Sample Test 2 Solutions

1. Do the following converge (explain)?
(1.1) $\sum_{n=1}^{\infty} \frac{\ln n}{n^{4}+1}$,

Since $\ln n<n$ for $n \geq 1$, then $\frac{\ln n}{n^{4}+1}<\frac{n}{n^{4}+1}<\frac{1}{n^{3}}$. Since $\sum_{n=1}^{\infty} \frac{1}{n^{3}} \quad(p=3)$ converges, then by the DCT the original series converges.
(1.2) $\sum_{n=1}^{\infty} \frac{1}{n^{3}+1}$,

Compare with $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$. Since $\lim _{n \rightarrow \infty} \frac{\frac{1}{n^{3}}}{\frac{1}{n^{3}+1}}=1$ and $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$ converges (p series with $p=3$) then by the limit comparison test (LCT), the original series converges.
(1.3) $\sum_{n=1}^{\infty}\left(\frac{1}{2}+\frac{1}{n}\right)^{n}$,

Taking the limit $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\lim _{n \rightarrow \infty}\left(\frac{1}{2}+\frac{1}{n}\right)=\frac{1}{2}<1$ then by the $n^{\text {th }}$ root test, the original series converges.

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\mathrm{e}^{n}}{n!} \tag{1.4}
\end{equation*}
$$

Consider $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{\mathrm{e}^{n+1}}{(n+1)!} / \frac{\mathrm{e}^{n}}{(n)!}=\lim _{n \rightarrow \infty} \frac{\mathrm{e}^{n+1}}{(n+1)!} \cdot \frac{(n)!}{\mathrm{e}^{n}}$
$=\lim _{n \rightarrow \infty} \frac{\mathrm{e}}{n+1}=0<1$ so by ratio test, the series converges
(1.5) $\sum_{n=1}^{\infty} \frac{1}{\ln (n+1)}$,

Since $\ln (n+1)<n+1$ for $n \geq 1$ then $\frac{1}{n+1}<\frac{1}{\ln (n+1)}$ for $n \geq 1$ and since $\sum_{n=1}^{\infty} \frac{1}{(n+1)}$ (harmonic) diverges, then by the DCT, original series does as well.
(1.6) $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$,

Comparing with $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ then $\lim _{n \rightarrow \infty} \frac{1}{n(n+1)} / \frac{1}{n^{2}}=\lim _{n \rightarrow \infty} \frac{n^{2}}{n(n+1)}=1$, and since $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges (p -series with $p=2$) then by the limit comparison test (LCT) the original series converges.
(1.7) $\sum_{n=1}^{\infty} \frac{n-1}{n+1}$,

Since $\lim _{n \rightarrow \infty} \frac{n-1}{n+1}=1$, then by the $n^{\text {th }}$ term test for divergence, the series diverges.
(1.8) $\sum_{n=1}^{\infty} \frac{(2 n)!}{(n!)^{2}}$,

Consider $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{(2 n+2)!}{(n+1)!^{2}} / \frac{(2 n)!}{(n)!^{2}}=\lim _{n \rightarrow \infty} \frac{(2 n+2)!}{(2 n)!} \cdot \frac{(n+1)!^{2}}{n!^{2}}$
$=\lim _{n \rightarrow \infty} \frac{(2 n+2)(2 n+1)}{(n+1)(n+1)}=4>1$ so by ratio test, the series diverges

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{1}{\ln ^{2}(n)} \tag{1.9}
\end{equation*}
$$

Since $\ln n<n$ for $n \geq 1$ then $\ln ^{2} n<n \ln n$ for $n \geq 1$ which gives $\frac{1}{n \ln n}<\frac{1}{\ln ^{2} n}$ for $n \geq 1$. Since $\sum_{n=1}^{\infty} \frac{1}{n \ln n}$ diverges, (see next question) then by the direct comparison test, original series does as well.

$$
\begin{equation*}
\sum_{n=3}^{\infty} \frac{1}{n \ln n} \tag{1.10}
\end{equation*}
$$

Let $f(x)=\frac{1}{x \ln x}$. Clearly $f(x)>0$ and $f^{\prime}(x)=-\frac{\ln x+1}{(x \ln x)^{2}}$ for $x \geq 3$ showing that $f(x)$ is decreasing so that the integral test may be used. Consider

$$
\int_{3}^{\infty} \frac{d x}{x \ln x}=\lim _{b \rightarrow \infty} \int_{3}^{b} \frac{d x}{x \ln x}=\left.\lim _{b \rightarrow \infty} \ln \ln x\right|_{3} ^{b}=\infty
$$

Since the integral diverges, then by the integral test, the series does as well.

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{2^{n}+1} \tag{1.11}
\end{equation*}
$$

Compare with $\sum_{n=1}^{\infty} \frac{1}{2^{n}}$. Then $\lim _{n \rightarrow \infty} \frac{1}{2^{n}} / \frac{1}{2^{n}+1}=\lim _{n \rightarrow \infty} \frac{2^{n}+1}{2^{n}}=1$ and since $\sum_{n=1}^{\infty} \frac{1}{2^{n}}$ converges (geometric series with $r=1 / 2$), the original series converges by the LCT.
2. Determine whether the following series converge absolutely, conditionally or diverge
(2.1) $\sum_{n=1}^{\infty} \frac{(-1)^{n}(n-1)}{n+1}$,

Since $\lim _{n \rightarrow \infty} \frac{(-1)^{n}(n-1)}{n+1}=(-1)^{n} \neq 0$ this series diverges.
(2.2) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n(n+1)}}$,

We first consider $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+1)}}$ and by limit comparison with $\sum_{n=1}^{\infty} \frac{1}{n}$ shows that we do not have absolute convergence. So we check the two conditions for conditional convergence. If we let $a_{n}=\frac{1}{\sqrt{n(n+1)}}$, then clearly

$$
\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n(n+1)}}=0
$$

Next, we need to show $a_{n+1}<a_{n}$. We could show

$$
\frac{1}{\sqrt{(n+1)(n+2)}} \stackrel{?}{\leq} \frac{1}{\sqrt{n(n+1)}}
$$

but is easier to show that if

$$
f(x)=\frac{1}{\sqrt{x(x+1)}} \text { then } f^{\prime}(x)=-\frac{2 x+1}{2\left(x^{2}+x\right)^{3 / 2}}<0 \text { for } x \geq 1
$$

so by the alternating series test (AST), the series converges conditionally.
(2.3) $\sum_{n=1}^{\infty} \frac{(-1)^{n} n^{n}}{n!}$,

We let $a_{n}=\frac{n^{n}}{n!}$. We stop the series from alternating and use the ration test.

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{(n+1)^{n+1}}{(n+1)!} / \frac{n^{n}}{n!}=\lim _{n \rightarrow \infty} \frac{(n+1)(n+1)^{n}}{(n+1) n!} \cdot \frac{n!}{n^{n}}= \\
& \lim _{n \rightarrow \infty} \frac{(n+1)^{n}}{n^{n}}=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=\mathrm{e}>1
\end{aligned}
$$

so by ratio test, the series does not converge absolutely. Now we go the the AST. We will show that the terms are not decreasing. So we want to show that $\frac{n^{n}}{n!}<\frac{(n+1)^{n+1}}{(n+1)!}$ so $\frac{n^{n}}{n!}<\frac{(n+1)(n+1)^{n}}{(n+1) n!}$ and after canceling $n^{n}<(n+1)^{n}$ or $n<n+1$ which is true so the serives diverges by the AST.
(2.4) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{2^{n}+3^{n}}$,

We first consider $\sum_{n=1}^{\infty} \frac{1}{2^{n}+3^{n}}$ and compare with $\sum_{n=1}^{\infty} \frac{1}{3^{n}}$. By the LCT

$$
\lim _{n \rightarrow \infty} \frac{1}{3^{n}} / \frac{1}{2^{n}+3^{n}}=\lim _{n \rightarrow \infty} \frac{2^{n}+3^{n}}{3^{n}}=\lim _{n \rightarrow \infty} 1+\left(\frac{2}{3}\right)^{n}=1
$$

and since $\sum_{n=1}^{\infty} \frac{1}{3^{n}}$ converges (geometric series $r=1 / 3$), the original series converges absolutely.
(2.5) $\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{n^{2}+1}$,

We first consider $\sum_{n=1}^{\infty} \frac{n}{n^{2}+1}$ and compare with $\sum_{n=1}^{\infty} \frac{1}{n}$. By the LCT

$$
\lim _{n \rightarrow \infty} \frac{1}{n} / \frac{n}{n^{2}+1}=\lim _{n \rightarrow \infty} \frac{n^{2}+1}{n^{2}}=1
$$

which show that original series doesn't converge absolutely since we compared with the harmonic series that diverges. If we let $a_{n}=\frac{n}{n^{2}+1}$, then clearly

$$
\lim _{n \rightarrow \infty} \frac{n}{n^{2}+1}=0
$$

Next, we need to show $a_{n+1}<a_{n}$. If we let

$$
f(x)=\frac{x}{x^{2}+1} \text { then } f^{\prime}(x)=\frac{-x^{2}+1}{\left(x^{2}+1\right)^{2}}<0 \text { for } x>1
$$

so by the alternating series test (AST), the series converges conditionally.
(2.6) $\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{n+1}$.

Since $\lim _{n \rightarrow \infty} \frac{(-1)^{n} n}{n+1}=(-1)^{n} \neq 0$ this series diverges.
3. Determine the interval of convergence of the following.

$$
\sum_{n=1}^{\infty} \frac{2^{n} x^{n}}{\sqrt{n+1}}, \quad \sum_{n=1}^{\infty} \frac{(-1)^{n} x^{2 n}}{2^{2 n}(n!)^{2}}, \quad \sum_{n=1}^{\infty} \frac{(x-1)^{n}}{n^{2}}
$$

3(i) $\sum_{n=1}^{\infty} \frac{2^{n} x^{n}}{\sqrt{n+1}}$,
Choosing

$$
a_{n}=\frac{2^{n} x^{n}}{\sqrt{n+1}}
$$

then

$$
\lim _{x \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{x \rightarrow \infty}\left|\frac{2^{n+1} x^{n+1}}{\sqrt{n+2}} / \frac{2^{n} x^{n}}{\sqrt{n+1}}\right|=\lim _{x \rightarrow \infty} 2 \frac{\sqrt{n+1}}{\sqrt{n+2}}|x|=2|x|<1
$$

So $|x|<\frac{1}{2}$ or $-\frac{1}{2}<x<\frac{1}{2}$. Checking the endpoints gives

$$
\begin{array}{lll}
x=-\frac{1}{2} & & \sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n+1}}, \\
x=\frac{1}{2} & & \text { which converges by AST } \\
x=1 & \sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1}}, \quad \text { which diverges by DCT with } p \text { series }(p=1 / 2)
\end{array}
$$

Therefore the interval of convergence is $-\frac{1}{2} \leq x<\frac{1}{2}$.

3(ii) $\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{2 n}}{2^{2 n}(n!)^{2}}$,
Choosing

$$
a_{n}=\frac{(-1)^{n} x^{2 n}}{2^{2 n} n!^{2}}
$$

then

$$
\lim _{x \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{x \rightarrow \infty}\left|\frac{(-1)^{n+1} x^{2 n+2}}{2^{2 n+2}(n+1)!^{2}} / \frac{(-1)^{n} x^{2 n}}{2^{2 n} n!^{2}}\right|=\lim _{x \rightarrow \infty} \frac{1}{4(n+1)^{2}}\left|x^{2}\right|=0<1
$$

so series converges for all x.
3(iii) $\sum_{n=1}^{\infty} \frac{(2 x-1)^{n}}{n^{2}}$,
Choosing

$$
a_{n}=\frac{(2 x-1)^{n}}{n^{2}}
$$

then

$$
\lim _{x \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{x \rightarrow \infty}\left|\frac{(2 x-1)^{n+1}}{(n+1)^{2}} / \frac{(2 x-1)^{n}}{n^{2}}\right|=\lim _{x \rightarrow \infty} \frac{n^{2}}{(n+1)^{2}}|2 x-1|=|2 x-1|<1
$$

So $|2 x-1|<1$ or $-1<2 x-1<1$ or $0<2 x<2$ or $0<x<1$. Checking the endpoints gives

$$
\begin{array}{ll}
x=0 & \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}, \quad \text { which converges absolutely, it's a } p \text { series } \\
x=1 & \sum_{n=1}^{\infty} \frac{1}{n^{2}}, \quad \text { which converges, it's a } p \text { series }
\end{array}
$$

Therefore the interval of convergence is $0 \leq x \leq 1$.
4. Calculate the $n^{\text {th }}$ degree Taylor polynomial with remainder for the following. Expand about the point $x=c$
(4.1) $f(x)=\mathrm{e}^{x}, c=0, \mathrm{n}=2$

$$
\begin{array}{rll}
f(x) & =\mathrm{e}^{x} \quad f(0)=1 \\
f^{\prime}(x) & =\mathrm{e}^{x} \quad f^{\prime}(0)=1 \\
f^{\prime \prime}(x) & =\mathrm{e}^{x} \quad f^{\prime \prime}(0)=1 \\
f^{\prime \prime \prime}(x) & =\mathrm{e}^{x} \quad \text { for the remainder, }
\end{array}
$$

The Taylor polynomial is

$$
\begin{aligned}
P_{2}(x) & =f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2} \\
& =1+x+\frac{x^{2}}{2!}
\end{aligned}
$$

The remainder is given by

$$
R_{2}(x)=\frac{\mathrm{e}^{z}}{3!} x^{3}
$$

for $0<z<x$ or $x<z<0$
(4.2) $f(x)=\sin x, c=\frac{\pi}{2} \quad n=4$,

In this example, we need only construct P_{4}.

$$
\begin{array}{rlrl}
f(x) & =\sin x & f\left(\frac{\pi}{2}\right) & =1, \\
f^{\prime}(x) & =\cos x & f^{\prime}\left(\frac{\pi}{2}\right) & =0, \\
f^{\prime \prime}(x) & =-\sin x & f^{\prime \prime}\left(\frac{\pi}{2}\right) & =-1, \\
f^{\prime \prime \prime}(x) & =-\cos x & f^{\prime \prime \prime}\left(\frac{\pi}{2}\right) & =0, \\
f^{(4)}(x) & =\sin x & f^{(4)}\left(\frac{\pi}{2}\right) & =1,
\end{array}
$$

The Taylor polynomial is

$$
\begin{aligned}
P_{4}(x) & =f\left(\frac{\pi}{2}\right)+\frac{f^{\prime}\left(\frac{\pi}{2}\right)}{1!}\left(x-\frac{\pi}{2}\right)+\frac{f^{\prime \prime}\left(\frac{\pi}{2}\right)}{2!}\left(x-\frac{\pi}{2}\right)^{2}+\cdots+\frac{f^{(4)}\left(\frac{\pi}{2}\right)}{4!}\left(x-\frac{\pi}{2}\right)^{4}, \\
& =1-\frac{1}{2!}\left(x-\frac{\pi}{2}\right)^{2}+\frac{1}{4!}\left(x-\frac{\pi}{2}\right)^{4},
\end{aligned}
$$

The remainder is given by

$$
\begin{aligned}
R_{4}(x) & =\frac{f^{(5)}(z)}{5!}\left(x-\frac{\pi}{2}\right)^{5} \\
& =\frac{\cos z}{5!}\left(x-\frac{\pi}{2}\right)^{5}
\end{aligned}
$$

for $\frac{\pi}{2}<z<x$ or $x<z<\frac{\pi}{2}$.
(4.3) $f(x)=\ln (x+1), \quad c=0, \quad \mathrm{n}=3$

$$
\begin{array}{rlrl}
f(x) & =\ln (x+1) & f(0)=0 \\
f^{\prime}(x) & =\frac{1}{x+1} & f^{\prime}(0)=1 \\
f^{\prime \prime}(x) & =\frac{-1}{(x+1)^{2}} & f^{\prime \prime}(0)=-1 \\
f^{\prime \prime \prime}(x) & =\frac{2}{(x+1)^{3}} & f^{\prime \prime}(0)=2 \\
f^{(4)}(x) & =\frac{-3!}{(x+1)^{4}} \text { for the remainder. }
\end{array}
$$

The Taylor polynomial is

$$
\begin{aligned}
P_{3}(x) & =f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3} \\
& =0+x-\frac{1}{2!} x^{2}+\frac{2!}{3!} x^{3} \\
& =x-\frac{x^{2}}{2}+\frac{x^{3}}{3}
\end{aligned}
$$

The remainder is given by

$$
\begin{aligned}
R_{3}(x) & =\frac{f^{(4)}(z)}{4!} x^{4} \\
& =-\frac{3!}{(z+1)^{4}} \frac{x^{4}}{4!}
\end{aligned}
$$

for $0<z<x$ or $x<z<0$.
(4.4) $f(x)=\frac{1}{2-x}, \quad c=0, \quad n=3$.

In this case we only need P_{3}. The derivatives are:

$$
\begin{array}{rlrl}
f(x) & =\frac{1}{(2-x)}, & f(0) & =\frac{1}{2} \\
f^{\prime}(x) & =\frac{1}{(2-x)^{2}}, & f^{\prime}(0) & =\frac{1}{2^{2}} \\
f^{\prime \prime}(x) & =\frac{2}{(2-x)^{3}}, & f^{\prime \prime}(0) & =\frac{2}{2^{3}} \\
f^{\prime \prime \prime}(x) & =\frac{3!}{(2-x)^{4}}, & f^{\prime \prime \prime}(0) & =\frac{3!}{2^{4}} \\
f^{(4)}(x) & =\frac{4!}{(2-x)^{4}}, & \text { remainder, }
\end{array}
$$

The Taylor polynomial is

$$
\begin{aligned}
P_{3}(x) & =f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3} \\
& =\frac{1}{2}+\frac{x}{2^{2}}+\frac{2!}{2^{3}} \frac{x^{2}}{2!}+\frac{3!}{2^{4}} \frac{x^{3}}{3!} \\
& =\frac{1}{2}+\frac{x}{2^{2}}+\frac{x^{2}}{2^{3}}+\frac{x^{3}}{2^{4}},
\end{aligned}
$$

The remainder is given by

$$
\begin{aligned}
R_{3}(x) & =\frac{f^{(4)}(z)}{4!} x^{4} \\
& =\frac{1}{(2-z)^{5}} x^{4}
\end{aligned}
$$

for $0<z<x$ or $x<z<0$.

