are elements of both A and B.

 $\mathbf{A} \cap \mathbf{B} = \{\mathbf{x} \mid \mathbf{x} \in \mathbf{A} \text{ and } \mathbf{x} \in \mathbf{B}\}$

A = { a, b, c, e, f }
B = { d, e, f, g }
A
$$\cap$$
 B = { e, f }

Union of Sets

The union of two sets, A and B, denoted $A \cup B$ is the set of all elements that are elements of A or B.

 $\mathbf{A} \cup \mathbf{B} = \{\mathbf{x} \mid \mathbf{x} \in \mathbf{A} \text{ or } \mathbf{x} \in \mathbf{B}\}$

A = { a, b, c, e, f } B = { d, e, f, g }

 $A \cup B = \{a, b, c, e, f, d, g\}$

Difference Between Sets

The difference between two sets A and B, denoted A - B, is the set of elements that are in A but not in B.

 $\{x \mid x \in A \text{ and } x \notin B\}$

Symmetric Difference Between Sets

The symmetric difference between two sets, A and B, denoted $\mathbf{A} \bigoplus \mathbf{B}$, is the set of elements that are a member of exactly one of A and B, but not both.

$\{x \mid x \in A \text{ or } x \in B \text{ but not both}\}$

A⊕B ={a,b,c,d,g}

What is $\mathbf{A} \bigoplus \mathbf{A}$? What is $\mathbf{A} \bigoplus \mathbf{A} \bigoplus \mathbf{A}$?

Complement of a Set

Given a universe U and $A \subseteq U$, we write complement of A as A' = U - A.

J = { 1, 2, 3,	⊀, ∑x,	& , '	X , 1	8,	9,	10	}
A = { 4,	5, 6	, 7]	}				
$\overline{A} = \{1\}$. 2 .	3.	8.	9	.1(0}	

Sets: Some More Proofs

• $x \in A$

• *x* ∈ B

AND

We show that

• $x \in A$ OR

• *x* ∈ B

Counting Sets: Inclusion and Difference Rules

When trying to determine the size (cardinality) of a set expression, there are a couple of helpful rules:

- 1. Inclusion-Exclusion (aka Union) Rule:
 - $|A \cup B| = |A| + |B| |A \cap B|$
- **2. Difference Rule:**
 - $|A B| = |A| |A \cap B|$

For finite sets A, B and C: $|A \cup B \cup C|$ =|A| + |B| + |C| $-|A \cap B| - |A \cap C| - |B \cap C|$ $+|A \cap B \cap C|$


```
= |A \cup (B \cup C)|
```

```
= |A| + |B \cup C| - |A \cap (B \cup C)|
```

```
= |A| + |B| + |C| - |B \cap C| - |A \cap (B \cup C)|
```



```
= |A \cup (B \cup C)|
```

```
= |A| + |B \cup C| - |A \cap (B \cup C)|
```

```
= |A| + |B| + |C| - |B \cap C| - |A \cap (B \cup C)|
```


- = | A U (B U C) |
- $= |A| + |B \cup C| |A \cap (B \cup C)|$
- $= |A| + |B| + |C| |B \cap C| |A \cap (B \cup C)|$
- $= |A| + |B| + |C| |B \cap C| |(A \cap B) \cup (A \cap C)|$

$|\mathbf{A} \cup \mathbf{B} \cup \mathbf{C}|$

```
= |A \cup (B \cup C)|
```

Lets, compute

```
= |A| + |B \cup C| - |A \cap (B \cup C)|
```

```
= |A| + |B| + |C| - |B \cap C| - |A \cap (B \cup C)|
```

Plugging it back in the above equation.

```
= |A| + |B| + |C| - |B \cap C| - |(A \cap B) \cup (A \cap C)|
```

 $|(A \cap B) \cup (A \cap C)| = |A \cap B| + |A \cap C| - |A \cap B \cap C|$

 $= |A| + |B| + |C| - |B \cap C| - |A \cap B| - |A \cap C| + |A \cap B \cap C|$

Examples

- Let's say for each $n \in N$ let $D_n = \{x \in N \mid x \text{ divides } n\}$. (In other words, D_n is the set of positive divisors of n.)
- Using this definition, some examples of the previously mentioned set expressions are:

 $D_5 = \{1, 5\}, D_6 = \{1, 2, 3, 6\}, \text{ and } D_9 = \{1, 3, 9\}$ $D_5 \cup D_6 = \{1, 2, 3, 5, 6\}$ $D_5 \cap D_6 = \{1\}$ $D_9 - D_6 = \{9\}$ $D_5 \bigoplus D_6 = \{2, 3, 5, 6\}$

Set Identities

Name	Identities		
Idempotent laws	$A \cup A = A$	$A \cap A = A$	
Associative laws	$(A \cup B) \cup C = A \cup (B \cup C)$	$(A \cap B) \cap C = A \cap (B \cap C)$	
Commutative laws	$A \cup B = B \cup A$	$A \cap B = B \cap A$	
Distributive laws	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	
Identity laws	$A \cup \emptyset = A$	$A \cap U = A$	
Domination laws	$A \cap \emptyset = \emptyset$	$A \cup U = U$	
Double Complement law	A" = A		
Complement laws	$\begin{array}{l} A \cap A' = \emptyset \\ U' = \emptyset \end{array}$	$\begin{array}{l} A \cup A' = U \\ \phi' = U \end{array}$	
De Morgan's laws	$(A \cup B)' = A' \cap B'$	$(A \cap B)' = A' \cup B'$	
Absorption laws	$A \cup (A \cap B) = A$	$A \cap (A \cup B) = A$	

Set Identities

 $x \in A \cap B \iff \neg (x \in A \cap B)$ $\leftrightarrow \neg (x \in A \land x \in B)$ $\equiv \neg (x \in A) \lor \neg (x \in B)$ $\leftrightarrow x \in \overline{A} \quad \forall x \in \overline{B}$ $\leftrightarrow x \in (\overline{A} \cup \overline{B})$ $\overline{A \cap B} = \overline{A \cup B}$

Definition of complement
Definition of intersection
De Morgan's law for proposition
Definition of complement
Definition of Union
De Morgan's set identity

DeMorgan's Law

Set Partitions

Partition: A partition of a non-empty set A is a collection of non-empty subsets of A such that: *each element of A is in exactly one of the*

subsets.

Set Partitions

Partition: A partition of a non-empty set A is a collection of non-empty subsets of A such that:

each element of A is in exactly one of the subsets.

Set Partitions

In other words,

 $A_1, A_2, ..., A_n$ is a **partition** of a non-empty subset *A* if

•
$$\bigcup_{i=1}^{n} A_i = A_1 \cup A_2 \cup \dots A_n = A$$
 (union)

- $A_i \cap A_j = \emptyset$, for all $i \neq j$ (disjointness)
- $A_i \neq \emptyset$, for all i. (non-emptiness)

Set Partitions (Example)

$$A = \{ 1, 2, 3, 4, 5, 6 \}$$

 $A_1 = \{ 1, 4, 5 \}$
 $A_2 = \{ 2, 3 \}$
 $A_3 = \{ 6 \}$

 $A_1 A_2$ and A_3 form a partition of A

Set Partitions (Example)

 $B_1 B_2$ and B_3 form a partition of R

Cartesian Product

Ordered Pair: An ordered pair of items is written (x, y).

Note that, (x, y) is not same as (y, x). Order of terms matter here.

Cartesian Product: For two sets, A and B, the Cartesian product of A and B, denoted $\mathbf{A} \times \mathbf{B}$, is the set of all ordered pairs in which the first entry is in A and the second entry is in B.

Cartesian Product

A = $\{1, 2\}$, B = $\{a, b, c\}$

(1, a)	(1, b)	(1, c)
(2, a)	(2, b)	(2, c)

(<mark>a, 1</mark>)	(a, 2)
(b, 1)	(b, 2)
(c, 1)	(c, 2)