What's Important in Mathematics at Tier 2 and 3

Sarah R. Powell, Ph.D.

Professor
College of Education
The University of Texas at Austin

Introduce yourself.

Describe your strengths in supporting mathematics.

Describe an opportunity for growth.

Instructional Platform

What's the continuum of mathematics support?

Instructional Platform

回施回 Th家管社定

Students require modeling and practice on how to use the language of mathematics.

Students should use hands-on tools, virtual manipulatives, drawings, and other visuals to understand mathematics concepts and procedures.

Teachers should use systematic and explicit instruction to help students develop a strong foundation for specific mathematics skills.

Teachers should use fluency building activities to build counting fluency and fluency with the operations.

Students should learn how to set up and solve word problems by combining an attack strategy with a focus on word-problem schemas.

Instructional Platform

INSTRUCTIONAL DELIVERY

Model and Practice

INSTRUCTIONAL STRATEGIES

Fluency

Word Problems

Vocabulary

*옹말

INSTRUCTIONAL DELIVERY

Vocabulary

INSTRUCTIONAL STRATEGIES

Significant correlation ($r=.49$) between mathematics vocabulary and mathematics performance. Mathematics vocabulary appears most important for word-problem performance ($r=.58$).
(Lin et al., 2021)

Early mathematics vocabulary related to mathematics and literacy.

(Hornburg et al., 2018; Purpura et al., 2017)

Students who experience difficulty with mathematics demonstrate lower mathematics vocabulary performance. (Hughes et al., 2020; Powell \& Nelson, 2017; Powell et al., 2017; Unal et al., 2021)

1. Some math terms are shared with English but have different meanings

2. Some math terms are shared with English but have different meanings
3. Some math words are shared with English with similar meanings (but a more precise math meaning)
difference
even
4. Some math terms are shared with English but have different meanings
5. Some math words are shared with English with similar meanings (but a more precise math meaning)
6. Some math terms have more than one meaning

7. Some math terms are shared with English but have different meanings
8. Some math words are shared with English with similar meanings (but a more precise math meaning)
9. Some math terms have more than one meaning
10. Some math terms are only used in math

numerator
parallelogram
11. Some math terms are shared with English but have different meanings
12. Some math words are shared with English with similar meanings (but a more precise math meaning)
13. Some math terms have more than one meaning
14. Some math terms are only used in math
15. Some math terms are homophones

16. Some math terms are shared with English but have different meanings
17. Some math words are shared with English with similar meanings (but a more precise math meaning)
18. Some math terms have more than one meaning
19. Some math terms are only used in math
20. Some math terms are homophones
21. Some math terms are related but have distinct meanings

22. Some math terms are shared with English but have different meanings
23. Some math words are shared with English with similar meanings (but a more precise math meaning)
24. Some math terms have more than one meaning
25. Some math terms are only used in math
26. Some math terms are homophones
27. Some math terms are related but have distinct meanings
28. Some math concepts are verbalized in more than one way
skip count vs. multiples
one-fourth vs. one quarter
29. Some math terms are shared with English but have different meanings
30. Some math words are shared with English with similar meanings (but a more precise math meaning)
31. Some math terms have more than one meaning
32. Some math terms are only used in math
33. Some math terms are homophones
34. Some math terms are related but have distinct meanings
35. Some math concepts are verbalized in more than one way

8 Some informal terms may be used for formal math terms
rhombus vs. diamond

Why might your students have difficulty with math vocabulary?

Use formal math language

Use terms precisely

The alligator eats the bigger number

- Students must learn how to read and write the inequality symbols.
- Students must learn to read equations correctly from left to right because < and > are two distinct symbols.

is less than OR is greater than

Why this is important...

What digit is in the tens place? What is the value of the digit in the tens place?

135

Why this is important...

- A number refers to the entire amount.
- The 3 in the tens place value is not a number, but rather a digit in the number 135.
- Reinforces conceptual understanding of place value.
- Emphasizes that 3 is part of the number 135 with a value of 30 .

Why this is important...

- Identifying that there are two separate (whole) numbers suggests that whole number properties can be applied to fractions.
- Emphasizing that a fraction is ONE number with ONE magnitude on a number line that is communicated with a numerator and denominator is important.

 Four point oh seven

Four and seven tenths

 Four and seven hundredthsWhy this is important...

- Accurately shares the magnitude of the decimal.
- Emphasizes place value.

Identify examples of "Instead of \qquad , say \qquad "

Use formal math language

Use terms precisely

Factor
$1 \times 8=8$
Multiple
$8 \times 1=8$
$\begin{aligned} & 8 \times 2=16 \\ & \text { mutipl }^{1 \text { Pes }^{5}} \end{aligned}$

Improper fraction	Proportion
$\frac{8}{5}$	$\frac{2}{5}=\frac{8}{20}$
Mixed number	Ratio
$1 \frac{3}{5}$	$4: 3$
Proper fraction	Unit fraction
$\frac{2}{9}$	$\frac{1}{6}$

Equation $9 x-4=7 x$
Expression $9 x-4$
Formula $a^{2}+b^{2}=c^{2}$
Function $f(x)$
Inequality $9 x-4>6 x$

Alternate angles

Complementary angles

Corresponding angles

Supplementary angles

Vertical angles

Discuss terms you want your students to use with precision.

Use formal math language

Use terms precisely

Use semantic maps

Use word walls

difference

The result of subtracting or the result when
comparing two numbers.

$$
5-4=1
$$

1 is the difference

equivalent

Two numbers that have the same value.
$\frac{2}{4}$ is equivalent to $\frac{1}{2}$
horizontal line
A straight line that goes from left to right or right to left.

$$
5+7=12
$$

Use flash cards

difference

Use glossaries

Glosario de Matemáticas

Tėrmino	Definición
${ }^{\text {adicicion }}$	Juntar o agregar.
algoritmo (algorithm)	Es una serie de pasos organizados que describe el proceso que se debe seguir, para dar solución a un problema especifico.
alinear (arara)	Un conjunto de objetos, imágenes o números alineados en columnas y filas.
ancho (width)	La medida de un lado de un objeto, generalmente el lado más corto.
$\begin{aligned} & \text { angulo } \\ & \text { (angle) } \end{aligned}$	Dos semirrectas o segmentos de linea recta que comparten un punto final.
àngulo agudo (acute angle)	Un ángulo que mide menos de 90°.
ángulo obtuso (obtuse angle)	Un àngulo que mide entre 99° y 180°.
ángulo recto (right angle)	Un ingulo que mide exactamente 90°.
$\begin{aligned} & \text { area } \\ & \text { (area) } \end{aligned}$	La cantidad de unidades cuadradas que cubre una figura geométrica cerrada.
balance presupuestario (balance the budget)	Un presupuesto es cuando la cantidad total de dinero gastado, ahorrado y compartido es igual al ingreso total.
$\begin{gathered}\text { basccula } \\ \text { (balance scale) }\end{gathered}$	Instrumento de medición que se utiliza para medir el peso o la carga.
base (computación) (base (computation))	Un número que se multipica por un exponente.
base (geometria) (base (geometry))	La forma inferior de una figura tridimensional.

Use anchor charts

Addition Computation
 1
 17
 addend
 $\begin{array}{r} \\ +\quad 59 \\ \hline\end{array}$
 76
 addend
 sum

Use graphic organizers

| Definition
 a straight line that
 goes left to right
 or right to left |
| :---: | :---: | :---: |
| Examples |

Use games

square	circle	decagon	triangular prism	cone
cylinder	cube	sphere	line	pyramid
paraltelogram	octagon	FREE	trapezoid	oval
kite	pentagon	cylinder	rectangle	tine
hexagon	rhombus	triangle	quadrilateral	rectangular
				prism

one-fifth one-sixth

Use discussion

Use technology

Math

Addition \&
Subtraction

Geometry \&
Measurement

Multiplication \& Division

Statistics \& Probability

Numbers \&
Operations

Ratios \&
Proportional
Relationships

Expressions \& Equations

Use math writing

Use read-alouds

Model and practice

Teacher	Let's work on addition. Today, let's think about addition as combining. What does it mean to combine?
Students	Put together.
Teacher	When we combine, we put things together. When you cook, you put ingredients together. For example, to make macaroni and cheese, you combine what?
Students	Macaroni noodles and cheese! Teacher That's right. You combine macaroni and cheese! Now, let's think about combining numbers. Look at this problem. (Show problem.)

Make sure students use mathematics vocabulary as much as adults do!

What are your strengths with vocabulary?

What are your opportunities for growth?

What are your plans for next Monday?
Next month?
Next year?

Students require modeling and practice on how to use the language of mathematics.

Students should use hands-on tools, virtual manipulatives, drawings, and other visuals to understand mathematics concepts and procedures.

Teachers should use systematic and explicit instruction to help students develop a strong foundation for specific mathematics skills.

Teachers should use fluency building activities to build counting fluency and fluency with the operations.

Students should learn how to set up and solve word problems by combining an attack strategy with a focus on word-problem schemas.

Representations

$4 \% 202$

INSTRUCTIONAL DELIVERY

Model and Practice

INSTRUCTIONAL STRATEGIES

Hands-on manipulatives contribute to increases in mathematics performance.
(Bouck \& Park, 2018; Carbonneau et al., 2013; Namkung \& Bricko, 2021; Sherman \& Bisanz, 2009; Strickland \& Maccini, 2012)

Virtual manipulatives contribute to increases in mathematics performance.
(Bouck et al., 2020; Satsangi et al., 2016)

Other visuals (e.g., graphic organizers) contribute to increases in mathematics performance.
(Jitendra et al., 2009; Sharp \& Dennis, 2017; van Garderen, 2007; Xin, 2008)

Abstract

Concrete

Describe your favorite hands-on materials.

Modeling Fractions with Cuisenaire Rods

Describe your favorite virtual manipulatives.

$$
0,1,2,3,4,5,6,7,8,9,10
$$

4,179
 569 $+\quad 1$

REPRESENTATIONS
Representations

What are your strengths?

What are your opportunities for growth?

What are your plans for next Monday?
Next month?
Next year?

What are your strengths with representations?

What are your opportunities for growth?

What are your plans for next Monday?
Next month?
Next year?

Students require modeling and practice on how to use the language of mathematics.

Students should use hands-on tools, virtual manipulatives, drawings, and other visuals to understand mathematics concepts and procedures.

Teachers should use systematic and explicit instruction to help students develop a strong foundation for specific mathematics skills.

Teachers should use fluency building activities to build counting fluency and fluency with the operations.

Students should learn how to set up and solve word problems by combining an attack strategy with a focus on word-problem schemas.

Model and Practice

INSTRUCTIONAL DELIVERY

Model and Practice

INSTRUCTIONAL STRATEGIES

Over a half century of research supports explicit (i.e., direct, systematic) instruction.
(Stockard et al., 2018)

When compared to discovery approaches, explicit instruction demonstrates higher outcomes.
(Alfieri et al., 2011; Kroesbergen et al., 2004; Poncy et al., 2010)

Numerous meta-analyses and large-scale studies have identified explicit instruction as essential for the teaching and learning of mathematics.
(Chodura et al., 2015; Ennis \& Losinski, 2019; Jitendra et al., 2018; Kong et al., 2021; Morgan et al., 2015; Nelson \& McMaster, 2019; Powell et al., 2021).

MODELING

PRACTICE

Step-by-step explanation
Planned examples

Guided practice
Independent practice

SUPPORTS

Ask high-level and low-level questions
Eliciting frequent responses
Providing affirmative and corrective feedback

Modeling is a dialogue between the teacher and students.

MODELING Step-by-step explanation Planned examples	PRACTICE Guided practice Independent practice
SUPPORTS Ask high-level and low-level questions Eliciting frequent responses Providing affirmative and corrective feedback	

"Today, we are learning about addition. This is important because sometimes you have different amounts - like money - and you want to know how much money you have altogether."

ตัロロ

"To solve 26 plus 79, first decide about the operation. Should we add, subtract, multiply, or divide?"

"How did you know we want to add?"
"There's a plus
sign."

"The plus sign tells us we want to add. To add, let's use the partial sums strategy. What strategy?"
"What might partial mean?"
"Part of." $\square \square \square$
"We'll find parts - or partial sums - then add them together. With the partial sums strategy, we start adding in the greatest place value. What's the greatest place value in this problem?"
"So, let's add the tens. What's 20 plus 70? Use your base-10 blocks or other tools."
"20 plus 70 equals
90. Let's write 90
right here below the equal line. What will we write?"
" 90 is the partial sum when you add the tens. What does 90 represent?"
"Now, let's add the ones. What should we add?"

" 6 plus 9 equals what? Use your base-10 blocks or other tools."
"How did you get 15?"
"Let's write 15 below the 90.
Where do we write the 15 ?"
" 15 is the partial sum when you add the ones. Now, let's add the partial sums together. What will we add?"

"We knew we had 9, then we added on 6."

"How did you add those addends?"

"So, when you add
26 plus 79, the sum
is 105 . Who can
share how we solved this problem?"
"We used the partial sums strategy. We added
the tens then
added the ones. Then we added the
partial sums."
strategy. We added

Modeling needs to include planned examples.

These examples should be sequenced so easier skills lead to more difficult skills.

Guided practice is practice in which the teacher and students practice problems together.
"Let's work on a problem together."

MODELING
 Step-by-step explanation
 PRACTICE
 Guided practice
 Independent practice
 Ask high-level and low-level questions
 Eliciting frequent responses
 Providing affirmative and corrective feedback

 \section*{SUPPORTS}

 \section*{SUPPORTS}
 Independent practice is practice in which the students practice independently with teacher support.

"Now, you'll practice a problem on your own. Use your attack strategy!"

MODELING Step-by-step explanation Planned examples	PRACTICE Guided practice Independent practice
SUPPORTS Ask high-level and low-level questions Eliciting frequent responses Providing affirmative and corrective feedback	

These Supports should be used in both Modeling and Practice.

During Modeling and Practice, it is essential to engage students and check for understanding.

> During Modeling and Practice, students should frequently respond. The frequent responses keeps student attention and keeps student learning active.

MODELING Step-by-step explanation	PRACTICE Guided practice Planned examples
SUPDependent practice	
Ask high-level and low-level questions	
Eliciting frequent responses	

During Modeling and Practice, students should receive immediate feedback on their responses.

"Nice work using your word problem attack strategy."

MODEL AND PRACTICE
What are your strengths?

What are your opportunities for growth?

What are your plans for next Monday?
Next month?
Next year?

What are your strengths with modeling and practice?

What are your opportunities for growth?

What are your plans for next Monday?
Next month?
Next year?

Students require modeling and practice on how to use the language of mathematics.

Students should use hands-on tools, virtual manipulatives, drawings, and other visuals to understand mathematics concepts and procedures.

Teachers should use systematic and explicit instruction to help students develop a strong foundation for specific mathematics skills.

Teachers should use fluency building activities to build counting fluency and fluency with the operations.

Students should learn how to set up and solve word problems by combining an attack strategy with a focus on word-problem schemas.

Fluency

*옹말

INSTRUCTIONAL DELIVERY

Model and Practice

INSTRUCTIONAL STRATEGIES

Fluency

Mathematics fluency, particularly fluency with facts and computation, is related to overall mathematics performance.
(Bailey et al., 2012; Cirino et al., 2019; Koponen et al., 2007, 2017; Vukovic et al., 2014

Fact fluency practice improves

mathematics fact performance.
(Burns et al., 2010; Codding et al., 2011; McCallum et al., 2004; Nelson et al., 2013; Poncy et al., 2010; Schutte et al., 2015; Stocker \& Kubina, 2017)

Fluency provides less stress on working memory.

Fluency helps students build confidence with mathematics.

With fluency, it is important to emphasize both conceptual learning and procedural learning.

Addition	Subtraction
Multiplication	Division

Ease and accuracy

Memorization or automaticity

List different types of fluency.
Discuss whether they require memorization.

Addition	Subtraction
Multiplication	Division

Build fluency with math facts.

- Addition: single-digit addends
- Subtraction: single-digit subtrahend
- Multiplication: single-digit factors
- Division: single-digit divisor

$$
\begin{array}{r}
5 \\
+\quad 8 \\
\hline
\end{array} \begin{array}{r}
6 \\
\times \quad 7 \\
\hline
\end{array} \quad \begin{array}{r}
56 \\
\hline
\end{array}
$$

Addition	Subtraction
Multiplication	Division

Build fluency with whole-number computation.

15
$+\quad 28$

1009
$\begin{array}{r}-724 \\ \hline\end{array}$

7250
$+\quad 15$

Addition	Subtraction
Multiplication	Division

Build fluency with rational-number computation.

$$
\begin{array}{r}
1.4 \\
+\quad 3.9 \\
\hline
\end{array}
$$

$$
\frac{2}{3} \times \frac{3}{4}
$$

$$
\begin{array}{lr}
9 \\
4 & -\frac{3}{8} \\
\div \quad 0.892 \\
\hline
\end{array}
$$

Addition	Subtraction
Multiplication	Division

Build fluency with integer computation.

$$
-14-(-7)=
$$

$-135 \div 2=$

DAILY

BRIEF

Work on small sets of facts

Work on unknown facts

(in combination with known facts)

Dice

Beach Ball

Dominoes

Spinner

2 times 4 equals 8 .

Playing Cards

Wrap-Ups

Mobi Math

Flash Cards

Bingo

Math Bingo
 Your teacher will call out a math problem. Quickly solve the problem. If you have the

 answer on your bingo card, cover it with a chip. The middle space is freeThe first person to finish the pattern your teacher decides wins! (5 in a row, 4 corners, etc.)

12		24	100	
15	0	42	16	20
8	35		6	4
	2	40	27	7
50	10	30	48	14

8 times 10 equals...

3 times 1 equals...

2 plus 3 equals...

Magic Squares

Magic Squares Board

4. Create two columns with a a sum or product of the bottom number.
5. Create two rows with a sum or product of the right column number.
5. Create two rows with a sum or prate
6. Write the created facts below.

4	5	9
2	0	2
6	5	11

7	3	10
1	0	1
8	3	11

6	1	7
3	2	5
9	3	12

0	2	2
5	4	9
5	6	11

$\frac{0+2=2}{5+4=9}$
\square
\square
\square

4

5	1	6
4	3	7
9	4	13
1 5 6 6 2 8 7 7 14		

5	1	6
3	4	7
8	5	13

4	4	8
2	2	4
6	6	12
6	3	9
2	3	5
8	6	14

6	2	8
3	4	7
9	6	15

Cover, Copy, Compare

	$\begin{array}{r} 9 \\ \times 6 \\ \hline 54 \end{array}$	$\begin{array}{r} 8 \\ \times \quad 6 \\ \hline 48 \end{array}$
$\begin{array}{r} 7 \\ \times 8 \\ \hline 56 \end{array}$		$\begin{array}{r}6 \\ \times \quad 5 \\ \hline 30\end{array}$
$\begin{array}{r}9 \\ \times 9 \\ \hline 81\end{array}$		$\begin{array}{r}7 \\ \times \quad 9 \\ \hline 63\end{array}$
6 $\times 7$ 42		8 $\times \quad 5$ 40
$\begin{array}{r} 8 \\ \times \quad 8 \\ 64 \end{array}$		$\begin{array}{r}7 \\ \times \quad 7 \\ \hline 49\end{array}$

Taped Problems

Taped Problems

$\begin{array}{r} 8 \\ \times 8 \end{array}$	$\begin{array}{r} 7 \\ \times 7 \\ \hline \end{array}$	$\begin{array}{r} 8 \\ \times 7 \end{array}$
64	49	
$\begin{array}{r} 6 \\ \times 5 \\ \hline \end{array}$	$\begin{array}{r} 6 \\ \times 7 \end{array}$	$\begin{array}{r} 6 \\ \times 8 \\ \hline \end{array}$
$\begin{array}{r} 5 \\ \times 7 \\ \hline \end{array}$	$\begin{array}{r} 5 \\ \times 5 \\ \hline \end{array}$	$\begin{array}{r} 5 \\ \times 6 \end{array}$
$\begin{array}{r} 6 \\ \times 6 \\ \hline \end{array}$	$\begin{array}{r} 8 \\ \times 6 \\ \hline \end{array}$	$\begin{array}{r} 7 \\ \times 6 \\ \hline \end{array}$
$\begin{array}{r} 7 \\ \times \quad 8 \\ \hline \end{array}$	$\begin{array}{r} 8 \\ \times 5 \\ \hline \end{array}$	$\begin{array}{r} 7 \\ \times 5 \\ \hline \end{array}$

Games

\#CEC2024
*옹말

Technology

FACT MONSTER

Flasheard

Help your students attain math fact fluency success whether in-person, remote, or through hybrid learning

\% 장ㅁ

DAILY

BRIEF

Work on small sets of facts

Work on unknown facts

(in combination with known facts)

What are your strengths with fluency?

What are your opportunities for growth?

What are your plans for next Monday?
Next month?
Next year?

Students require modeling and practice on how to use the language of mathematics.

Students should use hands-on tools, virtual manipulatives, drawings, and other visuals to understand mathematics concepts and procedures.

Teachers should use systematic and explicit instruction to help students develop a strong foundation for specific mathematics skills.

Teachers should use fluency building activities to build counting fluency and fluency with the operations.

Students should learn how to set up and solve word problems by combining an attack strategy with a focus on word-problem schemas.

Word Problems

INSTRUCTIONAL DELIVERY

Model and Practice

INSTRUCTIONAL STRATEGIES

Fluency

Key words tied to operations is an ineffective wordproblem strategy.
(Karp et al., 2019; Powell et al., 2022)

Using a meta-cognitive strategy improves word-problem performance.

(Freeman-Green et al., 2015; Krawec et al., 2012; Montague et al., 2011; Swanson et al., 2014)

A focus on schemas improves word-problem performance. (Alghamdi et al., 2020; Cook et al., 2020; Flores et al., 2016; Fuchs et al., 2021; Griffin et al., 2019; Jitendra et al., 2013; Lein et al., 2020; Peltier et al., 2020; Powell et al., 2022; Xin \& Xhang, 2009; Zheng et al., 2013)

1. Keywords tied to operations

Carmelita had 8 pencils fewer than Jenny. If Jenny had 18 pencils, how many pencils did Carmelita have?

Carmelita had 8 pencils fewer than Jenny. If Carmelita had 18 pencils, how many pencils did Jenny have?

Description of Single-Step Word Problems ($n=132$)										
Schema	Occurrence of schema		Any keyword		Schemaspecific keywords ${ }^{\text {a }}$		Multiple keywords ${ }^{3}$		Keyword(s) led to correct solution ${ }^{\text {a }}$	
	n	\%								
Total	27	20.5	26	96.3	23	88.5	5	19.2	21	80.8
Difference	17	12.9	17	100.0	14	82.4	2	11.8	12	70.6
Change	11	8.3	7	63.6	5	71.4	5	71.4	2	28.6
Equal groups	29	22.0	26	89.7	22	84.6	18	69.2	8	30.8
Comparison	10	7.6	9	90.0	9	100.0	4	44.4	5	55.6
Ratios or proportions	29	22.0	23	79.3	9	39.1	9	39.1	6	26.1
Product of measures	9	6.8	9	100.0	8	88.9	1	11.1	5	55.6

Description of Multi-Step Word Problems ($n=84$)

Schema	Occurrence of schema ${ }^{\text {a }}$		Any keyword		Keyword(s) led to correct solution ${ }^{\text {b }}$	
	n	\%	n	\%	n	\%
Total	40	47.6	39	97.5	3	7.7
Difference	11	13.1	11	100.0	1	9.1
Change	21	23.8	19	95.0	1	5.3
Equal groups	49	58.3	48	98.0	1	2.1
Comparison	7	8.3	7	100.0	0	0.0
Ratios or proportions	22	25.0	16	76.2	1	6.3
Product of measures	7	8.3	7	100.0	2	28.6

"Sum across schemas does not equal 100 because each word problem featured more than one schema.
${ }^{\text {b }}$ When a problem featured a keyword.

Keywords are important to identify and understand

Keywords are the mathematical vocabulary that help an students understand what the story is about and what they need to do

Talk about keywords ("What does more than tell you about?")

2. Presenting Problems by Operation

Name:
Addition Word Problems
Solve the word problems. Show your work.

1. Noah had 12 books. He got 5 more books. Hy did Nooh have in all?

Teach an attack strategy

Teach about schemas

RIDE

Read the problem.
Identify the relevant information.
Determine the operation and unit for the answer.
Enter the correct numbers and calculate, then check the answer.

RICE

Read and record the problem.
Illustrate your thinking.
Compute.
Explain your thinking.

Slowly read the story problem twice.
Underline the question and circle the numbers you need.
Picture it. Draw the scenario to show what is happening.
Explain the problem with a number sentence.
Rewrite the answer in a sentence.

SHINES

Slowly and carefully read the problem.
Highlight or underline key information.
Identify the question by drawing a circle around it.
Now solve the problem. Show your work.
Examine your work for precision, accuracy, and clarity.
Share your answer by writing a sentence.

STAR

Stop and read the problem carefully.
Think about your plan and the strategy you will use.
Act. Follow your plan and solve
the problem.
Review your answer.

SOLVE

Study the problem.
Organize the information.

UPSV
 UNoERSTAND

Plan
How will you solve the problem?
Examine the answer.

R-CUBES

Read the problem.
Circle key numbers.
Underline the question.
Box action words.
Evaluate steps.
Solve and check.

Solve
Set up and do the math!

Share your favorite attack strategy.

Teach an attack strategy

Teach about schemas

Total

Difference

Change

Equal Groups

Comparison

Ratios/Proportions

Parts put together into a total

Mandy saw $\mathbf{3}$ canoes and 8 kayaks. How many boats did Mandy see?

Mandy saw $\mathbf{1 1}$ boats. If $\mathbf{3}$ of the boats were canoes, how many were kayaks?

Part

Mandy saw 11 boats. 8 of the boats were kayaks, how many were canoes?

Total
"Are parts put together for a total?"

P1 $+$ P2 $=$ T

Difference

Greater and lesser amounts compared for a difference

L'Tanya has $\mathbf{1 0}$ pencils. Vickie has $\mathbf{4}$ pencils. How many more pencils does L'Tanya have?

Difference

L'Tanya has 6 more pencils than Vickie. If Vickie has $\mathbf{4}$ pencils, how many does l'Tanya have?

Vickie has 6 fewer pencils than L'Tanya. L'Tanya has $\mathbf{1 0}$ pencils. How many pencils does Vickie have?
"Are parts put together for a total?"

Difference

"Are amounts compared for a difference?"

Difference

$G-L=D$

Difference

An amount that increases or decreases
Annette had 6 notebooks. Then, she bought 3 notebooks. How many notebooks does Annette have now?

Annette had 6 notebooks. Then, she bought a few more notebooks. Now, Annette has 9 notebooks. How many notebooks did she buy?

Annette had some notebooks. Then, she bought 3 notebooks. Now, Annette has 9 notebooks. How many notebooks did she have to start with?

An amount that increases or decreases

Jenny baked 9 cookies. Then, she ate $\mathbf{3}$ of the cookies. How many cookies does Jenny have now?

Jenny baked 9 cookies. Then, she ate some of the cookies. Now, she has 6 cookies. How many cookies did Jenny eat?

Jenny baked some cookies. She ate $\mathbf{3}$ of the cookies and has 6 cookies left. How many cookies did Jenny bake?
"Are parts put together for a total?"

Difference

"Are amounts compared for a difference?"

Change

"Does an amount increase or decrease?"

Change

$\mathbf{S T}+/-\mathbf{C}=\mathbf{E}$

Change

Total

Difference

Change

Equal Groups

Comparison

Ratios/Proportions

Groups multiplied by number in each group for a product

Evan has $\mathbf{2}$ boxes. There are $\mathbf{6}$ muffins in each box. How many muffins does Evan have?

Evan has 12 muffins. They want to place them equally into $\mathbf{2}$ boxes. How many muffins will Evan place in each box?

Evan has 12 muffins. They put them into boxes with 6 muffins each. How many boxes did Evan use?

Number in
each group

Product

Equal Groups

"Are there groups with an equal number in each group?"

$\mathbf{G R} \times \mathbf{N}=\mathbf{P}$ $\mathbf{G R} \times \mathbf{E}=\mathbf{P}$

Comparison

Set multiplied by a number of times for a product

Joan ran 6 minutes. L'Tanya ran 4 times longer than Joan. How many minutes did L'Tanya run?

Product

Equal Groups

"Are there groups with an equal number in each group?"

Comparison

"Is a set compared a number of times?"

Comparison

$\mathbf{S} \times \mathbf{T}=\mathbf{P}$

 (set) (multiplier/ (product) part)

Ratio/Proportion

Description of relationships among quantities

Melissa baked cookies and brownies. The ratio of cookies to brownies was $3: 5$. If she baked 25 brownies, how many cookies did she bake?

Emma typed 56 words in 2 minutes. At this rate, how many words could Emma type in 7 minutes?

Equal Groups

"Are there groups with an equal number in

 each group?"
Comparison

"Is a set compared a number of times?"

Ratio/Proportion

"Are there relationships among quantities -
if this, then this?"

Ratio/Proportion

Total

Difference

Change

Equal Groups

Comparison

Ratios/Proportions

```
WORD PROBLEMS
What are your strengths?
What are your opportunities for growth?
O What are your plans for next Monday?
NTNat are your
    Next year?
```

What are your strengths with word-problem solving?

What are your opportunities for growth?

What are your plans for next Monday? Next month?
Next year?

Students require modeling and practice on how to use the language of mathematics.

Students should use hands-on tools, virtual manipulatives, drawings, and other visuals to understand mathematics concepts and procedures.

Teachers should use systematic and explicit instruction to help students develop a strong foundation for specific mathematics skills.

Teachers should use fluency building activities to build counting fluency and fluency with the operations.

Students should learn how to set up and solve word problems by combining an attack strategy with a focus on word-problem schemas.

INSTRUCTIONAL DELIVERY

Model and Practice

INSTRUCTIONAL STRATEGIES

Fluency

Resources

https://intensiveintervention.org

National Center on
INTENSIVE INTERVENTION
Search
at American Institutes for Research ■

Intensive	Tools	Implementation	Intervention	Information Intervention -
Charts -	Support -	Materials -	For... •	

Intensive Intervention in
Mathematics Course Content
NCII, through a collaboration with the University of Connecticut, developed a set of course content focused on developing educators' skills in designing and delivering intensive mathematics instruction. This content is designed to support faculty and professional development providers with instructing pre service and in-service educators who are developing and/or refining their implementation of intensive mathematics intervention.

Intensive instruction was recently identified as a high-leverage practice in special educations, and DBI is a research based approach to delivering intensive instruction across content areas (NCII, 2013). This course provides learners with an opportunity to extend their understanding of intensive instruction through in-depth exposure to DBI in mathematics, complete with exemplars from actual classroom teachers.

NCII, through a collaboration with the University of Connecticut and the National Center on Leadership in Intensive Intervention and with support from the CEEDAR Centers , developed course content focused on enhancing educators' skills in intensive mathematics intervention. The course includes eight modules that can support faculty and professional development providers with instructing pre-service and in-service educators who are learning to implement intensive mathematics intervention through data-based individualization (DBI). The content in this course complements concepts covered in the Features of Explicit Instruction Course and so we suggest that users complete both courses.

MODULE 5: INTENSIVE

 MATHEMATICS INTERVENTION: INSTRUCTIONAL STRATEGIES教

Instructional Routines for Mathematics Intervention

https://spedsupportstage.tea.texas.gov/resource-library/instructional-routines-mathematics-intervention

Centre for Independent Studies

https://meadowscenter.org/resource/10-key-mathematics-practices-for-all-elementary-schools-with-strong-evidence-of-effectiveness-from-high-quality-research/

https://meadowscenter.org/resource/10-key-math-practices-for-all-middle-and-high-schools-with-strong-evidence-of-effectiveness-from-high-qualityresearch/
https://ies.ed.gov/ncee/wwc/PracticeGuide/26

Explicit Instruction

https://www.mathspiral.com

STAIR Tailored: Culturally Responsive Teaching Part 1: What is it?	STAIR Tailored: Multiplying Linear Expressions - Part 1: Using Algebra Blocks	STAIR Tailored: Introduction to the Coordinate Plane Using CPA and Measurement	STAIR Tailored Practice to Research. Concrete Learning
Culturally Responsive Teaching View full playlist	Teaching Quadratic Expressions View full playlist	Coordinate Plane/Grids View full playlist	Practice to Research \& Back to Practice
			View full playlist
STAIR Tailored: Exploring Properties of Quadrilaterals Using the CPA Framework and AngLegs	STAIR Tailored: Defining Data-Based Individualization (DBI)	Project STAIR: withe-step Equations with an Addatition Operator using Cups and Counters	Project STAIR: Adding Integers Using a Positive and Negative Mat
Introduction to Geometry	Data-Based Individualization	Introduction to Equations	Integers
View full playlist	View full playlist	View full playlist	View full playlist
Project STAIR: Representing Fractions with the Area Model	STAIR Tailored: Do Not Use Key Words	Project STAIR: Whole-Number Computation: Addition with Partial Sums	Project STAIR: Explicit Instruction
Fraction Fundamentals	Word Problem Instruction	Whole Number Computation	Best Practices for Math Teachers
View full playlist	View full playlist	View full playlist	View full playlist

Sarah R. Powell, Ph.D.

Professor
College of Education
The University of Texas at Austin

