
IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2214 | P a g e

A SURVEY ON CLOUD ANALYTICS AND THE

FRAMEWORK TO SERVICE CLOUD ANALYTICS

TECHNOLOGIES
VENKATESHWARA REDDY MUDIYALA

Master of Computer Science,

Department of CS, JNTU, Hyderabad, India

Abstract: Cloud computing offers a powerful abstraction that

provides a scalable, virtualized infrastructure as a service

where the complexity of fine-grained resource management is

hidden from the end-user.Running data analytics applications

in the cloud on extremely large data sets is gaining traction as

the underlying infrastructure can meet the extreme demands of

scalability. Typically, these applications(e.g., business

intelligence, surveillance video searches) leverage the

MapReduce framework that can decompose a large
computation into a set of smaller parallelizable computations.

More often than not the underlying storage architecture for

running a MapReduce application is based on an Internet-

scale filesystem, such as GFS, which does not provide a

standard (POSIX) interface. In this paper we revisit the debate

on the need of a new non-POSIX storage stack for cloud

analytics and argue, based on an initial evaluation, that it can

be built on traditional POSIX-based cluster filesystems. In the

course of the evaluation, we compare the performance of a

traditional cluster file system and a specialized Internet file

system for a variety of workloads for both traditional and
MapReduce-based applications. We present modifications to

the cluster filesystem’s allocation and layout information to

better support the requirements of data locality for analytics

applications. We introduce the concept of a metablock that

can enable the choice of a larger block granularity for

MapReduce applications to coexist with a smaller block

granularity required for traditional applications. We show that

a cluster file system enhanced with metablocks can not only

match the performance of specialized Internet file systems for

MapReduce applications but also outperform them for

traditional applications.

Keywords : Function shipping, MapReduce, Data analytics

I. INTRODUCTION

Cloud computing is a compelling new paradigm that provides

a scalable, virtualized infrastructure as a service,
thereby,enabling the end-user to exploit supercomputing

power ondemand without investing in huge infrastructure and

management costs. This potential for unlimited scaling has

made possible a plethora of cloud-based data analytics

applications that can process extremely large sets of data.

These include newer applications for business intelligence,

semantic web searches, video surveillance search, medical

image analysis along with traditional data-intensive scientific

applications such as satellite image pattern matching. A

common feature in all these applications is that they are

extremely parallel and their data access bandwidth

requirements dominates other resource requirements. Such

data-intensive applications where the computation can be

easily decomposed into smaller parallel computations over a
partitioned data set are a perfect match for Google’s

MapReduce framework [5] that provides a simple

programming model using map and reduce functions over

key/value pairs that can be parallelized and executed on a

large cluster of machines. More recently, an open source

version of MapReduce developed under the Apache Hadoop

project is becoming a popular platform for building cloud data

analytics applications.The underlying architecture for cloud

computing typically comprises of large distributed clusters of

low-cost servers in concert with a server virtualization layer

and parallel programming libraries. One of the key
infrastructure elements of the cloud stack, for data analytics

applications, is a storage layer designed to support the

following features: (1) scalable – to store petabytes of data, (2)

highly reliable – to handle frequently-occurring failures in

large systems, (3) low-cost – to maintain the economics of

cloud computing, and (4) efficient – to best utilize the

compute, network and disk resources.

The prevailing trend is to build the storage layer using an
Internet scale filesystem such as Google’s GFS [6] and its

numerous clones including HDFS [1] and Kosmix’s KFS [2].

The essential aspect of these filesystems is that they provide

extreme scalability with reliability by striping and replicating

the data in large chunks across the locally attached storage of

the cluster servers, but simplify design and implementation by

not providing a POSIX interface or consistency semantics.

Thus, they work well for MapReduce applications but cannot

support traditional applications. We refer to such MapReduce

focused file systems as specialized in the rest of the paper. In

this paper, we revisit the debate on the need of a new non-

POSIX storage stack for cloud analytics and argue, based on

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2215 | P a g e

an initial evaluation, that it can be built on traditional POSIX-

based cluster filesystems. Existing deployments of cluster file

systems such as Lustre [7], PVFS [3], and GPFS [8] show us

that they can be extremely scalable without being extremely

expensive. Commercial cluster file systems can scale to

thousands of nodes while supporting 100 GBps sequential
throughput. Furthermore, these file systems can be configured

using commodity parts for lower costs without the need for

specialized SANs or enterprise-class storage. More

importantly, these file systems can support traditional

applications that rely on POSIX file API’s and provide a rich

set of management tools. Since the cloud storage stack may be

shared across different classes of applications it is prudent to

rely on standard file interfaces and semantics that can also

easily support MapReduce style applications instead of being

locked in with a particular non-standard interface.

To this end, we address the challenges posed by the access

characteristics of cloud analytics applications to traditional

cluster file systems. First, we observe that MapReduce-based

applications can co-locate computation with data, thus

reducing network usage. We present modifications to the

cluster filesystem’s data allocation and data layout

information to better support the requirements of data locality

for analytics applications. Next, we observe that using large

stripe unit sizes (or chunks) benefits MapReduce applications
at the cost of other traditional workloads. To address that, we

introduce a novel concept called metablock that can enable the

choice of a larger block granularity for MapReduce

applications to coexist with a smaller block granularity

required for pre-fetching and disk accesses for traditional

applications. While most analytics applications are read-

intensive, we also enable write affinity that can better the

performance of storing intermediate results by writing data

locally. We compare the performance of both an Internet scale

filesystem (Hadoop’s HDFS) with a commercial cluster

filesystem (IBM’s GPFS) over a variety of workloads. We

show that a suitably optimized cluster filesystem can match
the performance of HDFS for a MapReduce workload (ideal

data access pattern for HDFS) while outperforming it for the

data access patterns of traditional applications. Concurrent to

our work, researchers at CMU have undertaken an effort to

provide support for Hadoop’s MapReduce framework with

PVFS [9]. It should be noted that we don’t report HDFS

performance for traditional file benchmarks since these

benchmarks cannot be run on HDFS (even running with a

FUSE layer only provides a subset of the POSIX interface).

II. CHALLENGES

In this section, we evaluate the suitability of cluster file

systems for cloud analytics applications. In our study, we

selected for comparison the HDFS (Hadoop 18.1) filesystem

which is the de-facto filesystem for Apache’s Hadoop project

and IBM’s GPFS cluster filesystem which is widely deployed

in high-performance computing sites and whose source was

readily available to us for modification. The hardware

configuration we used is based on the IBM iDataPlex modular

hardware architecture consisting of a single iDataPlex system
with 42 nodes in two racks, where each node has 2 quad-core

2.2 GHz Intel Core2Duo CPUs, 8 GB RAM and 4 750 GB

SATA drives. The nodes are connected by 2 Gigabit Ethernet

switches (one per rack) with a 1 Gbps inter-switch link. The

switch is Blade Network Technologies G8000 RackSwitch

with 48 1 Gbps ports. The software running on each of these

nodes in Linux 2.6.18 (CentOS 5.3) with two disks dedicated

to the ext3 file system for storing intermediate results from

computations and the remaining two disks dedicated to either

GPFS or HDFS. We use 16 nodes in the experiment with 8

nodes on either rack.

2.1 Function shipping

The first drawback we found of cluster file systems is that

they do not support shipping computation to data, a key

feature exploited by the MapReduce class of applications [5].
In addition, the default block sizes are small which leads to a

high task overhead for MapReduce applications that schedule

one task per data block. To evaluate the effect of function

shipping, we measured performance of a simple MapReduce

grep application with GPFS and HDFS. The input to the grep

application is a 16 GB text file. The Hadoop implementation

did not take advantage of any block location information in

GPFS and function shipping was not enabled as a result.

Furthermore, we used the default block size of 64 MB in

HDFS, whereas for GPFS we used a block size of 2 MB with

pre-fetching turned on by default. The lack of co-location of

computation with data, and the use of small blocks, are the
main reasons for the slow-down in GPFS. The table shows

that GPFS transfers several orders of magnitude more data

over the network. In fact, the total amount of data transferred

exceeds the input data size because of the default pre-fetching

in GPFS. The filesystem sees 2 MB of data being read

sequentially and pre-fetches multiple data blocks to satisfy

expected reads.However, the map task for the next block may

be scheduled on another node and thus most of the pre-fetched

data is not used. High Availability. Another key requirement

for data intensive applications is the ability to mask the

failures of commodity components. Programs should be able
to recover and progress in the event of multiple node and disk

failures. This requires the data to be replicated across multiple

nodes such that in the event of a node or disk failure, the

computation can be restarted on a different node. Specialized

file systems are designed based on this philosophy, and are

able to tolerate multiple failures in the infrastructure.In

comparison, cluster file systems have traditionally been

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2216 | P a g e

designed to use underlying data protection techniques (such as

RAID) in shared storage to circumvent failures. However, the

clusters that run data intensive applications typically do not

use shared storage due to concerns regarding cost and

bandwidth limitations, and instead attach local storage to each

node in the cluster. While cluster file systems will run on
nodes with locally attached storage (without replication or

shared storage), the file systems will suffer data loss in the

event of node or disk failures.Some cluster file systems (like

GPFS) do provide data and meta-data replication as a means

to survive node failures. The mechanism of replication can

vary across file systems.GPFS, for example, uses a single

source replication model,with the writer forwarding copies to

all replicas. Specializedfile systems, in contrast, use pipelined

replication due to twoimportant considerations: first, the out-

bound bandwidth at the writer is not shared across multiple

streams unlike the single-source model; second, write data can

be pipelined in sequence from a node to the next node in the
pipeline while the data is being written in the node.

For traditional applications, cluster file systems allow

the use of concurrent writers to the same file, enabling the

sharing of write bandwidth across multiple nodes. MapReduce

applications usually have multiple simultaneous writers (to

different files), so we don’t expect the benefits of single-

source replication to be significant. We hypothesize that it is
possible for cluster file systems to match the write

performance of specialized file systems and validate that in

the experimental evaluation in Sections 4 and 5. However, we

are continuing to explore the use of pipelined replication in

cluster file systems

III. METABLOCKS

Clearly, the grep application in the previous section

demonstrated that running a MapReduce based application on

a specialized file system has much better performance. In this

section, we first attempt to mimic the basic properties of a

specialized file system in GPFS and show the limitations of

this approach. Next, we introduce the concept of a metablock,

highlight the challenges in implementing the concept and

demonstrate that GPFS is able to match the read performance

of HDFS for MapReduce applications.

Large blocks. One approach would be to mimic the properties

of specialized file systems as attempted in [9]. To achieve this,

we increase the block size to a large value (16 MB) so that the

map task and disk seek overhead is reduced (as one map task

is assigned to each data block and will fetch the entire block

for processing). Furthermore, we expose GPFS’s block

location information to the MapReduce layer in Hadoop so

that tasks could be scheduled on the node where the data
resides. In addition, we align the records in the input file with

block boundaries, because a lack of alignment could result in

the fetch of a large data block just to read a partial record that

straddles a block boundary. Finally, we turned pre-fetching off

to avoid the network traffic of transporting large data blocks.

This particular version of GPFS is referred to as

GPFS lb (GPFS with large blocks). To validate whether the

approach would work, we use the same experimental setup as

in Section 2 but with an input size of 80 GB. Figure 1 shows

the relative performance of GPFS lb and HDFS in the

experimental setup. The execution time of GPFS lb is almost

the same as that of HDFS, but the network overheads of GPFS

lb and HDFS are 2 GB and 1.4 GB of data transferred over the

network during the duration of the experiment.

However, the performance parity with HDFS comes

at a price. Turning off pre-fetching and making the unit of

caching large in GPFS lb is detrimental to the performance of

traditional filesystem workloads. Pre-fetching has been

demonstrated to be extremely beneficial for sequential

workloads and small block sizes are ideal for random

workloads. To verify these effects, we compared unmodified

GPFS to GPFS lb using the popular Bonnie filesystem

benchmark [4]. The results of the experiment are shown in
Table 2 and show a marked performance degradation for

random workloads with the optimizations used in this section.

There is an improvement for sequential workloads due to the

large block size but the scale is not commensurate to the

extent of the previously mentioned degradation. Bonnie also

output other results that were consistent with the conclusions

from the experiment.

3.1 Metablocks: The results of the evaluation indicate an
interesting tradeoff in optimizing for data intensive and

traditional applications. While a large block size is needed to

minimize seek overheads and create a reasonable number of

tasks in MapReduce applications, a small block size is needed

for effective cache management and to reduce the pre-fetch

overhead particularly when application records could span

multiple blocks on different disks. Ideally, we need the best of

both worlds where both seeks and pre-fetching are optimized

so that both MapReduce and traditional applications can be

supported. If the cluster file system could expose a large node-

local block size to the MapReduce application and use a

smaller block size for internal book-keeping, data transfer and
pre-fetching, we can achieve the tradeoff. To better

understand how we can manage this, we first describe the

block allocation strategy used by GPFS.

GPFS implements wide-striping across the file

system where large files are divided into equal sized blocks,

and consecutive blocks are placed on different disks in a

round-robin fashion. An allocation map keeps track of all disk
blocks in the file system. To enable parallel updates to the

allocation bit map, the map is divided into a large number of

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2217 | P a g e

lock-able allocation regions, with at least n regions for an n

node system.

Each region contains the allocation status of 1=nth of

the disk blocks on every disk in the file system. This bitmap

layout allows GPFS to allocate disk space properly striped

across all disks by accessing only a single allocation region at

a time. This approach minimizes lock conflicts because

different nodes can allocate space from different regions. The

allocation manager is responsible for keeping the free disk

space statistics loosely- up-to-date across the cluster. To

balance the block size selection tradeoff, we define a new

logical construct called a metablock. A metablock is basically

a consecutive set of blocks of a file that are allocated on the

same disk. For example, 64 blocks of size 1 MB could be
grouped into a 64 MB metablock. The GPFS round-robin

block allocation is modified to use a metablock as the

allocation granularity for the striping across the disks.

Consequently, the block location map returned to the

MapReduce application is also at the metablock granularity

with the guarantee that all blocks in the metablock are in the

same disk. Internally for all other pre-fetching and accesses,

GPFS uses the normal block size granularity (which is 1 MB

in our example).However there are two important challenges

in implementing metablocks in GPFS – contiguity and

fragmentation. First, it may not be possible to get a region
with a set of blocks that is able to satisfy the contiguity

requirement of a metablock.

In such a situation, the node trying to allocate a

metablock will need to request a region with a contiguous set

of blocks that can be used to build a metablock. However, a

request to the allocation manager may incur network latency

and affect the performance of a MapReduce application. To

remedy the situation, a node prefetches a pool of contiguous
regions ahead of time and requests new regions when the

cardinality of the pool drops below a threshold. This means

that a node will always have a ready pool of contiguous

regions and will not incur network latency in the path of an

I/O request. Second, allocating contiguous sets of blocks can

lead to fragmentation in the allocation map, with skews in the

free space of the regions in the allocation map depending on

the nature of requests to the allocation manager. To address

this issue, we relax the requirement for contiguity and only

allocate sets of blocks which are contiguous only around 1

MB.This level of contiguity is reasonable for maintaining
optimal sequential read and write performance, provides node-

level locality, and minimizes the fragmentation problem. We

evaluate the effectiveness of the metablock allocation scheme

for the MapReduce grep application. The experimental setup

and the input data size (80 GB) is identical to that in the

previous experiment. Here, we experiment with HDFS (as

described before) and GPFS enhanced with a 16 MB

metablock size and 512 KB block size, and no prefetching.

The results demonstrate that the execution time of

GPFS with metablocks (referred to as GPFS mb) is within

10% of that of HDFS, while the network traffic is 2 worse

than that of HDFS1. Further, when we enabled controlled

prefetching in GPFS (by specifying prefetch percentage), we

incurred additional network traffic proportional to prefetch

percentage.

A possible cause for concern is that the metablock
optimization, which changes GPFS’s allocation scheme, could

have affected the performance of traditional applications. To

confirm this hypothesis, we compared unmodified GPFS to

GPFS mb. The results of the experiment are shown in Table 2

and show no marked difference between the two file systems.

The other results from Bonnie were also consistent with this

result. Consequently, we conclude that metablocks do not hurt

the performance of GPFS for traditional applications. It is
important to note that this change to the allocation policy of

the cluster file system does not impact the interface to the

applications, and preserves the POSIX semantics provided by

the unmodified system.

IV. MAPREDUCE FRAMEWORK

MapReduce is a framework for processing parallelizable

problems across large datasets using a large number of

computers (nodes), collectively referred to as a cluster (if all

nodes are on the same local network and use similar

hardware) or a grid (if the nodes are shared across

geographically and administratively distributed systems, and

use more heterogeneous hardware). Processing can occur on

data stored either in a filesystem (unstructured) or in a

database (structured). MapReduce can take advantage of the

locality of data, processing it near the place it is stored in
order to minimize communication overhead.A MapReduce

framework (or system) is usually composed of three

operations (or steps):

Map: each worker node applies the map function to the local

data, and writes the output to a temporary storage. A master

node ensures that only one copy of redundant input data is

processed.

Shuffle: worker nodes redistribute data based on the output

keys (produced by the map function), such that all data

belonging to one key is located on the same worker node.

Reduce: worker nodes now process each group of output data,
per key, in parallel.

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2218 | P a g e

MapReduce allows for distributed processing of the

map and reduction operations. Maps can be performed in

parallel, provided that each mapping operation is independent

of the others; in practice, this is limited by the number of

independent data sources and/or the number of CPUs near

each source. Similarly, a set of 'reducers' can perform the
reduction phase, provided that all outputs of the map operation

that share the same key are presented to the same reducer at

the same time, or that the reduction function is associative.

While this process can often appear inefficient compared to

algorithms that are more sequential (because multiple

instances of the reduction process must be run), MapReduce

can be applied to significantly larger datasets than a single

"commodity" server can handle – a large server farm can use

MapReduce to sort a petabyte of data in only a few hours.[13]

The parallelism also offers some possibility of recovering

from partial failure of servers or storage during the operation:

if one mapper or reducer fails, the work can be rescheduled –
assuming the input data are still available.Another way to look

at MapReduce is as a 5-step parallel and distributed

computation:

Prepare the Map() input – the "MapReduce system"

designates Map processors, assigns the input key K1 that each

processor would work on, and provides that processor with all

the input data associated with that key.Run the user-provided
Map() code – Map() is run exactly once for each K1 key,

generating output organized by key K2."Shuffle" the Map

output to the Reduce processors – the MapReduce system

designates Reduce processors, assigns the K2 key each

processor should work on, and provides that processor with all

the Map-generated data associated with that key.Run the user-

provided Reduce() code – Reduce() is run exactly once for

each K2 key produced by the Map step.Produce the final

output – the MapReduce system collects all the Reduce

output, and sorts it by K2 to produce the final outcome.These

five steps can be logically thought of as running in sequence –

each step starts only after the previous step is completed –
although in practice they can be interleaved as long as the

final result is not affected.

In many situations, the input data might already be

distributed ("sharded") among many different servers, in

which case step 1 could sometimes be greatly simplified by

assigning Map servers that would process the locally present

input data. Similarly, step 3 could sometimes be sped up by
assigning Reduce processors that are as close as possible to

the Map-generated data they need to process.

V. DATA ANALYTICS IN CLOUD COMPUTING

Businesses have long used data analytics to help direct their

strategy to maximize profits. Ideally data analytics helps

eliminate much of the guesswork involved in trying to

understand clients, instead systemically tracking data patterns

to best construct business tactics and operations to minimize

uncertainty. Not only does analytics determine what might

attract new customers, often analytics recognizes existing

patterns in data to help better serve existing customers, which

is typically more cost effective than establishing new
business. In an ever-changing business world subject to

countless variants, analytics gives companies the edge in

recognizing changing climates so they can take initiate

appropriate action to stay competitive. Alongside analytics,

cloud computing is also helping make business more effective

and the consolidation of both clouds and analytics could help

businesses store, interpret, and process their big data to better

meet their clients’ needs.The best uses of data analytics in

cloud computing are:

5.1 Social Media: A popular use for cloud data analytics is

compounding and interpreting social media activity. Before

cloud drives became practical, it was difficult processing

activity across various social media sites, especially if the data

was stored on different servers. Cloud drives allow for the

simultaneous examination of social media site data so results

can be quickly quantified and time and attention allocated

accordingly.

5.1 Tracking Products: Long thought of as one of the kings

of efficiency and forethought, it is no surprise Amazon.com

uses data analytics on cloud drives to track products across

their series warehouses and ship items anywhere as needed,

regardless of items proximity to customers. Alongside

Amazon’s use of cloud drives and remote analysis, they are

also a leader in big data analysis services thanks to their

Redshift initiative. Redshift gives smaller organizations many

of the same analysis tools and storage capabilities as Amazon

and acts as an information warehouse, preventing smaller
businesses from having to spend money on extensive

hardware.

5.3 Tracking Preference: Over the last decade or so, Netflix

has received a lot of attention for its DVD deliver service and

the collection of movies hosted on their website. One of the

highlights of their website is its movie recommendations,

which tracks the movies users watch and recommends others

they might enjoy, providing a service to clients while
supporting the use of their product. All user information is

remotely stored on cloud drives so users’ preferences do not

change from computer to computer. Because Netflix retained

all their users’ preferences and tastes in movies and television,

they were able to create a television show that statistically

appealed to a large portion of their audience based on their

demonstrated taste. Thus in 2013, Netflix’s House of Cards

became the most successful internet-television series ever, all

thanks to their data analysis and information stored on clouds.

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2219 | P a g e

VI. CLOUD ANALYTICS SERVICES

We can make fast, accurate data based decisions with
analytics services.IBM Cloud provides data and AI services

and tools. It features embedded intelligence capabilities

through machine learning. The services provided by the cloud

are the cloud is used to collaborate in teams across functions

to access all trusted data and best-in-class technologies.IBM

cloud use multiple analytics technologies to learn from the

data and quickly get new answers for the business.IBM cloud

used to deliver new insights to the business quickly and

continuously improve them through rapid iteration.

VI. FUTURE OPTIMIZATIONS

The most important was trying to make writes as network

efficient in GPFS as they are in HDFS (due to the first replica

being written to the local node). We designed an extension to

metablocks which has allowed GPFS to potentially match the

performance of HDFS for writes as well. The extension

involves adding an ioctl call to GPFS which lets an
application specify the set of hosts to be used by the

metablock allocation scheme for a particular file. This allows

Hadoop applications to specify that the first copy of data

should reside on the local host, which is the policy used by

HDFS.This technique reduces the network traffic during

writes, and significantly improves write performance (up to a

factor of 5). True to our theme, we use GPFS with pre-

fetching enabled to benefit traditional as well as MapReduce

workloads. This, however, exposes two interesting questions

we are currently exploring: (1) Can we design an adaptive

prefetching scheme such that it only consumes spare network
bandwidth, and does not contend with critical network traffic?

(2) Can any MapReduce workloads benefit from such

prefetching, thereby outperforming HDFS?Similarly, we are

also pursuing use cases of MapReduce workloads where

GPFS, can in fact, outperform HDFS by leveraging features

unique to a true file system such as ability to cope with client-

side caching, and simultaneously support random and

sequential workloads.

VII. CONCLUSION

This paper evaluates the debate whether cluster file systems

can potentially match the performance of Internet scale

filesystems for cloud-based analytics applications. We

examine the requirements of data intensive applications and

show that cluster file systems are deficient in support for large

block sizes and exposing block location information to
MapReduce applications. To remedy this, we introduce the

concept of metablocks that provide the illusion of large blocks

for MapReduce applications, while providing the benefits of

small blocks for traditional applications at the same time. We

show that a cluster file system enhanced with metablocks can

provide the best of both worlds performance.

VIII. REFERENCES

[1]HadoopDistributedFilesystem.http://hadoop.apache.org.

[2]KosmosFilesystem.http://kosmosfs.sourceforge.net/.

[3]ParallelVirtualFilesystem.http://www.pvfs.org/.

[4]The Bonnie Filesystem Benchmark.

http://www.textuality.com/bonnie/.

[5] J. Dean and S. Ghemawat. Mapreduce: Simplified data

processing onlarge clusters. In Sixth Symposium on Operating
System Design and Implementation, pages 137–150,

December 2004.

[6] S. Ghemawat, H. Gobioff, and S. Leung. The Google file

system. In ACM SOSP, October 2003., 2003.

[7] Lustre. The lustre storage architecture.

http://www.lustre.org/.

[8] F. Schmuck and R. Haskin. GPFS: A shared-disk file

system for large computing clusters. In Proc. of the First

Conference on File and Storage Technologies (FAST), pages

231–244, Jan. 2002.

[9] W. Tantisiriroj, S. Patil, and G. Gibson. The crossing the
chasm: Sneaking a parallel file system into hadoop. In SC08

Petascale Data Storage Workshop, 2008.

