## Math 1496 Calc 1 - Homework \#1

Pg. 17, \#43, 45, 47
Pg. 27-28, \#11, 12, 19, 21, 23, 64, 65,
Pg. 38-39, \#17, 19, 31, 33, 35,
Pg. 48 \# 9, 31, 34
Pg. 51\# 123
Pg. 57 \#11, 15, 19, 21
Pg. 59 \#107, 115, 117

Pg. 17
Find the equation of the line through the following points.
\#43 $(4,3),(0,-5) \quad \# 45(2,8),(5,0) \quad \# 47(6,3),(6,8)$

Pg. 27
Evaluate the function at the given value and simplify your result.
$\# 11 f(x)=x^{3}, \frac{f(x+\Delta x)-f(x)}{\Delta x} \quad \# 12 f(x)=3 x-1, \frac{f(x)-f(1)}{x-1}$

Pg. 27
Find the domain and range of the following.
\#19 $f(x)=\sqrt{16-x^{2}} \quad \# 21 f(x)=\frac{3}{x} \quad \# 23 f(x)=\sqrt{x}+\sqrt{1-x}$
pg. 28
Find the composition $f \circ g$ and $g \circ f$ for the following
\#64 $f(x)=x^{2}-1 \quad g(x)=-x \quad \# 65 \quad f(x)=\frac{3}{x} \quad g(x)=x^{2}-1$
Pg. 38
Sketch a right angle triangle corresponding to the trig function given and then evaluate the other 5 trig functions
$\# 17 \sin \theta=\frac{1}{2} \# 19 \cos \theta=\frac{4}{5}$
Pg. 39
Find two solutions of each equation (the answer in radians $0 \leq \theta \leq 2 \pi$ )
\#31 $\cos \theta=\frac{\sqrt{2}}{2} \quad \cos \theta=-\frac{\sqrt{2}}{2}$
\#33 $\tan \theta=1 \cot \theta=-\sqrt{3}$

Pg. 35
Solve the following for $\theta, 0 \leq \theta \leq 2 \pi$
\#35 $2 \sin ^{2} \theta=1$

Pg. 48
For the following verify that $f$ and $g$ are inverses (\#9) and find the inverse (\#31 and 34)
\#9 $f(x)=5 x+1, \quad g(x)=\frac{x-1}{5}$
\#31 $f(x)=2 x-3$
\#34 $f(x)=x^{3}-1$

Pg. 51
Evaluate the following without using a calculator.
\#123 (a) $\sin \left(\arctan \frac{3}{4}\right) \quad$ (b) $\sec \left(\arcsin \frac{4}{5}\right)$
Pg. 57
Solve the following for $x$.
\#11 $3^{x}=81$
\#15 $\left(\frac{1}{2}\right)^{x}=32$
$\# 194^{3}=(x+2)^{3}$
$\# 21 x^{3 / 4}=8$

Pg. 59
Solve the following for $x$.
\#107 $e^{x}=12$
\#115 $\ln (x-3)=2$
\#117 $\ln \sqrt{x+2}=1$

