Math 1496 Calc 1 - Homework \#4

Pg. 129, \#87 and 89
Pg. 139-140, \#41, 43, 59, 63 and 69
Pg. 150-152, \#9, 11, 17, 19, 43, 51, 67 and 109
Pg. 164, \# 13, 29, 47, 59, 61 and 127

Pg. 129, Determine the differentiability of the following \#87

$$
f(x)= \begin{cases}(x-1)^{3}, & x \leq 1 \\ (x-1)^{2}, & x>1\end{cases}
$$

\#89

$$
f(x)= \begin{cases}x^{2}+1, & x \leq 2 \\ 4 x-3, & x>2\end{cases}
$$

Pg. 139, Find the derivative of the following

$$
\begin{array}{ll}
\text { \#41 } & f(x)=x^{2}+5-3 x^{-2} \\
\text { \#43 } & g(t)=t^{2}-\frac{4}{t^{3}}
\end{array}
$$

\# 59 Find the equation of the tangent at the given point

$$
\begin{equation*}
f(x)=-2 x^{4}+5 x^{2}-3 \tag{1,0}
\end{equation*}
$$

Determine the point(s) (if any) where the graph has a horizontal tangent

$$
\begin{array}{ll}
\# 63 & y=x^{4}-2 x^{2}+3 \\
\# 69 & y=x+\sin x, \quad 0 \leq x<2 \pi
\end{array}
$$

Pg. 150-152, Find the derivative of the following (evaluate if a point c is given)

$$
\begin{aligned}
\text { \#9 } f(x) & =e^{x} \cos x \\
\text { \#11 } f(x) & =\frac{x}{x-5} \\
\text { \#17 } f(x) & =\left(x^{3}+4 x\right)\left(3 x^{2}+2 x-5\right), \quad c=0 \\
\text { \#19 } f(x) & =\frac{x^{2}-4}{x-3}, \quad c=1 \\
\text { \#43 } f(t) & =t^{2} \sin t \\
\text { \#51 } y & =\frac{3(1-\sin x)}{2 \cos x}
\end{aligned}
$$

\# 67 Find the equation of the tangent at the given point

$$
f(x)=\left(x^{3}+4 x-1\right)(x-2), \quad(1,-4)
$$

\#109 Find the given higher order derivative of the following

$$
f^{\prime}(x)=x^{3}-x^{2 / 5}, \quad f^{(3)}(x)
$$

Pg. 164, Find the derivative of the following

$$
\begin{aligned}
& \# 13 \quad y=(2 x-7)^{3} \\
& \text { \#29 } g(x)=\left(\frac{x+5}{x^{2}+2}\right)^{2} \\
& \text { \#47 } y=\sin \left(3 x^{2}+\cos x\right) \\
& \text { \#59 } y=e^{\sqrt{x}} \text {, } \\
& \text { \#61 } \quad g(t)=\left(e^{-t}+e^{t}\right)^{3}
\end{aligned}
$$

\#127 Find the second derivative of the following

$$
f(x)=(3+2 x) e^{-3 x}
$$

Due: Monday Sept. 21, 2020

