
Sample Test 2 Solutions

1. Do the following converge (explain)?

(1.1)
∞

∑
n=1

ln n
n4 + 1

,

Since ln n < n for n ≥ 1, then
ln n

n4 + 1
<

n
n4 + 1

<
1
n3 . Since

∞

∑
n=1

1
n3 (p = 3) con-

verges, then by the DCT the original series converges.

(1.2)
∞

∑
n=1

1
n3 + 1

,

Compare with
∞

∑
n=1

1
n3 . Since lim

n→∞

1
n3

1
n3 + 1

= 1 and
∞

∑
n=1

1
n3 converges (p series with p = 3)

then by the limit comparison test (LCT), the original series converges.

(1.3)
∞

∑
n=1

(
1
2
+

1
n

)n
,

Taking the limit lim
n→∞

n
√
|an| = lim

n→∞

(
1
2
+

1
n

)
=

1
2

< 1 then by the nth root test, the

original series converges.

(1.4)
∞

∑
n=1

en

n!
,

Consider lim
n→∞

∣∣∣∣ an+1

an

∣∣∣∣ = lim
n→∞

en+1

(n + 1)!
/

en

(n)!
= lim

n→∞

en+1

(n + 1)!
· (n)!

en

= lim
n→∞

e
n + 1

= 0 < 1 so by ratio test, the series converges

(1.5)
∞

∑
n=1

1
ln(n + 1)

,

Since ln(n + 1) < n + 1 for n ≥ 1 then
1

n + 1
<

1
ln(n + 1)

for n ≥ 1 and since
∞

∑
n=1

1
(n + 1)

(harmonic) diverges, then by the DCT, original series does as well.

(1.6)
∞

∑
n=1

1
n(n + 1)

,

Comparing with
∞

∑
n=1

1
n2 then lim

n→∞

1
n(n + 1)

/
1
n2 = lim

n→∞

n2

n(n + 1)
= 1, and since

∞

∑
n=1

1
n2

converges (p-series with p = 2) then by the limit comparison test (LCT) the original se-
ries converges.
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(1.7)
∞

∑
n=1

n− 1
n + 1

,

Since lim
n→∞

n− 1
n + 1

= 1, then by the nth term test for divergence, the series diverges.

(1.8)
∞

∑
n=1

(2n)!
(n!)2 ,

Consider lim
n→∞

∣∣∣∣ an+1

an

∣∣∣∣ = lim
n→∞

(2n + 2)!
(n + 1)!2

/
(2n)!
(n)!2

= lim
n→∞

(2n + 2)!
(2n)!

· (n + 1)!2

n!2

= lim
n→∞

(2n + 2)(2n + 1)
(n + 1)(n + 1)

= 4 > 1 so by ratio test, the series diverges

(1.9)
∞

∑
n=2

1
ln2(n)

,

Since ln n < n for n ≥ 1 then ln2 n < n ln n for n ≥ 1 which gives
1

n ln n
<

1
ln2 n

for

n ≥ 1. Since
∞

∑
n=1

1
n ln n

diverges, (see next question) then by the direct comparison test,

original series does as well.

(1.10)
∞

∑
n=3

1
n ln n

,

Let f (x) =
1

x ln x
. Clearly f (x) > 0 and f ′(x) = − ln x + 1

(x ln x)2 for x ≥ 3 showing that

f (x) is decreasing so that the integral test may be used. Consider∫ ∞

3

dx
x ln x

= lim
b→∞

∫ b

3

dx
x ln x

= lim
b→∞

ln ln x|b3 = ∞.

Since the integral diverges, then by the integral test, the series does as well.

(1.11)
∞

∑
n=1

1
2n + 1

.

Compare with
∞

∑
n=1

1
2n . Then lim

n→∞

1
2n /

1
2n + 1

= lim
n→∞

2n + 1
2n = 1 and since

∞

∑
n=1

1
2n con-

verges (geometric series with r = 1/2), the original series converges by the LCT.

2. Determine whether the following series converge absolutely, conditionally or diverge

(2.1)
∞

∑
n=1

(−1)n(n− 1)
n + 1

,
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Since lim
n→∞

(−1)n(n− 1)
n + 1

= (−1)n 6= 0 this series diverges.

(2.2)
∞

∑
n=1

(−1)n√
n(n + 1)

,

We first consider
∞

∑
n=1

1√
n(n + 1)

and by limit comparison with
∞

∑
n=1

1
n

shows that we do

not have absolute convergence. So we check the two conditions for conditional conver-

gence. If we let an =
1√

n(n + 1)
, then clearly

lim
n→∞

1√
n(n + 1)

= 0.

Next, we need to show an+1 < an. We could show

1√
(n + 1)(n + 2)

?
≤ 1√

n(n + 1)
,

but is easier to show that if

f (x) =
1√

x(x + 1)
then f ′(x) = − 2x + 1

2(x2 + x)3/2 < 0 for x ≥ 1

so by the alternating series test (AST), the series converges conditionally.

(2.3)
∞

∑
n=1

(−1)nnn

n!
,

We let an =
nn

n!
. We stop the series from alternating and use the ration test.

lim
n→∞

an+1

an
= lim

n→∞

(n + 1)n+1

(n + 1)!
/

nn

n!
= lim

n→∞

(n + 1)(n + 1)n

(n + 1)n!
· n!

nn =

lim
n→∞

(n + 1)n

nn = lim
n→∞

(
1 +

1
n

)n
= e > 1

so by ratio test, the series does not converge absolutely. Now we go the the AST. We will

show that the terms are not decreasing. So we want to show that
nn

n!
<

(n + 1)n+1

(n + 1)!
so

nn

n!
<

(n + 1)(n + 1)n

(n + 1)n!
and after canceling nn < (n + 1)n or n < n + 1 which is true so the

serives diverges by the AST.

(2.4)
∞

∑
n=1

(−1)n

2n + 3n ,
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We first consider
∞

∑
n=1

1
2n + 3n and compare with

∞

∑
n=1

1
3n . By the LCT

lim
n→∞

1
3n /

1
2n + 3n = lim

n→∞

2n + 3n

3n = lim
n→∞

1 +
(

2
3

)n
= 1,

and since
∞

∑
n=1

1
3n converges (geometric series r = 1/3), the original series converges abso-

lutely.

(2.5)
∞

∑
n=1

(−1)nn
n2 + 1

,

We first consider
∞

∑
n=1

n
n2 + 1

and compare with
∞

∑
n=1

1
n

. By the LCT

lim
n→∞

1
n

/
n

n2 + 1
= lim

n→∞

n2 + 1
n2 = 1,

which show that original series doesn’t converge absolutely since we compared with the
harmonic series that diverges. If we let an =

n
n2 + 1

, then clearly

lim
n→∞

n
n2 + 1

= 0.

Next, we need to show an+1 < an. If we let

f (x) =
x

x2 + 1
then f ′(x) =

−x2 + 1
(x2 + 1)2 < 0 for x > 1

so by the alternating series test (AST), the series converges conditionally.

(2.6)
∞

∑
n=1

(−1)nn
n + 1

.

Since lim
n→∞

(−1)nn
n + 1

= (−1)n 6= 0 this series diverges.

3. Determine the interval of convergence of the following.
∞

∑
n=1

2nxn
√

n + 1
,

∞

∑
n=1

(−1)nx2n

22n(n!)2 ,
∞

∑
n=1

(x− 1)n

n2 ,

3(i)
∞

∑
n=1

2nxn
√

n + 1
,

Choosing

an =
2nxn
√

n + 1
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then

lim
x→∞

∣∣∣∣ an+1

an

∣∣∣∣ = lim
x→∞

∣∣∣∣2n+1xn+1
√

n + 2
/

2nxn
√

n + 1

∣∣∣∣ = lim
x→∞

2
√

n + 1√
n + 2

|x| = 2|x| < 1

So |x| < 1
2

or −1
2
< x <

1
2

. Checking the endpoints gives

x = −1
2

∞

∑
n=1

(−1)n
√

n + 1
, which converges by AST

x =
1
2

∞

∑
n=1

1√
n + 1

, which diverges by DCT with p series (p = 1/2)

Therefore the interval of convergence is −1
2
≤ x <

1
2

.

3(ii)
∞

∑
n=1

(−1)n x2n

22n (n!)2 ,

Choosing

an =
(−1)n x2n

22nn!2

then

lim
x→∞

∣∣∣∣ an+1

an

∣∣∣∣ = lim
x→∞

∣∣∣∣∣ (−1)n+1 x2n+2

22n+2(n + 1)!2
/
(−1)n x2n

22nn!2

∣∣∣∣∣ = lim
x→∞

1
4(n + 1)2

∣∣∣x2
∣∣∣ = 0 < 1

so series converges for all x.

3(iii)
∞

∑
n=1

(2x− 1)n

n2 ,

Choosing

an =
(2x− 1)n

n2

then

lim
x→∞

∣∣∣∣ an+1

an

∣∣∣∣ = lim
x→∞

∣∣∣∣ (2x− 1)n+1

(n + 1)2 /
(2x− 1)n

n2

∣∣∣∣ = lim
x→∞

n2

(n + 1)2 |2x− 1| = |2x− 1| < 1

So |2x− 1| < 1 or −1 < 2x− 1 < 1 or 0 < 2x < 2 or 0 < x < 1. Checking the endpoints
gives

x = 0
∞

∑
n=1

(−1)n

n2 , which converges absolutely, it’s a p series

x = 1
∞

∑
n=1

1
n2 , which converges, it’s a p series
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Therefore the interval of convergence is 0 ≤ x ≤ 1.

4. Calculate the nth degree Taylor polynomial with remainder for the following. Expand
about the point x = c

(4.1) f (x) = ex, c = 0, n = 2

f (x) = ex f (0) = 1,
f ′(x) = ex f ′(0) = 1,
f ′′(x) = ex f ′′(0) = 1,
f ′′′(x) = ex for the remainder,

The Taylor polynomial is

P2(x) = f (0) + f ′(0)x +
f ′′(0)

2!
x2,

= 1 + x +
x2

2!
,

The remainder is given by

R2(x) =
ez

3!
x3,

for 0 < z < x or x < z < 0

(4.2) f (x) = sin x, c =
π

2
n = 4,

In this example, we need only construct P4 .

f (x) = sin x f (
π

2
) = 1,

f ′(x) = cos x f ′(
π

2
) = 0,

f ′′(x) = − sin x f ′′(
π

2
) = −1,

f ′′′(x) = − cos x f ′′′(
π

2
) = 0,

f (4)(x) = sin x f (4)(
π

2
) = 1,

The Taylor polynomial is

P4(x) = f (
π

2
) +

f ′(
π

2
)

1!
(x− π

2
) +

f ′′
(π

2

)
2!

(x− π

2
)2 + · · ·+

f (4)(
π

2
)

4!
(x− π

2
)4,

= 1− 1
2!

(
x− π

2

)2
+

1
4!

(
x− π

2

)4
,
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The remainder is given by

R4(x) =
f (5)(z)

5!

(
x− π

2

)5
,

=
cos z

5!

(
x− π

2

)5
,

for
π

2
< z < x or x < z <

π

2
.

(4.3) f (x) = ln(x + 1), c = 0, n = 3

f (x) = ln(x + 1) f (0) = 0,

f ′(x) =
1

x + 1
f ′(0) = 1,

f ′′(x) =
−1

(x + 1)2 f ′′(0) = −1,

f ′′′(x) =
2

(x + 1)3 f ′′(0) = 2,

f (4)(x) =
−3!

(x + 1)4 for the remainder.

The Taylor polynomial is

P3(x) = f (0) + f ′(0)x +
f ′′(0)

2!
x2 +

f ′′′(0)
3!

x3,

= 0 + x− 1
2!

x2 +
2!
3!

x3,

= x− x2

2
+

x3

3
,

The remainder is given by

R3(x) =
f (4)(z)

4!
x4,

= − 3!
(z + 1)4

x4

4!
,

for 0 < z < x or x < z < 0.

(4.4) f (x) =
1

2− x
, c = 0, n = 3.
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In this case we only need P3. The derivatives are:

f (x) =
1

(2− x)
, f (0) =

1
2

,

f ′(x) =
1

(2− x)2 , f ′(0) =
1
22 ,

f ′′(x) =
2

(2− x)3 , f ′′(0) =
2
23 ,

f ′′′(x) =
3!

(2− x)4 , f ′′′(0) =
3!
24 ,

f (4)(x) =
4!

(2− x)4 , remainder,

The Taylor polynomial is

P3(x) = f (0) + f ′(0)x +
f ′′(0)

2!
x2 +

f ′′′(0)
3!

x3,

=
1
2
+

x
22 +

2!
23

x2

2!
+

3!
24

x3

3!
,

=
1
2
+

x
22 +

x2

23 +
x3

24 ,

The remainder is given by

R3(x) =
f (4)(z)

4!
x4,

=
1

(2− z)5 x4.

for 0 < z < x or x < z < 0.
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