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1 Introduction

Society is replete with contexts in which (1) a person’s outcome depends on both individual and

group-level inputs, and (2) the group is endogenously chosen either by the individuals themselves or

by administrators, partly based on the individual’s own inputs. Examples include health outcomes

and hospitals, earnings and workplace characteristics, and test scores and teacher value-added.1

Generations of social scientists have studied whether group outcomes differ because the groups

influence individual outcomes or because the groups have attracted individuals who would have

thrived regardless of the group chosen. In some cases, sources of exogenous variation are available

that may be used to assess the consequences of a particular group treatment. However, assessment of

the overall distribution of group treatments is much more difficult, and researchers and governments

frequently rely on non-experimental estimators of group treatment effects (e.g. school report cards

and teacher value-added).

In this paper we show that in certain circumstances the tactic of controlling for group averages of

observed individual-level characteristics, generally thought to control for “sorting on observables”

only, will absorb all of the between-group variation in both observable and unobservable individual

inputs. We then show how this insight can be used to estimate a lower bound for the variance in the

contributions of group-level treatments to individual outcomes. We also provide conditions under

which causal effects of particular observed group characteristics can be estimated. A key message

of the paper is that in some cases one can address the effects of sorting on unobservables using

multivariate regression, without having to fully specify and estimate the model of group choice in

addition to the model of outcomes.

We apply our methodological insight and demonstrate its empirical value by addressing a classic

question in social science: How much does the school and surrounding community that we choose

for our children matter for their long-run educational and labor market outcomes?

To illustrate the sorting problem consider the following simplified production function relating

education outcomes to individuals’ characteristics and the inputs of the schools/neighborhoods they

choose. Let Ysi denote the outcome (e.g. attendance at a four-year college) of student i who attends

and lives near school s.2 Suppose that Ysi is determined by

Ysi = [Xiβββ + xU
i ]+ [ZsΓΓΓ+ zU

s ] . (1)

The vector Xi is a set of student and family characteristics observed by the econometrician (with

corresponding productivities βββ ), while xU
i ≡XU

i βββ
U is a scalar index that combines the contributions

1Ash et al. (2012) provide an overview of the issues involved in assessing hospitals. Doyle Jr et al. (2015) also
discuss the issues and provide a short literature survey. See Chetty et al. (2014) and Rothstein (2014) for discussions and
references related to the estimation of teacher value-added.

2Despite the growing popularity of open enrollment systems, most school choice is still mediated through choice
of community in which to live, and most students still choose schools close to home even when given the opportunity
to attend more distant schools. Thus, we aim instead to measure the importance of the combined school/neighborhood
choice.
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of unobserved student and family characteristics XU
i to the outcome. Together, [Xi,XU

i ] represent the

complete set of student and family characteristics that have a causal impact on student i’s educational

attainment. Analogously, the row vector Zs is a set of school and neighborhood characteristics

observed by the econometrician (with corresponding productivities ΓΓΓ), while zU
s ≡ ZU

s ΓΓΓ
U is a scalar

index that combines the effects of unobserved school and neighborhood characteristics. Together,

[Zs,ZU
s ] capture the complete set of school and neighborhood level influences common to students

who live in s, so that the school/neighborhood treatment effect is given by [ZsΓΓΓ+ zU
s ].

Sorting leads the school average of XU
i , denoted XU

s , to vary across s. This contaminates esti-

mates of ΓΓΓ and fixed effect estimates of the school treatment effect ZsΓΓΓ+ zU
s . While various studies

have included controls for group-level averages of individual observables (denoted Xs), the role

played by such controls in mitigating sorting bias has been underappreciated.

Our key insight follows directly from the parent’s school/neighborhood choice decision—as

schools get large, average values of student characteristics differ across schools only because stu-

dents/families with different characteristics value school or neighborhood amenities differently.

This means that school-averages of individual characteristics such as parental education, family in-

come, and athletic ability will be functions of the vector of amenity factors (denoted As) that parents

consider when making their school choices. Thus, the school averages Xs and XU
s will be different

vector-valued functions of the same common set of amenities: Xs = f(As) and XU
s = fU(As). The

functions f and fU are determined by the sorting equilibrium and reflect the equilibrium prices of

the amenities. If the dimension of the amenity space is smaller than the number of observed char-

acteristics, then under certain conditions one can invert this vector-valued function to express the

amenities in terms of school-averages of observed characteristics: As = f−1(Xs). But this implies

that the vector of school averages of unobserved characteristics can also be written as a function of

observed characteristics: XU
s = fU(f−1(Xs)). This function of Xs can serve as a control function for

XU
s when estimating group effects.

We formalize this intuition by introducing a multidimensional spatial equilibrium model of

neighborhood/school choice and providing conditions under which the mapping from Xs to XU
s

is exact. Under our full set of assumptions (most notably an additively separable specification of

utility) the mapping from Xs to XU
s is linear. When these conditions are satisfied, including Xs in a

linear regression of the outcome Ysi fully controls for XU
s .

While this control function approach potentially solves the sorting-on-unobservables problem,

the observed group averages Xs control for too much. They will absorb peer effects that depend

on Xs and/or XU
s . They will also absorb a part of the unobserved school/neighborhood quality

component that is both orthogonal to the observed school characteristics and correlated with the

amenities that families consider when choosing where to live. As a result, without further assump-

tions, our estimator will only place a lower bound on the variance of the overall contribution of

schools/neighborhoods to student outcomes. However, the fact that controlling for the group aver-

ages eliminates bias from sorting implies that the causal effects (ΓΓΓ) of particular school inputs or

policies (in Zs) can be point identified in situations where bias from omitted neighborhood/school
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characteristics in zU
s is not a problem or can be addressed through a complementary instrumental

variables scheme.

The empirical part of the paper applies the control function approach in the school choice con-

text. Implementation requires rich data on student characteristics for large samples of students

from a large sample of schools, as well as longer-run outcomes for these students. We use four

different datasets that generally satisfy these conditions: three cohort-specific panel surveys (the

National Longitudinal Study of 1972 (NLS72), the National Educational Longitudinal Survey of

1988 (NELS88), and the Educational Longitudinal Survey of 2002 (ELS2002)), along with admin-

istrative data from North Carolina.

For each dataset, we provide lower bound estimates of the overall contribution of differences

between school systems and associated neighborhoods to the variance in student outcomes: high

school graduation, enrollment in a four-year college, and adult wages (NLS72 only). To make our

estimates easier to interpret, we also convert each variance estimate into a lower bound estimate of

the expected impact on the chosen outcome of starting at a school system and associated neighbor-

hood at the 10th quantile in the distribution of school contributions instead of a 50th or 90th quantile

system.

Even our most conservative North Carolina results suggest that, averaging across the student

population, choosing a 90th quantile school and surrounding community instead of a 10th quantile

school increases the probability of graduation by at least 7.9 percentage points. In the NELS88 and

ELS2002 the corresponding estimates are 4.8 and 4.1 percentage points, respectively, although these

may be less reliable due to sampling error in school average characteristics. The North Carolina,

NELS88 and ELS 2002 estimates are 15.3, 12.8, and 6.2 percentage points, respectively, when we

also consider unobserved differences in quality. We estimate large average impacts despite the fact

that our most conservative estimates only attribute 1-2% of the total variance in the latent index

determining graduation to schools/neighborhoods. However, the average impact of moving to a

superior school on binary outcomes such as high school graduation or college enrollment can be

quite large even if differences in school quality are small, as long as a large pool of students are near

the decision margin.

Estimates of the impact of a shift in school environment on the probability of enrolling in a four-

year college are similarly large: choosing a 90th instead of a 10th quantile school and surrounding

community increases the probability of four-year college enrollment by at least 11-14 percentage

points across all three survey datasets. It would increase the permanent component of adult wages

by at least 13.7 percent (in NLS72). A one-standard deviation shift in school/neighborhood quality

would raise wages by at least 5.1 percent, or .16 standard deviations. Note that our estimates are de-

rived from a static model of what is in fact a dynamic process. The most conservative interpretation

is that our estimates represent lower bounds on the cumulative effects of growing up in different

school systems/neighborhoods.

The methodological part of the paper draws on and contributes to a number of literatures. First,
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the basic idea that observed choices reveal information about choice-relevant factors unobserved by

the econometrician has been utilized in a number of settings, including the estimation of firm pro-

duction functions (e.g., Olley and Pakes (1996), Levinsohn and Petrin (2003), and Ackerberg et al.

(2015), among others), labor supply functions (e.g., Altonji (1982)), distinguishing between uncer-

tainty and heterogeneity in earnings (e.g., Cunha et al. (2005)), and even estimating neighborhood

effects (Bayer and Ross (2009)).3 Our application is unusual in that the control function involves

group aggregates that reflect individual choices rather than relationships among different choices by

the same agent.4

Second, we draw on the rich theoretical and empirical literature on equilibrium sorting and

matching models across several fields, including marriage markets (Browning et al. (2014) and Chi-

appori and Salani (2016)), labor markets (Lise et al. (2013), Melo (2015), and Lindenlaub (2017)),

and product markets (Rosen (1974), Ekeland et al. (2004), and Heckman et al. (2010)).

Most directly relevant is the large literature on sorting across neighborhoods and schools that

grew out of Tiebout (1956), particularly Epple and Platt (1998), Epple and Sieg (1999) and Bayer

and Timmins (2005). Epple and Platt’s model features one dimension of neighborhood quality and

two dimensions of heterogeneity across households–income and tastes for the public good. They

show that in equilibrium the distributions of income and tastes both shift with the level of the public

good in a location. This implies a mapping between income in a location and tastes in a location—

the same type of mapping that we exploit. Bayer and Ross (2009) consider the implications of Epple

and Platt’s analysis for dealing with sorting on unobservables when estimating the effects of school

and neighborhood characteristics on outcomes. They assume neighborhood quality depends on a

vector of observed characteristics (Zs in our notation) and a one dimensional unobservable. They

use housing prices to construct a control function for the unobservable. They recognize that both

the control function and Zs are endogenous in the outcome equation because of sorting on XU
i .5

However, the estimation scheme that they propose to address the issue is invalid in the presence of

unobserved heterogeneity in location preferences and multiple unobserved location amenities.

Third, our formulation of the school/location choice problem is standard in the consumer choice

3Our econometric approach is only loosely related to the large literature on the use of control functions to estimate
triangular systems with continuous or discrete treatment variables. In that literature, model assumptions relating to
how the endogenous treatment variable and outcome of interest are determined imply that a function of the endogenous
variable and an instrument or set of instruments can control for the source of endogeneity in the equation for Y . See
Imbens (2007) for a survey. In our case, there is no instrument, but the sorting model implies a relationship between
observable and unobservable group averages.

4Our estimation strategy is also closely related to the correlated random effects approach (Mundlak (1978), Chamber-
lain (1980), Chamberlain et al. (1984)). In that literature a function of the vector of observations on Xi from members of
group s is used to control for correlation between Xi and the group error term. In many applications the mean Xs is used.
However, in that literature, much of the focus is on estimating the effects of person specific variables, such as βββ in our
application, while accounting for correlation with a common group error. In our application, the focus is on the group
effect, a model of sorting provides the justification for the use of Xs as a control, and βββ is not identified. Our analysis is
also completely distinct from that of Altonji et al. (2005). They examine the econometric implications of how observed
variables are drawn from the full set of variables that determine the outcome and the treatment variable of interest.

5The idea that the choice of a location, an occupation, a firm, or a school may reveal information about individuals
provides motivation for the use of “fixed effects” estimation in a variety of contexts, including Fu and Ross (2013) in the
neighborhood context.
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literature. It assumes that preferences for observed and unobserved location characteristics depend

on both observed and unobserved student/parent attributes, as in McFadden et al. (1978), McFadden

(1984) and Berry (1994) and many subsequent papers. Bayer et al. (2007) use a similar specification

to estimate models of housing demand. We do not estimate preferences. Our contribution is to

show that the sorting on observables and unobservables implied by multinomial choice models and

hedonic demand models implies that group averages of observables can serve as a control for group

averages of unobservables in the estimation of group treatment effects.

The empirical part of the paper adds to a vast literature on school and neighborhood effects that

we cannot do justice to here.6 Our analysis of sorting is directly relevant to the large number of pa-

pers that study group effects using regression models with both individual and group-level character-

istics. A few recent papers have employed experimental or quasi-experimental strategies to isolate

the contribution of either schools or neighborhoods to longer run student outcomes. Oreopoulos

(2003) and Jacob (2004) use quasi-random assignment of neighborhood in the wake of housing

project closings to estimate the magnitude of neighborhood effects on student outcomes. Similarly,

the Moving To Opportunity (MTO) experiment, evaluated in Kling et al. (2007), randomly assigned

housing vouchers that required movement to a lower poverty neighborhood to estimate neighbor-

hood effects. None of these studies find much evidence that moving to a low-poverty neighborhood

improves economic outcomes. However, Chetty et al. (2016) revisit the MTO experiment using

Internal Revenue Service data on later outcomes, including earnings, college attendance, and single

parenthood. Their treatment-on-the-treated estimates indicate that children who move to a lower

poverty neighborhood when they are under age 13 experience large gains in annual income in their

mid-twenties, while those who move after age 13 experience no gain or a loss. Their estimates of

treatment effects on adult earnings also increase with the number of years of exposure to a lower

poverty neighborhood. Using a sibling differences approach that also exploits high quality data from

tax records, Chetty and Hendren (2015) identify county-level neighborhood effects on earnings that

are larger than but qualitatively consistent with our results. Aaronson (1998) finds substantial ef-

fects of the census tract-level poverty rate and high school dropout rate on dropout rates and years

of education using a sibling differences design and PSID data.

Deming et al. (2014), in contrast, exploit randomized lottery outcomes from the school choice

plan in the Charlotte-Mecklenburg district to estimate the impact of winning a lottery to attend

a chosen public school on high school graduation, college enrollment, and college completion.

They find large effects for students from low quality urban schools. Angrist et al. (2016) also use

admissions lotteries and find positive effects of attending a Boston charter high school on test scores

and attendance at four-year colleges relative to two-year colleges. On the other hand, Cullen et al.

(2006) use a similar identification strategy with lotteries in Chicago Public Schools and find little

6Jencks and Mayer (1990) provide a comprehensive review of earlier studies from economics and sociology. They
conclude that there is no strong evidence for neighborhood effects. However, some of the studies they summarize do find
effects. More recent reviews include Sampson et al. (2002), Durlauf (2004), Harding et al. (2011) and Graham (2016).
Duncan and Murnane (2011) contains several recent papers on school and neighborhood effects. Meghir et al. (2011)
discuss alternative approaches to estimating school treatment effects and the effects of particular school inputs.
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effect on the high school graduation probability.

In contrast to these papers, we do not exploit any natural experiments. Instead, we show that

rich observational data of the type collected by either panel surveys or administrative databases can

nonetheless yield meaningful insights about the importance of school and neighborhood choices for

children’s later educational and labor market performance.

The rest of the paper proceeds as follows. Section 2 presents our model of school choice, while

Section 3 formally derives our key control function result. In Section 4 we elaborate on the model

for long run outcomes presented above, and show that OLS estimates combined with restrictions

implied by our model of sorting are sufficient to place a lower bound on the variance of school

and neighborhood effects. Section 5 describes how we use this result to estimate lower bounds

on school and neighborhood effects. Section 6 describes the four datasets we use to estimate the

model of outcomes. Section 7 presents our results. Section 8 closes the paper with a brief summary

and discussion of other applications of our methodology, including the assessment of teacher value

added.

2 A Multinomial Model of School Choice and Sorting

In this section we present a model of how families choose school systems and associated neigh-

borhoods. Throughout the paper, matrices, vectors, and matrix- or vector-valued functions are in

bold. The “prime” symbol denotes matrix or vector transposes.

We adopt a money-metric representation of the expected utility the parents of student i receive

from choosing school/neighborhood s, so that the utility function Vi(s) can be interpreted as the

family’s consumer surplus from their choice. We assume Vi(s) takes the following linear form:

Vi(s) = WiAs + εsi−Ps. (2)

In the above equation As ≡ [A1s, . . . ,AKs]
′ represents a vector of K underlying latent amenities that

characterize each location s ∈ {1, ...,S}. Wi ≡ [W1i, . . . ,WKi] is a 1×K vector of weights that cap-

tures the increases in family i’s willingness to pay for a school per unit increase in each of its K

amenity factors A1s, . . . ,AKs, respectively. Ps is the price of living in the neighborhood surrounding

school s, and εsi is an idiosyncratic taste of the parent/student i for the particular location s.

Consider projecting willingness to pay (hereafter denoted WTP) for particular amenities across

families onto the families’ observable (Xi) and unobservable (XU
i ) characteristics. In particular,

suppose that Xi has L elements, while XU
i has LU elements. Then we obtain:

Wi = XiΘΘΘ+XU
i ΘΘΘ

U +QiΘΘΘ
Q. (3)

where ΘΘΘ (ΘΘΘU) is an L×K (LU ×K) matrix whose `k-th entry captures the extent to which the

willingness to pay for the k-th element of the amenity vector As varies with the `-th element of Xi
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(XU
i ). We sometimes refer to the elements of ΘΘΘ and ΘΘΘ

U as WTP coefficients. The 1×LQ vector

Qi consists of additional individual characteristics (observed and unobserved) that affect WTP in

accordance with the WTP coefficient matrix ΘΘΘ
Q. Qi is defined to be uncorrelated with [Xi,XU

i ].

Since [Xi,XU
i ] is the complete set of student attributes that determine Ysi, the characteristics that

contribute to Qi influence school choice but have no direct effect on student outcomes.

Substituting (3) into (2), we obtain:

Vi(s) = (XiΘΘΘ+XU
i ΘΘΘ

U +QiΘΘΘ
Q)As + εsi−Ps (4)

In the absence of restrictions on the elements of ΘΘΘ and ΘΘΘ
U, this formulation of utility allows for a

very general pattern of relationships between different student characteristics (observable or unob-

servable) and tastes for different school/neighborhood amenities, subject to the additive separability

assumed in (2).

Expected utility is taken with respect to the information available when s is chosen. The in-

formation set includes the price and the amenity vector in each school/neighborhood as well as

student/parent characteristics [Xi,XU
i ,Qi] and the values of εsi, s = 1, ...,S. The information set

excludes any local shocks that are determined after the start of secondary school. It also excludes

components of neighborhood and school quality that are not observable to families when a location

is chosen. Some of the elements of As may depend on school/neighborhood characteristics Zs that

influence educational attainment and labor market outcomes. The amenities may also include or de-

pend on aspects of the demographic composition of the school/neighborhood. Some determinants

of amenities (such as spending per pupil) may be influenced by demographic composition. Thus,

some of the amenities are influenced by the sorting equilibrium.

The parents of i choose s if net utility Vi(s) is the highest among the S options. That is,

s(i) = arg max
s=1,..,S

Vi(s)

Parents behave competitively in the sense that prices and As are taken as given, and choice is unre-

stricted. In equilibrium the values of some elements of As may in fact depend on the averages of Xi

and XU
i for the parents who choose s, but parents ignore the externalities that they are imposing on

others.

3 The Link Between Group Observables and Group Unobservables

In Section 3.1 we state Proposition 1, which concerns the relationship between XU
s and Xs

implied by the above choice model. The proof is supplied in Appendix A1. In Section 3.2 we

discuss the proposition and the assumptions that underlie it.
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3.1 Proposition 1: XU
s is a linear function of Xs

Before stating Proposition 1, we need to define more notation. Decompose XU
i into its projection

on Xi and the orthogonal component X̃U
i :7

XU
i = XiΠΠΠXUX + X̃U

i (5)

Use (5) to rewrite (3) as Wi = XiΘ̃ΘΘ+ X̃U
i ΘΘΘ

U +QiΘΘΘ
Q, where Θ̃ΘΘ = [ΘΘΘ+ΠΠΠXUXΘΘΘ

U]. In the rewritten

form, all three components of Wi are mutually orthogonal. We are now prepared to present the main

proposition of the paper.

Proposition 1: Assume the following assumptions hold:

A1: Preferences are given by (4).

A2: Parents take Ps and As as given when choosing location, and face a common choice set.

A3: The idiosyncratic preference components εsi have a mean of 0 and are independent of Xi,

XU
i , Qi , and As for all s.

A4: E(Xi|Wi) and E(XU
i |Wi) are linear in Wi.

A5: (Spanning Assumption) The row space of the WTP coefficient matrix Θ̃ΘΘ spans the row space

of the WTP coefficient matrix ΘΘΘ
U relating tastes for A to XU

i . That is,

ΘΘΘ
U = RΘ̃ΘΘ (6)

for some LU ×L matrix R.

Then the expectation XU
s is linearly dependent on the expectation Xs. Specifically,

XU
s = Xs[ΠΠΠXUX +Var(Xi)

−1R′Var(X̃U
i )] (7)

3.2 Discussion of Proposition 1

Proposition 1 lays out the conditions under which XU
s , the between group component of the vec-

tor of individual-level unobservables, will be an exact linear function of its observable counterpart

Xs.8 Remarkably, the dependence between the group averages XU
s and Xs arises even when the

vector XU
i is uncorrelated with the vector Xi at the individual level. Note also that if ΘΘΘ

U = 0 so that

unobservable characteristics do not affect amenity preferences (i.e. individuals do not sort based on

unobservables), then R = 0. When R = 0, (7) states that XU
s = XsΠΠΠXUX, which implies that X̃U

s =

7We use the symbol ΠΠΠDV to denote the vector or matrix of the partial regression coefficients relating a dependent
variable or vector of dependent variables D to a vector of explanatory variables V, holding the other variables that appear
in the regression constant. In the case of ΠΠΠXUX, D = XU

i and V = Xi.
8In Altonji and Mansfield (2014), we consider a version of the school choice model in which (a) we ignore the

idiosyncratic school-family taste match by setting εsi = 0 ∀ (s, i), and (b) we assume that S is large enough to be well
approximated by a continuum of neighborhoods that create a continuous joint distribution of amenities A. Perhaps
surprisingly, equation (7) in Proposition 1 holds for the continuous case.
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0, where X̃U
s is the expectation of X̃U

i for group s. As we discuss in Section 7.5, this fact means

that if sorting is driven by Xi but not XU
i , one can estimate the variance in group treatment effects

Var(ZsΓΓΓ+ zU
s ).

Note that the effectiveness of Xs as a control function for XU
s stems from the fact that sorting

creates a mapping from Xs to As and from As to XU
s , leading to (7). The key is that both Xi and

XU
i shift preferences for As, not that Xi affects the outcome Yi. Because Qi also shifts preferences

for As, one may easily extend Proposition 1 so that the control vector, say C∗s , includes both Xs

and school averages of observed elements of Qi. In addition, because XU
s is a function of As in

equilibrium, C∗s might directly include flexible functions of some of the amenities As themselves

for which measures are available. The price Ps depends in part on As and could be included, as

Bayer and Ross (2009) suggest. In principle C∗s could even include functions of observed school

policies or productive inputs (elements of Zs below) as long as they were fully determined by As

(possibly through school composition Xs). If observed school policies or inputs contain a pure

school component, then including them in the control function will lead to even more conservative

lower bounds on the variance in treatment effects across schools.9 In our empirical work we only

include in our control function observed student variables that plausibly affect student outcomes.

Thus, to conserve notation we continue to refer to the control function as Xs rather than C∗s , but this

is without loss of generality.

Note also that Proposition 1 is a statement about the expectations Xs and XU
s . Thus, it concerns

the averages of Xi and XU
i when the number of individuals is large relative to the number of choices.

With a finite number of individuals per group, random variation will cause group averages at a point

in time to deviate from their expectations. This could weaken the link between group averages

of observable and unobservable characteristics. Monte Carlo simulations in Online Appendix A6

indicate that the control function also works well even when the expectation Xs is estimated using

sample averages (which we denote X̂s) based on small samples of group members rather than the full

school population. In Section 6 and Online Appendix A11, we use the North Carolina administrative

data to directly assess the effect of using smaller samples of students to estimate Xs for some of the

outcomes and characteristics we actually consider. Our main results are relatively insensitive to

working with samples from North Carolina schools that match the distribution of sample sizes in

the NLS72, NELS88, and ELS2002 datasets.

The use of Xs as a control function for XU
s requires the number of groups in the sample to be

larger than the number of elements in Xs (and implicitly the number of factors in As). Otherwise,

one cannot estimate the coefficient vector on Xs.

The next two subsections discuss the assumptions underlying Proposition 1.

9However, we strongly suspect that school inputs and policies are not fully determined by student composition. And
we argue below that the spanning assumption A5 is likely to be a good approximation in our application, so that Xs fully
controls for XU

s by itself. Consequently, in our empirical work the control function does not contain any observed school
policies and resources.
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3.2.1 Discussion of Assumptions A1-A4

Assumption A1, which relates to the specification of preferences, is fairly general given that

both Xi and XU
i can include nonlinear terms.

Assumption A2 says that households take characteristics of neighborhoods as given. As we

mentioned above, this is fully consistent with the possibility that As depends on who chooses s

in equilibrium. If some of the neighborhood amenities are functions of resident characteristics,

the distribution of amenities will be endogenous. There might be multiple equilibria. However,

Proposition 1 follows entirely from utility maximization. The linear dependence between Xs and

XU
s will hold in any equilibrium of the model.

Assumption A2 also imposes that households face a common set of choices. In Online Appendix

A6 we present monte carlo simulation results that examine the properties of our control function

approach across a number of key dimensions. The simulations indicate that the control function

works well even when different households face choice sets that are overlapping subsets of the full

set of schools.

The common choice set assumption implicitly assumes a static environment. If different fami-

lies were making school/neighborhood choices at different points in time and face substantial mov-

ing costs, then school/neighborhood populations would consist of mixtures of families who made

school/neighborhood choices in different periods.

Extending the analysis to a fully dynamic choice model is beyond the scope of the paper. How-

ever, consider a simple overlapping generations-style model where the joint distribution of amenity

factors evolves across periods and school/neighborhood populations combine members of different

decision periods (“generations”). Next, note that the mapping from XU
s to Xs in (7) does not de-

pend on the distribution of amenities As. Consequently, it can easily be shown that an analogue of

Proposition 1 still holds as long as the taste parameter matrices ΘΘΘ and ΘΘΘ
U and the joint distribution

of individual characteristics [Xi,XU
i ,Qi] are fixed across these “generations”.

The independence assumption A3 for the idiosyncratic preference components εsi is strong, but

the εsi can be defined to be uncorrelated with Xi,XU
i and Qi without loss of generality. Further-

more, the presence of Qi and XU
i means that we are allowing for unobserved random variation in

preferences for location characteristics AAAs separately from εsi.

Given the linear relationship between Wi and [Xi,XU
i ,Qi] in A1, a sufficient condition for the

linearity in expectations assumption A4 to hold is that the joint distribution of [Xi,XU
i ,Qi] belongs

to the continuous elliptical class. Examples include the multivariate normal, the multivariate t,

the Laplace, and the multivariate exponential power family (Gómez et al. (2003)). However, in

our application Xi contains a number of discrete variables, so this sufficient condition will not be

satisfied.

Proposition 1A in online Appendix A4 establishes that if A4 fails, then an approximation error

term appears in equation (7) for XU
s . The approximation error consists of the average for s of a

10



linear function of the differences between E(Xi|Wi) and E(XU
i |Wi) (respectively) and the best least

square linear predictions of Xi and XU
i given Wi. As we discuss in Section 5.2, the approximation

error would primarily contribute to the school/neighborhood error component vs of the outcome

model (12) introduced in the next section. This would lead to upward bias in the less conservative

of our two estimators of the variance of school/neighborhood effects. Note, though, that variation

in the differences between E(Xi|Wi) and E(XU
i |Wi) (respectively) and the best linear predictors

E∗(Xi|Wi) and E∗(XU
i |Wi) will be small for values of Wi that are near the population mean Wi.

In the data, the variation across s in Xi is much smaller than the population variance. Presum-

ably the same is true of XU
i and thus Wi. Consequently, variation in the averages E[E(Xi|Wi)−

E∗(Xi|Wi)|s(i) = s] and E[E(XU
i |Wi)−E∗(XU

i |Wi)|s(i) = s] (respectively) are likely to be small.

Furthermore, note that because XU
s appears in the outcome equation through the index XU

s βββ
U, any

upward bias depends on a weighted index of the approximation error terms for each element of XU
s ,

with the elements of βββ
U as the weights. This may lead to some cancellation of the approximation

errors.

We now turn to the spanning assumption A5.

3.2.2 When Will the Spanning Assumption A5 Hold?

The key restriction on preferences in Proposition 1 is the spanning assumption (A5). It requires

the coefficient vectors ΘΘΘ
U relating tastes for amenities to the elements of XU

i to be linear combina-

tions of the coefficient vectors Θ̃ΘΘ relating tastes for amenities to the observables Xi and/or elements

of XU
i that are correlated with Xi. Given the importance and subtlety of this spanning condition, we

further develop the intuition underlying the condition and highlight cases in which it fails to hold.

Reconsider the more general function formulation used in the introduction. Let AX ⊆ A rep-

resent the subset of amenities that affect the distribution of observable school averages Xs. An

amenity will be included in AX if WTP for the amenity is affected by Xi and/or by elements of XU
i

that are correlated with Xi. Likewise, AXU ⊆ A represents the subset of amenities that affect the

distribution of unobservable school averages XU
s . The between-school variation in Xi will only be

driven by AX, so that Xs = f(AX) for some vector-valued function f. Similarly, XU
s = fU(AXU

). We

can write XU
s = g(Xs) if we can write XU

s = fU(f−1(Xs)), where g(Xs) = fU(f−1
(Xs)). Thus, jointly

sufficient conditions are

Assumption A5.1: f is invertible, so that we can write AX = f−1(Xs)

Assumption A5.2: AXU ⊆ AX, so that the set of amenities that drive variation in Xs contains

the set of amenities that drive variation in XU
s (i.e. the range of f−1 must encompass the domain of

fU).

While these conditions are not necessary, they suggest two fundamental ways that the spanning

condition ΘΘΘ
U = RΘ̃ΘΘ can fail.10 The first way, which leads A5.1 to fail, is that the vector Xi may

10Invertibility of f(AX) is not a necessary condition. It is possible that the mapping from AX to Xs is one-to-many,
meaning that the same value of AX leads to multiple values of Xs. In this case the key is that one can still write AX
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affect tastes for more amenities than the number of elements in Xi. That is dim(AX) > L where

dim(AX) is the number of elements in AX. In this case, the function f(∗) is not invertible.11 In the

case of the additively separable utility function from (4), dim(AX) is equal to the row rank of Θ̃ΘΘ. To

see how A5.1 might fail, suppose that the only observable characteristic were parental education and

that the amenity space consisted of two imperfectly correlated factors: schools’ quality of teachers

and quality of athletic facilities. Even if parental education affected WTP for both amenities, one

would not be able to disentangle the quality of athletic facilities from the quality of teachers based on

only neighborhood averages of parental education. We would need to observe a second individual

characteristic, such as parental income, in order to satisfy the spanning condition.

The validity of A5.1 depends on the number and breadth of coverage of variables in Xi. It

is testable. The model implies a factor structure for the vector Xs, where the number of factors

is determined by the row rank of Θ̃ΘΘ (See online Appendix A3). A finding that the number of

factors that determine Xs is smaller than the dimension of Xi is consistent with the assumption that

dim(AX) ≤ L. A finding that the number of factors is at least as large as the dimension of Xi is

also technically consistent with the assumption, but would strongly suggest that dim(AX)> L. The

evidence presented in Section 7.6 and online Appendix A3 is fully consistent with dim(AX)< L in

our application.

What about Assumption 5.2? Partition XU
i into a subvector XU

1i that is correlated with Xi and a

subvector XU
2i that is not correlated with Xi. Assumption 5.2 will fail if XU

2i affects preferences for

an amenity for which neither Xi nor XU
1i affect preferences.

To illustrate how Assumption 5.2 can fail, we modify the example above so that parental edu-

cation and immigrant status are the only Xi variables. Suppose that student athleticism is the only

unobservable and that it is uncorrelated with both parental education and immigrant status. And

suppose that neither parental education nor immigrant status affect WTP for athletic facilities in the

neighborhood, while student athleticism does. Then student athleticism is an XU
2i variable rather

than an XU
1i. Athletic facility quality would be an element of AXU

but not AX, so that AXU 6⊂ AX.

Assumption 5.2 would fail. Consequently, variation in athletic facility quality would drive between-

neighborhood variation in average student athleticism that average parental education and immigrant

status would not capture. Online Appendix A2 provides additional examples of when the spanning

condition will and will not be satisfied.

Assumption A5.2 is a statement about unobservables and thus is not testable without more struc-

ture than we impose. But one can assess the assumption through the following thought process.

First, draw on the literature to identify the factors, both observed and unobserved, that are most

= h(Xs), where h(.) = f−1(.) in the one-to-one case. The mapping from AXU
to XU

s need not be one-to-one either.
However, there must be a mapping XU

s = f(AXU
,Xs) = f(h(Xs),Xs) = g(Xs) that is one-to-one or many-to-one.

11More specifically, what is relevant for invertibility is not the number of elements of Xi (denoted L) per se but the
number of independent taste factors that these L observables represent. Suppose, for example, that mother’s education
and father’s education were both observed, but they affected willingness to pay for each amenity in the same relative
proportions. Then adding father’s education to Xi would not make f(∗) invertible if it were not already when only
mother’s education was included in Xi.
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important for the outcome. Next consider each unobserved variable and ask whether it is likely to

be uncorrelated with all of the observed variables. Also ask whether it is likely to be the only deter-

minant of WTP for some amenity that influences location choice. If the answer to both questions is

“no” for all of the elements of XU
i , then Assumption A5.2 is plausible.

This line of reasoning leads us to believe that A5.2 is plausible in an application such as ours in

which Xi contains a rich and diverse set of variables that are likely to matter for student outcomes.

Consider, for example, the priority that a child’s parents and broader family place on academic

learning and educational attainment. One would expect this unobservable to boost willingness to

pay for peer groups and community and school characteristics that foster achievement, such as en-

richment programs. However, parents’ education (observed in all 4 data sets), parents’ desired years

of education, parental school involvement (observed in ELS2002 and NELS88), and grandparents’

education (observed in ELS2002) are likely to be correlated with the priority parents place on edu-

cation. They are also likely to directly affect willingness to pay for a similar set of education-related

school and neighborhood characteristics. To take another example, taste for/proficiency in music

may affect academic performance and influence willingness to pay for schools and communities

with good music programs and music venues. But parental education and parental income are likely

to be correlated with a child’s proficiency in music (through home investments). They also may

influence WTP for opportunities in music. One can make similar arguments about other unobserv-

ables (e.g. wealth (unobserved) vs. income (observed)).

We already mentioned that group averages of elements of Qi should be included in the control

function if they are observed and Xs alone is inadequate for the spanning condition to hold. One

could also include an observed element of AXU
that drives sorting on XU

2i in the control function.

In applications in which Xi is limited, these additions may be needed for the control function to be

adequate.

Online Appendix A5 derives an analytical formula for the component of XU
s that cannot be

predicted by Xs when the spanning assumption is violated (and thus may be a source of bias in

our lower bound estimates of the variance in school/neighborhood treatment effects). The variance

in this component depends on the following five factors: a) the joint distribution of amenities;

b) the joint distribution of the WTP index Wi; c) the matrix ΘΘΘ
U mapping unobserved individual

characteristics into willingness to pay for particular amenities; d) the joint distribution of the residual

component of unobserved outcome-relevant student characteristics X̃U
i and e) the joint distribution

of the unobserved outcome-irrelevant (but school choice-relevant) student characteristics Qi.

Given the complicated manner in which each of these five factors enters the expression for the

unexplained component of XU
s , there does not appear to be any straightforward way to place a bound

on the variance in this error component. Online Appendix A6 presents monte carlo simulations for

cases in which the spanning condition (A5) fails. The control function approach is quite robust

to violations of the spanning condition in which just a few outcome-relevant unobservables in XU
i

affect WTP for just a few additional amenities that are not weighted by any elements of Xi. This is

arguably the most plausible case when rich data on students and parents are available.

13



4 The Econometric Model of Educational Attainment and Wage Rates

We begin this section by elaborating on the underlying model of student outcomes presented in

the introduction. Next, in Section 4.2 we show how sorting and omitted school and neighborhood

characteristics affect estimates of neighborhood/school effects based on OLS estimation of that

model. Then in Section 4.3 we show that the OLS estimates of the student outcomes model in

combination with Proposition 1 and Assumption 6 below are sufficient to place a lower bound on

the variance of school and neighborhood effects.

4.1 The Model of Outcomes

In our application the outcomes are high school graduation, attendance at a four-year college,

a measure of years of postsecondary education, and the permanent wage rate. The outcome Ysi

of student i whose family has chosen the school and surrounding neighborhood s is determined

according to

Ysi = Xiβββ + xU
i +ZsΓΓΓ+ zU

s +ηsi +ξsi . (8)

For binary outcomes such as college attendance, Ysi is the latent variable that determines attendance.

As discussed above, the student’s outcome contribution can be summarized by Xiβββ + xU
i , where

xU
i ≡ XU

i βββ
U is a scalar index summarizing the contributions of unobserved student characteristics

XU
i , and the row vector [Xi,XU

i ] is an exhaustive set of child and family characteristics that have

a causal impact on student i’s outcome. Since Xi and XU
i may include non-linear functions, the

linear-in-parameters specification for Ysi is without much loss of generality.

Analogously, the average school/neighborhood outcome contribution in school/neighborhood s

is captured by the index ZsΓΓΓ + zU
s where zU

s ≡ZU
s ΓΓΓ

U is a scalar index summarizing the contributions

of unobserved school and neighborhood characteristics. The vector Zs captures the influence of

observed school/neighborhood-level characteristics (which in our empirical work do not vary among

students within a school). The vector ZU
s represents the remaining unobserved school/neighborhood

influences that vary between school attendance areas (e.g. quality of the school principal or the local

crime rate). Note that Zs and ZU
s may include averages of Xi and XU

i , respectively, that capture peer

effects.

The unobserved scalar index ηsi captures variation in school/neighborhood contributions among

students within a school attendance area and within a school itself (e.g. trustworthiness of immediate

neighbors or distinct course tracks at the school). Some of the factors that determine ηsi may

represent the within-school components of Zs.

The component ξsi captures other influences on student i’s outcome that are determined after

secondary school but are not predictable given Xi, xU
i , Zs, zU

s and ηsi. These might include the

opening of a local college or local labor market shocks that occur after high school is completed.

It will prove useful to write ξsi as ξs + ξi, where ξs is common to all students at school s and ξi

is idiosyncratic. ξs is 0 for high school graduation. More generally, the productivity parameters
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βββ and ΓΓΓ and the indices xU
i , zU

s , ηsi and ξsi depend implicitly upon the specific outcome under

consideration as well as the time period in the case of wages.

In practice we only have data on observed student and school inputs Xi and Zs at a single point

in time. Thus, some components of Xi associated with student inputs such as student aptitude

will have been determined in part by parental inputs from earlier periods such as parent income

(Todd and Wolpin (2003) and Cunha et al. (2006)). Such links make it difficult to interpret the

coefficient associated with a given component of Xi, because once we have conditioned on the other

components, we have removed many of the avenues through which the component determines Yi.

Consequently, we do not attempt to estimate the productivity parameters βββ or βββ
U, and thus do not

attempt to tease apart the distinct influences of child characteristics, family characteristics, and early

childhood schooling inputs, respectively. Similarly, we do not attempt to remove bias in estimates

of ΓΓΓ stemming from correlations between Zs and the omitted school/neighborhood factors zU
s . We

aim instead to separate the effects of schools and associated community influences on outcomes

from student, family, and prior school/community factors.

To be more specific about what we mean by school/neighborhood treatment effects, note that if

a randomly selected student attended school s1 rather than s0, the expected difference in his/her out-

come would be (Zs1ΓΓΓ+zU
s1)−(Zs0ΓΓΓ+zU

s0). We wish to quantify differences across schools/neighborhoods

in ZsΓΓΓ+ zU
s . In the case of college attendance and permanent wage rates, the difference in expected

outcomes will also reflect the difference between ξs1 and ξs0 , which are common to those who attend

s1 or s0 but are determined after high school is completed.12

One could generalize the above model for Ysi to allow the effects of school characteristics to

depend on individual attributes by adding interactions of Zs and/or zU
s with individual attributes Xi

and/or XU
i . Indeed, the preference weights on amenities that represent school characteristics depend

on Xi and XU
i in the choice model, as would be the case if parents choose locations with the match

to their child’s needs in mind. Allowing for non-separability in the outcome model does not break

the linear relationship between Xs and XU
s . However, it would imply that the distribution of school

treatment effects varies with Xi and XU
i . We focus on the homogenous effects case in this paper.

Agrawal et al. (in progress) are extending the analysis to a model of Ysi with interactions.

4.2 The Bias in OLS Estimates of School Effects

In this section we discuss the slope parameters and error components that OLS recovers when

outcomes are regressed on only the observed student-level and school-level variables, Xi and Zs.

To facilitate the analysis, first partition Zs into [Xs,Z2s], where Xs consists of school-averages of

observable student characteristics, and Z2s is a vector of other observed school-level characteristics

not mechanically related to student composition (e.g. teacher turnover rate or student-teacher ratio).

Partition the coefficient vector ΓΓΓ≡ [ΓΓΓ1,ΓΓΓ2] analogously. Section 6.3 provides a discussion of which

12The outcomes of a specific student i will also differ across schools/neighborhoods because the values of the idiosyn-
cratic terms ηsi will differ.
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variables should be included in Xs and Z2s, respectively.

Recall that ξsi is defined to be unrelated to [Xi,Xs,Z2s]. Decompose the other unobserved com-

ponents in the production function (8), xU
i , zU

s and ηsi, into their projection onto [Xi,Xs,Z2s] and the

orthogonal components x̃U
i , z̃, and η̃si:

xU
i = XiΠΠΠxU

i Xi
+XsΠΠΠxU

i Xs
+Z2sΠΠΠxU

i Z2s
+ x̃U

i (9)

zU
s = XsΠΠΠzU

s Xs +Z2sΠΠΠzU
s Z2s + z̃U

s (10)

ηsi = XiΠΠΠηsiXi + η̃si. (11)

Substituting the projections (9), (10), and (11) for xU
i , zU

s , and ηsi into (8), we obtain:

Ysi = XiB+XsG1 +Z2sG2 + vs +(vsi− vs), where (12)

B≡ [βββ +ΠΠΠxU
i Xi

+ΠΠΠηsiXi ] (13)

G1 ≡ [ΠΠΠxU
i Xs

+ΓΓΓ1 +ΠΠΠzU
s Xs ] (14)

G2 ≡ [ΠΠΠxU
i Z2s

+ΓΓΓ2 +ΠΠΠzU
s Z2s ] (15)

vs ≡ x̃U
s + z̃U

s +ξs (16)

vsi− vs ≡ (x̃U
i − x̃U

s )+ η̃si +ξi (17)

The expressions for G1,G2 and vs in (14), (15) and (16) reveal that the observable school com-

ponents XsG1 and Z2sG2 and the unobservable residual component vs all reflect a mixture of school

effects and student composition biases. Specifically, XsG1 and Z2sG2 will reflect XsΠΠΠxU
i Xs

and

Z2sΠΠΠxU
i Z2s

, respectively, which capture differences across schools in xU
i that are predictable by Xs

and Z2s conditional on Xi. The unpredicted between-school component vs will reflect x̃U
s , which cap-

tures the part of the average unobservable student contribution that is not related to observed school-

level characteristics or average student-level characteristics. The terms XsΠΠΠxU
i Xs

, Z2sΠΠΠxU
i Z2s

and x̃U
s

capture sorting. They are not school/neighborhood effects, since a child who was reallocated to a

school with a higher value of these components could not expect an increase in test scores.13 With-

out further assumptions about how students sort into schools, regression and variance decomposition

techniques cannot be used to identify or even bound the contribution of schools/neighborhoods to

student outcomes. However, in the next section we show that the assumptions laid out in Proposition

1, plus an additional assumption, are sufficient to place a lower bound on the variance of school and

neighborhood effects given the production function (8) above.

13Note that peer effects stemming from concentration of particular types of students at a school are captured by either
ZsΓΓΓ or zU

s .
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4.3 Using Proposition 1 to Bound the Importance of School/Neighborhood Effects

Section 3 provides conditions under which the school-average values of student observables Xs

and unobservables XU
s are linearly dependent, as summarized in Proposition 1. In this subsection

we present two additional Propositions that illustrate the value of Proposition 1 for characterizing

the distribution of school/neighborhood treatment effects. In particular, Proposition 2 shows that

the relationship between Xs and XU
s implies restrictions on G2 and vs. Proposition 3 shows that

Propositions 1 and 2, when combined with an additional plausible assumption, allow the recovery

of a lower bound estimate of the contribution of schools (and groups more generally) to individual

outcomes. We also present the more demanding conditions under which unbiased estimates of the

causal effects of particular group-level characteristics can be recovered.

Proposition 2: Assume that assumptions A1-A5 from Proposition 1 hold.

Then equations (15)-(16) simplify to:

G2 = ΓΓΓ2 +ΠΠΠzU
s Z2s (18)

vs = z̃U
s +ξs (19)

An expanded version of Proposition 2 that includes formulae for B and G1 is stated and proved in

Online Appendix A7.

We see that when the conditions of Proposition 1 are satisfied, the inclusion of Xs in Zs purges

both G2 and vs of biases from student sorting, so that Var(Z2sG2) and Var(vs) only reflect true

school/neighborhood contributions and, in the case of vs, later common shocks. However, the sum

Var(Z2sG2) +Var(vs) is likely to understate the full variance in school contributions Var(ZsΓΓΓ+zU
s )

for three reasons. The first and obvious one is that the causal effect of Xs on outcomes, XsΓΓΓ1, will

contribute to G1 and therefore will be excluded from estimates of school/neighborhood effects. If

peer effects are important, this could lead to a substantial underestimation of the importance of

school/neighborhood effects.

Second, if the school mean XU
s has external effects, it is part of zU

s and therefore enters the

outcome equation separately from the individual level variable xU
i . Since this component will also

be absorbed by XsG1, school/neighborhood peer effects associated with XU
s will be excluded from

the estimate of school/neighborhood effects.

Third, (14) reveals that Xs will also absorb part of the unobserved school contribution zU
s via

ΠΠΠzU
s Xs . To see why, note that Xs spans the space of XU

s because the amenity vector, As, is the source

of variation in both Xs and XU
s . Given that parents are likely to value the contributions of schools

to student outcomes, many of the characteristics contributing to zU
s that affect school quality are

likely to be reflected in As. Hence, while the inclusion of Xs in the estimated specification removes

sorting bias, it also absorbs some of the variation in zU
s associated with underlying amenity factors

for which Xi affects taste. Furthermore, if some elements of the school-level observables Z2s also
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serve directly as amenities in As or perfectly determine them, then these elements determine Xs.

These relationships need not be linear, but if they are, then we cannot identify the corresponding

elements of the vector G2.14

On the other hand, components of Z2sΓΓΓ2+ zU
s that are either not directly valued or only partially

known by parents at the time the school/neighborhood is chosen will not be elements of As, although

they may be correlated with As. Parents probably are not perfectly informed about specific school

quality determinants such as student/teacher ratio and in any event care about broader qualities of

schools rather than specific inputs. The broader qualities are the amenities in the model. Parents

would know some variables, such as whether a school is Catholic, but in many cases would have

chosen locations prior to high school based on education options more generally. Such specific

components of Z2s will not be collinear with Xs.

The fact that Z2sG2 and vs exclude three components of Z2sΓΓΓ2 + zU
s is the reason to expect that

Var(Z2sG2) and Var(Z2sG2+vs) will both understate Var(Z2sΓΓΓ2+zU
s ). However, it is theoretically

possible that the covariance of the excluded components with the rest of Z2sΓΓΓ2 + zU
s is sufficiently

negative that Var(Z2sG2)+Var(vs) and even Var(Z2sG2) exceeds Var(Z2sΓΓΓ2 + zU
s ). To rule this

out, we assume

A6.1: Var(Xs[ΓΓΓ1 +ΠΠΠzU
s Xs ])+2Cov(Xs[ΓΓΓ1 +ΠΠΠzU

s Xs ],Z2s[ΓΓΓ2 +ΠΠΠzU
s Z2s ])+Var(z̃U

s )≥ 0

or

A6.2: Var(Xs[ΓΓΓ1 +ΠΠΠzU
s Xs ])+2Cov(Xs[ΓΓΓ1 +ΠΠΠzU

s Xs ],Z2s[ΓΓΓ2 +ΠΠΠzU
s Z2s ])−Var(ξs)≥ 0. (20)

The following proposition provides formal justification for using Var(Z2sG2) and even Var(Z2sG2+

vs) as lower bound estimates of the variance in school/neighborhood treatment effects.

Proposition 3: If assumptions A1-A5 from Proposition 1 and A6.1 hold, then Var(Z2sG2) ≤
Var(ZsΓΓΓ+ zU

s ). If assumptions A1-A5 and A6.2 hold, then Var(Z2sG2 + vs)≤Var(ZsΓΓΓ+ zU
s ).

The proof is in Online Appendix A8. Note that since Var(z̃U
s ) and Var(ξs) are non-negative,

Assumption 6.2 is strictly stronger than Assumption 6.1. By the same token, since vs is uncorrelated

with Z2s by construction, Var(Z2sG2) will always produce a more conservative lower bound than

Var(Z2sG2 + vs).

While A6.1 and A6.2 are technically necessary to interpret Var(Z2sG2) and Var(ZsG2 + vs) as

lower bound estimators of the school/neighborhood effect variance, in practice we believe that even

the stronger assumption A6.2 is very likely to hold if the common shocks component Var(ξs) is 0

14Nor can we estimate the effect of a school level variable in the unlikely event that the political process leads it to be
an exact linear function of Xs.
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(as in high school graduation) or is not too large.15 In particular, when Var(ξs) is 0 the stronger

assumption A6.2 is violated only if the covariance term is sufficiently negative to outweigh the

variance term. That can only happen when the peer and unobserved school inputs that project

onto Xs are both strongly negatively correlated with those that project onto Z2s and account for a

much smaller share of the total school effect variance. Recall that a large share of the variation in

Xs(ΓΓΓ1 +ΠΠΠzU
s Xs

) is likely to represent observed and unobserved peer inputs.A strong negative corre-

lation between peer inputs and productive school resources or policies will generally require that the

student and parent attributes that contribute to a strong peer environment also predict lower valua-

tion of superior school inputs. This is at odds with both empirical evidence and casual observation.

Online Appendix A8 fleshes out this argument and provides additional theoretical, statistical, and

empirical justifications for A6.1 and A6.2.

4.3.1 Identification of ΓΓΓ2

The existence of ΠΠΠzU
s Z2s in the expression for G2 in (18) reveals that even when the conditions

of Proposition 1 are satisfied, G2 still reflects omitted variables bias driven by correlations between

Z2s and the unobserved school characteristics index zU
s . Thus, estimating the vector of causal effects

ΓΓΓ2 associated with the school characteristics Z2s will in general still require a vector of instruments,

an extension that we discuss in the conclusion.

However, the sorting model in Section 2 also sheds light on the circumstances in which ΠΠΠzU
s Z2s =

0, so that Ĝ2 is an unbiased estimator of ΓΓΓ2. In particular, suppose that every unobserved school

characteristic that contributes to the index zU
s and is correlated with Z2s is either an amenity con-

sidered by individuals at the time of choice or is perfectly predicted by the vector of amenities.

Furthermore, suppose the spanning assumption is satisfied so that As is a function of Xs. This

implies that Xs also perfectly determines the part of zU
s that is correlated with Z2s. In this case,

the residual variation in zU
s will be orthogonal to Z2s. As a result, ΠΠΠzU

s Z2s = 0, and Ĝ2 will be an

unbiased estimator of ΓΓΓ2.

Because we suspect that there are a large array of outcome-relevant school inputs, not all of

which are directly and accurately valued by parents when choosing schools, we do not assume

that ΠΠΠzU
s Z2s = 0 in our empirical work. Thus, we do not attempt to interpret the individual coeffi-

cients estimated by Ĝ2.16 However, this analysis does suggest that controlling for group-averages

of individual characteristics can potentially remove part of the omitted variable bias from estimated

coefficients on group-level characteristics.17

15If one regards the common shocks as part of the school/neighborhood treatment, then Var(ξs) becomes part of
Var(z̃U

s ) in A6.1 and disappears from A6.2, strengthening both inequalities.
16See Meghir et al. (2011) for a recent discussion of some of the issues in estimating the effects of particular school

characteristics. They highlight the vector of omitted school characteristics that determines zU
s as a key source of bias.

17Of course, as with any control variable, controlling for Xs could make the bias in Ĝ2 as an estimator of ΓΓΓ2 worse.
This could happen if the regression relationship between the components of Z2s and zU

s controlling for sorting is stronger
than and opposite in sign to the relationship between Z2s and zU

s that is unrelated to sorting.
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5 Mechanics of Measuring School and Neighborhood Effects

5.1 Estimating the Model Parameters

Online Appendix A9 describes the process by which the coefficients B, G1, and G2 and the

error component variances Var(vs) and Var(vsi− vs) are estimated. In all cases we use sample

school averages of observable characteristics X̂s in place of the population averages Xs, which are

not observed. We have modified our estimation procedures from previous drafts of this paper to

correct for small sample bias in estimates of Var(vs) associated with the use of degrees of freedom

to estimate B, G1, and G2. For the continuous outcome years of postsecondary education we treat

vs as a random effect and estimate the model by restricted maximum likelihood (REML). REML

accounts for degrees of freedom in estimating Var(vs) and Var(vsi−vs), while maximum likelihood

does not. For the log wage outcome we have panel data on each sample member. We treat both

vs and (vsi− vs) as random effects and allow for an additional person-specific transitory component

of wages that may be serially correlated for up to 7 years. We estimate by REML. Due to compu-

tational difficulties, we do not incorporate weights into the REML estimation procedure for either

continuous outcome.18

For binary outcomes such as high school graduation, we reinterpret Ysi to be the latent variable

that determines the indicator for whether a student graduates, HSGRADsi = 1(Ysi > 0). We assume

errors are normally distributed and work with a random effects probit model. The scale of Ysi

is chosen by setting Var(vsi− vs) to 1. The REML estimator does not exist for binary outcomes,

so we use a two-step procedure. In the first step, we use maximum likelihood to estimate the

parameters B, G1, G2 and Var(vs) of the random effects probit model. In the second step, we

correct the maximum likelihood estimates of Var(vsi− vs) and Var(vs) for downward bias due to

lost degrees of freedom in estimating the slope parameters. The correction is based upon formulas

derived for continuous outcomes for relationships between the unbiased REML estimators and the

corresponding ML estimators of Var(vs) and Var(vsi− vs). We assume that these formulas also

approximately hold in the probit case once scale is accounted for. We then use them to obtain simple

formulas to bias adjust the ML estimators. See Supplemental Appendix A9.3.1 for the derivation

and formulas.

5.2 Variance Decomposition

In the empirical work below, we estimate models of the form

Ysi = XiB+XsG1 +Z2sG2 + vsi, (21)

18However, to minimize the impact of omitting weights from model estimation, sampling weights are reincorporated
when computing each of the observable components of our variance decomposition and also when taking averages over
the population of the impact of 10th-to-90th quantile shifts in school quality.
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where Xs is a vector of school-averages of student characteristics, and Z2s is a vector of observed

school characteristics (such as school size or student-teacher ratio). We can decompose Var(Ysi)

into observable and unobservable components of both within- and between- school variation via

V̂ar(Ysi) = V̂ar(Ysi−Ys)+V̂ar(Ys) (22)

= [V̂ar((Xi−Xs)B)+V̂ar(vsi− vs)]+

[V̂ar(XsB)+2Ĉov(XsB,XsG1)+2Ĉov(XsB,Z2sG2)+V̂ar(XsG1)+

2Ĉov(XsG1,Z2sG2)+V̂ar(Z2sG2)+V̂ar(vs)]. (23)

Drawing on the analysis above, particularly Proposition 3, we introduce two alternative lower bound

estimators of the contribution of school/neighborhood choice to student outcomes.

The first lower bound estimator is V̂ar(Z2sG2 + vs). Due to the presence of Xs in (21) it will

be purged of any effects of student sorting (observable or unobservable). Thus, it only captures

school/neighborhood factors. The component vs includes z̃U
s , the unpredicted component of the

school/neighborhood contribution. However, for post secondary outcomes such as college enroll-

ment and permanent wage rates vs will also include ξs. Recall that ξs is an index of common

location-specific shocks (such as local labor demand shocks) that occur after the chosen cohort has

completed high school. One can argue that such shocks should not be attributed to schools because

they are beyond the control of school or town administrators. This bias is likely to be second order

for permanent wages because the effect on our random effects estimator of vs of local shocks that

persist for less than the 7 years between sample members’ wage observations will be muted. But we

pointed out in Section 3.2 that vs will also contain an approximation error if the linearity assumption

A4 is violated. This could lead to upward bias in our estimates of variance of school/neighborhood

effects.

Consequently, we also consider a second, more conservative lower bound estimator: V̂ar(Z2sG2).

This estimator only attributes to schools/neighborhooods the part of the residual between-school

variation that could be predicted based on observable characteristics of the schools at the time

students were attending. V̂ar(Z2sG2) excludes true school quality variation that is orthogonal to

observed characteristics, but also excludes any truly idiosyncratic local shocks that occur after grad-

uation.19

The estimators of the variance and covariance terms in (23) account for sampling error in the

regression coefficient estimators. For example, our estimator of Var(Z2sG2) is

V̂ar(Z2sG2) =[
1
N ∑

i
(Zs(i)Ĝ2Ĝ2Z′s(i))−

1
N ∑

i
Zs(i)V̂ar(Ĝ2)Z′s(i)].

In practice, we incorporate student weights into the sums in the above equation. See Online Ap-

pendix A9.4 for more detail. Online Appendix A10 discusses how the empirical variance decom-

19The linear approximation error component might also bias G2, but we think this is likely to be minor given that we
are controlling for Xs.

21



position is implemented.

5.3 Interpreting the Lower Bound Estimates

The static sorting model presented in Section 2 is silent about when in a student’s childhood

the school/neighborhood decision is made, although Section 3.2.1 briefly discusses an extension

of Proposition 1 to a dynamic model. To illustrate how different assumptions about timing affect

the interpretation of our bounds, consider first the case in which changing schools/communities is

costless, so that each family decides each year where to live and send their children to school.

In this case, if the data are collected in 10th grade (as in ELS2002), then any impact of prior

schools/neighborhoods can be thought of as entering the outcome equation by altering the ob-

servable or unobservable student contributions Xi and XU
i . Thus, if prior schooling inputs affect

WTP for school/neighborhood amenities, our control function argument suggests that 10th grade

school averages of Xi will absorb all between-school variation in prior school contributions to XU
i .

In this case, the residual variance contributions Var(Z2sG2) or Var(Z2sG2 + vs) that we identify

will represent a lower bound on the contributions of only the high schools and their surrounding

neighborhoods to our outcomes.

Now consider the opposite extreme: moving costs are prohibitive, and each family makes a

one time choice about where to settle down when they begin to have children. Suppose that the

observed characteristics Xi are unaffected by early schooling, as is the case in our baseline specifi-

cation discussed in Section 6.3. In this scenario, the residual variance contributions Var(Z2sG2) or

Var(Z2sG2+vs) that we identify will represent a lower bound on the variation in contributions to our

later outcomes of entire sequences of schools (elementary, middle, and high) and entire childhoods

of neighborhood exposure. In reality, of course, moving costs are substantial but not prohibitive, so

that our estimates probably reflect a mix of elementary school and high school contributions, with a

stronger weight on high school contributions.20 However, note that as long as high school quality in

a neighborhood is positively correlated with elementary and middle school quality, a lower bound

estimate of the variance of high school contributions is itself a (very conservative) lower bound es-

timate of the variance of contributions of entire school systems. Thus, since our goal is to create a

lower bound, the safest interpretation is that our estimates represent lower bounds on the variance

of the cumulative effects of growing up in different school systems/neighborhoods.

20This interpretation is consistent with the evidence on moving in our data. In the ELS2002 base year survey, parents
report the number of years they have lived in the current neighborhood. 22.5% report 3 years or less, 29.9% report 4 to
7 years, 14.3% report 8 to 10 years, and 42.3% report more than 10 years. Parents also report the number of times the
student changed schools, not counting natural transitions resulting from grade advancement (e.g., from the elementary
school building to the middle school building). The values are 43.3% for no changes, 24.0% for 1 change, 12.5% for 2
changes, 9.9% for 3 changes, 5.3% for 4 changes, and 5.0% for 5 changes.
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5.4 Measuring the Effects of Shifts in School/Community Quality

The fraction of outcome variance unambiguously attributable to school/neighborhood factors

provides a good indication of the importance of school/community factors relative to student-

specific factors. However, the effect of a shift in school/community quality from the left tail of

the distribution to the right tail of the distribution might be socially significant even if most of the

outcome variability is student-specific. This is particularly true in the case of binary outcomes such

as high school graduation and college enrollment, where many students may be near the decision

margin. Below we report lower bounds on the effect of a shift in school/neighborhood quality from

1.28 standard deviations below the mean to 1.28 standard deviations above the mean. This would

correspond to a shift from the 10th percentile to the 90th percentile if this component has a normal

distribution. We interpret these as lower bound estimates of the average change in outcomes from a

10th-to-90th quantile shift in the full distribution of school/neighborhood quality, where the average

is taken over the distribution of student contributions.

The more comprehensive estimates use V̂ar(Z2sG2 + vs) to calculate the 10th-90th shifts, while

the more conservative estimates use V̂ar(Z2sG2). For binary outcomes, we estimate the effect of

the shift in Z2sG2 via:

E[Ŷ 90− Ŷ 10] =
1
I ∑

i
wiΦ(

[XiB̂+ X̂sĜ1 +Z2sĜ2 +1.28(V̂ar(Z2sG2))
.5]

(1+V̂ar(vs)).5
) (24)

− 1
I ∑

i
wiΦ(

[XiB̂+ X̂sĜ1 +Z2sĜ2−1.28(V̂ar(Z2sG2))
.5]

(1+V̂ar(vs)).5
),

where I is the sample size, Φ is the CDF of a standard normal, and X̂sĜ1 and Z2sĜ2 are the means

across sampled schools of X̂sĜ1 and Z2sĜ2, and wi are individual-level weights. This average

effectively integrates over the distribution of XiB+ vsi, but uses the empirical distribution of XiB
since it is observed instead of imposing normality. Note that the scale of the latent index Ysi is

unobserved, so we have normalized Var(vsi− vs) to 1.

We estimate the effect of the shift in Z2sG2 + vs analogously via:

E[Ŷ 90− Ŷ 10] =
1
I ∑

i
wiΦ(

[XiB̂+ X̂sĜ1 +Z2sĜ2 +1.28(V̂ar(Z2sG2 + vs))
.5]

(1)
)

− 1
I ∑

i
wiΦ(

[XiB̂+ X̂sĜ1 +Z2sĜ2−1.28(V̂ar(Z2sG2 + vs))
.5]

(1)
) (25)

We also report lower bound estimates of the impact of a 10th-to-50th percentile shift in school/neighborhood

quality (a 1.28 standard deviation shift). Researchers often use a 1 standard deviation shift in treat-

ment variable when assessing treatment effect sizes. Another natural benchmark would be based

on the distribution of shifts in school/neighborhood quality resulting from moves that parents make,

but we have not found a way to estimate this with our data.
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For the binary outcomes, the impact of a shift in Z2sG2 or (Z2sG2 + vs) will depend on the

values of a student’s observable characteristics, XiB. Thus, we report average impacts for certain

subpopulations of interest as well.21

6 Data and Variable Selection

6.1 Overview of Data Sources

Our analysis uses data from four distinct sources. The first three sources consist of panel sur-

veys conducted by the National Center for Education Statistics: the National Longitudinal Study of

1972 (NLS72), the National Educational Longitudinal Survey of 1988 (NELS88), and the Educa-

tional Longitudinal Survey of 2002 (ELS2002). These data sources possess a number of common

properties that make them well suited for our analysis. First, each samples an entire cohort of Amer-

ican students. The cohorts are students who were 12th graders in 1972 in the case of NLS72, 8th

graders in 1988 for NELS88, and 10th graders in 2002 for ELS2002. Second, each source pro-

vides a representative sample of American high schools or 8th grades and samples of students are

selected within each school. Both public and private schools are represented.22 Enough students

are sampled from each school to permit construction of estimates of the school means of a large

array of student-specific variables and to provide sufficient within-school variation to support the

variance decomposition described above. Third, each survey administered questionnaires to school

administrators in addition to sampled individuals at each school. This provides us with a rich set of

both individual-level and school-level variables to examine. Fourth, each survey collects follow-up

information from each student past high school graduation, facilitating analysis of the impact of

high school environment on two or more of the outcomes economists and policymakers care most

about: the dropout decision, college enrollment, number of completed years of college, and wage

rates.

While these common properties are very helpful, differences in the surveys complicates efforts

to compare results across time. In Altonji and Mansfield (2011) we only used variables that are

available and consistently measured across all three data sets. However, because the efficacy of

the control function approach introduced in this paper depends on the richness and diversity of our

student-level measures, for each dataset we include in Xi student-level measures that may not appear

in the other datasets. Section 6.3 details the process by which we chose what to include in Xi, Xs,

and Z2s, and Table 1 provides a list.

The one major drawback associated with the three panel surveys is that the number of students

sampled per school is only about 18 in NLS72, 24 in NELS88 and 20 in ELS2002. The simulation

results presented in online Appendix A6 indicate that samples of this size may reduce to some

21With a nonseparable education production function the ordering of school/neighborhoods and the size of the effects
depend on Xi. See Agrawal et al. (in progress).

22We include private schools because they are an important part of the education landscape. However, the connection
between characteristics of the school and characteristics of the neighborhood may be weaker for private school students.
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degree the ability of sample school averages of observable characteristics X̂s to serve as an effective

control function for variation in average unobservable student contributions across schools.

Consequently, we also exploit administrative data from North Carolina on the universe of public

schools and public school students (including charter schools) in the state. Since the North Carolina

data contains information on every student at each school, it does not suffer from the same small

subsample problem as the panel surveys. Furthermore, we can use the North Carolina data to

assess the potential for bias in our survey-based estimates more directly. Specifically, we draw

samples of students from North Carolina schools using either the NLS72, NELS88, or ELS2002

sampling schemes and re-estimate the model for high school graduation using these samples. By

comparing the results derived from such samples to the true results based on the universe of students

in North Carolina, we can determine which if any of the survey datasets is likely to produce reliable

results. Online Appendix Tables A10 and A11 report the results of this exercise. They show that

using school sample sizes whose distributions match the NLS72, NELS88, or ELS2002 distributions

produces only relatively minor biases, generally making V̂ar(Z2sG2) and V̂ar(Z2sG2 + vs) more

conservative by less than ten percent of their full sample values.

The North Carolina data are also the most recent: data are collected for all 2004-2006 public

school 9th graders. On the other hand, high school graduation is the only outcome we observe. And

the set of observable characteristics is not as diverse as in the panel surveys, though it is surprisingly

rich for administrative data.

We restrict our samples to those individuals whose school administrator filled out a school sur-

vey, and who have non-missing information on the outcome variable and the following key charac-

teristics: race, gender, SES, test scores, region, and urban/rural status.23 We then impute values for

the other explanatory variables to preserve the sample size, since no other single variable is critical

to our analysis.24 Finally, we use panel weights. The appropriate weights depend on the analysis.

See Online Appendix A12 for the details.

6.2 Outcome Measures

The outcome variables are defined as follows. The measure of college attendance is an indicator

for whether the student is enrolled in a four year college in the second year beyond the high school

graduation year of his/her cohort.25 It is not available in the North Carolina data. For NELS88

23SES and urban/rural status are not available in the North Carolina data.
24This results in sample sizes (rounded to the nearest 10) for the four-year college enrollment analyses of: 12,260 from

900 schools for NLS72, 12,390 from 960 schools for NELS88, and 12,170 from 690 schools for ELS2002. The sample
sizes and number of schools for the high school graduation analyses are 12,310 and 940 for NELS88, 12,100 and 690
for ELS2002, and 284,090 and 340 for North Carolina respectively. The analysis of years of postsecondary education
uses 12,230 observations from 900 schools from NLS72, and the wage analysis uses 4,930 individuals with 9,860 wage
observations from 900 schools. All individuals present in the base year are used to compute X̂s. We include mother’s
education combined with a missing indicator for mother’s education when performing imputation, along with school
averages of all the key characteristics above. Appendix Tables A12-A19 report percent imputed for each variable.

25In NLS72 enrollment status is reported in January-March of the second full school year after graduation, while in
NELS88 and ELS2002 it is reported in October.
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and ELS2002 the measure of high school graduation is an indicator for whether a student has a

high school diploma (not including a GED) as of two years after the high school graduation year

of his/her cohort. For the North Carolina data, the measure is an indicator for whether the student

is classified as graduated for the official state reporting requirement. Notice, though, that since

ELS2002 first surveys students in 10th grade, it misses a substantial fraction of the early dropouts.

Indeed, in NELS88, about one third of the 16 percent who eventually drop out do so before the first

follow up survey in the middle of 10th grade. The North Carolina data considers students as eligible

for official dropout statistics if they are enrolled in a North Carolina school at the beginning of 9th

grade, so there is little scope for underestimating the dropout rate. Given that NLS72 first surveys

students in 12th grade, we cannot properly examine dropout behavior in this dataset. However,

because NLS72 re-surveys students in 1979 and 1986, when respondents are around 25 and 32

years old, respectively, we can use it to analyze completed years of postsecondary education and

wages during adulthood. We use years of academic education as of 1979, because attrition and

subsampling reduced the 1986 sample by a considerable amount relative to the 1979 follow-up

survey, and most respondents have completed their education as of 1979. For the permanent wage

analysis, our estimation procedure requires that we include only respondents who report wages in

both 1979 and 1986 .

6.3 Selection of Control Function Variables, Z2s and Xi

First, we discuss Xs. As we pointed out in Section 2, the control function variables (referred to as

C∗s in that section) should contain means of individual variables that influence school/neighborhood

choice. We do not want to rule out the possibility that variables that affect Yi also influence choice.

Consequently, C∗s includes Xs, the group means of all variables in Xi. In our application, we do not

have Qi variables that shift location preferences but not outcomes. Consequently, Cs∗ is limited to

Xs and does not contain any Qs variables. Note that school level averages of student level variables

that affect choice should be included in the control function even if one does not have individual

level data. There are no such variables in the data sets we use.

What should be in Z2s? Observed school and neighborhood characteristics that could plausibly

influence the socioeconomic outcome of interest. School policies, such as school security policies,

belong in Z2s even if the policies are in part a response to the characteristics of students. Under

Proposition 1, the coefficients on the school policies are not affected by sorting bias. Any individual

student who switches schools will be subject to the full difference across schools in the policy.

School level variables that are determined both by school policy/efficacy and the behavior of the

students fall in a grey area. In ELS2002, we include Frequency of Fights at the school in control

function variables in our full specification (described below) rather than in Z2s. This variable is de-

termined by both school and neighborhood quality and by observed and unobserved characteristics

of students. Consider the case in which Frequency of Fights is the sum of an unobserved school pol-

icy variable, say ZU
f ight,s, and some elements of Xs and XU

s . Provided the spanning condition holds,
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the G2 coefficient corresponding to Frequency of Fights will not be contaminated by sorting bias.

It will be identified by variation in ZU
f ight,s that is orthogonal to Xs and the included Z2s variables.

However, because part of the variation across schools in Frequency of Fights is driven by the direct

effect of XU
s on fighting, one would overstate the importance of differences in school policy toward

fighting if one were to treat Frequency of Fights as a Z2s variable when measuring the variance of

school treatment effects.26 The fact that the policy variable ZU
f ight,s is in part a function of Xs and/or

XU
s is not a problem. To the extent school policy and the skill of teachers and the administration

have a big effect on fighting, we are being conservative in our estimates of school effects. The

same issues apply to test scores measured during high school. Test scores are determined by school

quality and by student characteristics. We never include them in Z2s. This is conservative.

What should not be in Z2s? Z2s should exclude variables that are simple aggregates of par-

ent/student traits that might also affect willingness to pay for neighborhood characteristics and thus

lead to sorting. These are Xs variables regardless of whether the measures are aggregates of the

student micro data, Census data or administrative data from the schools. Even if sampling error in

X̂s breaks multicollinearity among the components of Xs that exists when the spanning condition

holds, elements of X̂s should not be included in Z2s because they pick up effects of xU
s . In contrast,

it may be prudent in some applications to treat group characteristics that are strongly related to the

amenities that drive sorting as part of the control function rather than as part of Z2s if Xs is too

limited to plausibly control for sorting. The cost is likely to be a more conservative lower bound.

Xi should include variables that directly affect the outcome and/or are correlated with unob-

served student-level characteristics that affect the outcome. In our “baseline” specification we only

use student-level characteristics that are unlikely to be affected by the high school the child attends.

However, we also provide results from a “full” specification which includes in Xi measures of stu-

dent behavior (e.g., fighting, hours/week spent on homework), parental expectations, and student

academic ability (standardized test scores) and includes the corresponding school averages in Xs.

Such measures may be influenced directly by school inputs, so including them in Xi could cause

an underestimate of the contribution of school-level inputs (our lower bound estimates will be too

conservative). On the other hand, excluding such measures from Xi and Xs could instead cause

an overestimate of the contribution of school-level inputs if the sparser set of student observables

no longer satisfies the spanning condition stated in Proposition 1. In this case there would exist

differences in average unobservable student contributions to outcomes across schools that are not

predicted by the vector of school averages of observable characteristics used as the control function.

Table 1 lists the final choices of individual-level and school-level explanatory measures used in

each dataset. Online Appendix Tables A12 - A19 provide the mean, standard deviation, and percent

of observations imputed for each individual-level and school-level characteristic for each of our four

datasets.
26Let Frequency o f Fightss = ZU

f ight,sa1 +Xsa2 +XU
s a3 where a1, a2, and a3 are coefficients or coefficient vectors.

Let G2FF be the coefficient on Frequency o f Fightss. The variance (G2FF )
2var(ZU

f ight,sa1 +Xsa2 +XU
s a3) is likely to

overstate (G2FF )
2var(ZU

f ight,sa1), which is the contribution of the policy variation in school policy toward fighting.
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7 Results

We now turn to the results. Along with the point estimates, we report bootstrap standard error

estimates based on re-sampling schools with replacement, with 500 replications. We bootstrap the

entire estimation procedure, including imputation of missing data, estimation of model parameters,

variance decompositions, and treatment effects. To preserve the size distribution of the samples

of students from particular schools, we divide the sample into five school sample size classes and

resample schools within class.

7.1 High School Graduation

The full variance decompositions described in Section 5 are provided for each of our outcomes

in Online Appendix Tables A20, A21, and A22. Panel A of Table 2 displays our lower bound es-

timates of the fraction of variance in the latent index that determines high school graduation that

can be directly attributed to school/neighborhood choices for each dataset. The first row presents

estimates that exclude Var(vs) (labeled “no unobs”), while the second row presents estimates that

include Var(vs) (labeled “w/ unobs”). However, recall that the rationale for excluding vs is that it

may reflect common shocks that occur after high school that may not be responsive to any changes

in school or neighborhood policies. Since graduation is not a post-secondary outcome, vs is likely

to contain only school and neighborhood contributions that are orthogonal to the observed school-

level measures Z2s (or sorting bias if the spanning condition from Proposition 1 fails). Thus, for

high school graduation we focus on the results that contain vs. The first column displays the results

from the baseline specification using the North Carolina data: our lower bound estimate is that at

least 5.1 percent of the total student-level variance in the latent index can be attributed exclusively to

school system and neighborhood contributions. Since the set of observed individual-level measures

contained in Xi is limited in the North Carolina data, it is possible that the WTP coefficient matrix

Θ̃ΘΘ associated with our control function of school-averages Xs does not span ΘΘΘ
U and thus the full

amenity space, so that unobservable sorting bias may contribute to this estimate. Thus, the second

column displays results from the full specification that augments Xi by adding past test scores and

measures of behavior. Since these measures could potentially have been altered by the school, in-

cluding them removes some true school system contributions, but also makes the spanning condition

in Proposition 1 more plausible. The estimated lower bound falls from 5.1 percent to 3.8 percent of

the latent index variance.

NELS88 features a slightly smaller fraction of the variance attributable to schools/neighborhoods

than NC in the baseline specification (5.0% versus 5.1%) and a slightly larger fraction in the full

specification (4.4% versus 3.8%). The values for ELS2002 are smaller in both baseline and full

cases (3.2% and 2.1%). Aside from sampling error, the fact that the three data sets start at dif-

ferent points (8th grade, 9th grade, and 10th grade) and that NELS88 and ELS2002 have richer

controls and school level variables should lead to some differences across the data sets. The rela-
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tively sparse set of student-level variables for North Carolina (even in the full specification) may be

a factor. It might lead vs to contain some between-school variation in student unobservables xU
s that

is unabsorbed by the control function (the spanning condition in Proposition 1 fails). By contrast,

ELS2002 has the richest set of both student-level and school-level observables, so that there is very

little residual school-level variation that cannot be captured by either the control function Xs or the

school-level observables Z2s.

The small fractions of variance attributed to schools in Panel A are consistent with the consider-

able literature emphasizing the importance of student talent, parental inputs, and even luck relative

to school and neighborhood inputs in determining who completes high school. Online Appendix Ta-

ble A20 provides a full variance decomposition that shows the critical role that individual-specific

factors play. However, to get a better sense of the difference that an effective school system and

neighborhood can make, we use these two alternative lower bound variance estimates with (24)

and (25) to form estimates of the average impact on the probability of graduation across the dis-

tribution of student contributions of choosing a school at the 90th percentile of the distribution of

school/neighborhood contributions instead of a school at the 10th percentile. The estimates are in

Panel B of Table 2. They correspond to a thought experiment in which two students at each quan-

tile in the student contribution distribution are placed either in the 10th or the 90th quantile school

system, and the difference in the graduation status of these pairs is summed over all such pairs.

The most striking feature of the results is the large magnitude of the estimated changes in gradu-

ation rates. For North Carolina, the estimate from the baseline specification suggests that, averaged

across the student distribution, attending a 90th quantile school increases graduation rates by a

whopping 17.8 percentage points relative to a school at the 10th quantile (from 67.4% to 85.2%)

The corresponding estimates are 13.5 percentage points for NELS88 (78.1% to 91.6%) and 7.6

percentage points for ELS2002 (86.6% to 94.3%). Even the more conservative estimates from the

full specification, which likely removes mostly true school/neighborhood contributions, suggest in-

creases in graduation rates from a 10th-to-90th quantile shift of 15.3, 12.8 and 6.2 percentage points

in NC, NELS88, and ELS2002, respectively. Notice further that the latter estimates are quite large

despite the fact that the fractions of variance upon which they are based is small: 3.8, 4.4, and 2.1

percent for NC, NELS88 and ELS2002. One reason for this seeming disconnect is that squaring

of deviations to produce variances will naturally mute moderate differences in school contributions

relative to the standard deviations on which the 10-90 shifts are based. A second reason may be

related to our reliance on the probit function and the assumption of normality. If the true distribu-

tion of latent student contributions is normal, and the graduation rate is not too high, then there is

likely to be a large mass of students near the decision margin. Thus, even a small push from the

surrounding school/neighborhood environment may be enough to induce a significant fraction of

students to graduate.

Note that differences in the treatment effect estimates across data sets reflect both differences in

the variances of the school/neighborhood component and differences in the sample average grad-

uation rates across the datasets. The graduation rate is 77 percent in the North Carolina data, 83
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percent in NELS88, and 90 percent in ELS2002. As a result, a shift of the same magnitude will in-

duce a greater increase in graduation rate in the North Carolina and NELS88 data than in ELS2002

because there are fewer students near the decision margin in ELS2002. Intuitively, as the sample

average converges to 100 percent graduation almost the entire population is well above the decision

threshold. Consequently, school-related shifts in the latent index that determines graduation become

less relevant.

Assuming the conditions of Proposition 1 are satisfied or nearly satisfied, the large lower bound

estimates suggest that school systems and neighborhoods have a considerable role to play in deter-

mining which students graduate from high school.

7.2 Enrollment in a Four-Year College

Panel A of Table 3 presents results for the decomposition of the latent index determining en-

rollment in a four-year college. Comparing the baseline specifications from NLS72, NELS88, and

ELS2002 (Columns 1, 3, and 5), we observe consistency in both of the lower bound estimates of

the school/neighborhood contribution across datasets and generations. In the baseline case, esti-

mates that exclude the between-school residual vs attribute at least 1.7 to 2.7 percent of the outcome

variance to schools/neighborhoods, while estimates that include vs attribute 4.8 to 5.2 percent. In-

cluding test scores and behavioral variables reduces these lower bound estimates in a consistent

fashion across the three panel surveys (Columns 2, 4, and 6), with the estimates that exclude the

residual vs dropping to between 1.4 and 1.8 percent, and the estimates that include the residual vs

dropping to between 3.7 and 3.8 percent.

Panel B of Table 3 converts these variance fractions into the more easily interpreted average

impacts of a 10th-to-90th quantile shift in school/neighborhood environment. Note that the sample

average college enrollment rate is 27 percent in NLS72, 31 percent in NELS88, and 37 percent in

ELS2002. Since more of the students are far from the college attendance threshold in 1972, fewer

of them reach the decision margin for a given shift in school/neighborhood environment relative

to the cohorts from later generations. Despite these differences in baseline enrollment rates, the

estimated lower bounds on the increase in the four-year enrollment rate from moving every student

(one at a time) from the 10th to the 90th quantile school/neighborhood are fairly consistent across

generations. When the residual component vs is excluded and the full specification is considered, the

estimates for each dataset are between 11.1 and 11.6 percentage points (Row 1, Columns 2, 4, and 6

of Panel B). Specifically, a 10th to 90th quantile shift in the school/neighborhood component Z2sG2

increases enrollment rates from 21.2% to 32.7% in NLS72, from 25.7% to 36.8% in NELS88, and

from 31.0% to 42.6% in ELS2002. Including the residual between-school component boosts the

range of estimates to 16.6 to 18.8 percentage points. For this specification a 10th-to-50th quantile

shift has an average estimated impact ranging from 7.7 and 9.0 percentage points. Estimates are

larger for the baseline set of controls.

As with the estimates for high school graduation, the estimates in Table 3 suggest that schools
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and neighborhoods also play an important role in determining who enrolls in a four-year college.

7.3 Heterogeneous Effects of 10th-90th Percentile Shifts in School Quality

The estimates reported in Panel B of Tables 2 and 3 are based on starting the full distribu-

tion of students at a 10th quantile school/neighborhood versus starting them at a 90th quantile

school/neighborhood. However, many of the students with superior background characteristics

would be quite unlikely to ever be observed in a 10th quantile environment. A more realistic es-

timate might place greater weight on the individual-specific estimates associated with the kinds of

students most likely to be observed in 10th quantile schools. While our method does not allow us to

discern the quality of any given school, we can nonetheless explore the extent to which the estimates

in Tables 2 and 3 conceal heterogeneity in the relative impact of alternative schools across students

with varying student backgrounds. Due to the nonlinearity in the probit function that links Ysi to

the binary outcome indicators for high school graduation and enrollment in a four-year college, the

sensitivity to school quality is higher for groups with values of XiB̂ that place them closer to an

outcome probability of 0.5. High school graduation is therefore more sensitive to school quality for

disadvantaged groups and less sensitive for advantaged groups. The opposite tends to be true for

enrollment in a four-year college.

Table 4 reports the lower bounds (excluding and including the school-level residual vs) for the

effect of a 10th to 90th percentile shift in school quality on graduation rates for two extreme cases:

students whose value of the background index XiB̂ places them at the 10th quantile of the XiB̂
distribution (Rows 1 and 2), and students at the 90th quantile of the XiB̂ distribution (Rows 3 and

4). For the North Carolina sample and the full specification (Column 2), the lower bound estimate

that includes the between-school residual component vs suggests a 23.3 percentage point increase

for students at the 10th quantile (42.8% to 66.1%). The increase is only 5.8% for students at the

90th quantile (91.9% to 97.7%). For NELS88 grade 8 (Column 4), the numbers are very similar at

the 10th quantile but smaller at the 90th quantile. The lower bound estimates that include vs are 24.1

percentage points (54.2 to 78.3) at the 10th quantile and 2.6 percentage points (96.7% to 99.4%) at

the 90th quantile. The ELS2002 estimate is 12.8% at the 10th percentile of XiB̂ and only 0.9% at

the 90th, reflecting the lower dropout rate in ELS2002. The results for all three data sets suggest

that advantaged students tend to graduate high school regardless of the school they attend, while

disadvantaged students are strongly affected by school quality.

Table 4 also reports the average impact of a 10th-90th shift on high school graduation rates

for three subpopulations of interest: black students, white students with single mothers who did not

attend college, and white students with both parents present, at least one of whom completed college.

For the full specification in the North Carolina sample, the shift increases the predicted graduation

rate among black students by 15.3 percentage points from 68.3% to 83.6%. The corresponding

increase for white students with single mothers who did not attend college is 21.0 percentage points

(49.5% to 70.5%), while the increase for white students with both parents present, at least one of
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whom completed college, is 7.9 percentage points (87.8% to 95.7%). Across all specifications, the

estimated increases in graduation rates in the NELS88 and ELS samples are between 5.0 and 14.2

percentage points for black students and 5.7 and 20.8 for white students with single mothers who

did not attend college.

Table 5 reports a corresponding set of results for enrollment in a four-year college. The college

enrollment rates for students at the 10th percentile of the XiB̂ distribution are substantially less sen-

sitive to school quality. This reflects the fact that most such students are nowhere near the four-year

college enrollment margin. For example, the ELS2002 estimate from the full specification suggests

that a 10th-90th shift in the school system/neighborhood component Z2sG2 + vs would increase

the college enrollment rates of students at the 10th percentile of XiB̂ from 2.0% to 9.0%. More

generally, the lower bound estimates that exclude and include vs are between 2.6 and 9.1 percent-

age points and between 3.6 and 15.0 percentage points, respectively, depending on the dataset and

specification. In contrast, for students at the 90th percentile of XiB̂ the ELS2002 estimate from

the full specification suggests that a 10th-90th shift in Z2sG2 + vs would increase enrollment rates

at four-year colleges by 18.1 percentage points (from 72.3% to 90.4%). More generally, across

datasets the lower bound estimates excluding and including vs for students at the 90th percentile

of the XiB̂ distribution are between 11.2 and 19.3 percentage points and 18.1 and 26.5 percentage

points, respectively. The values for blacks and for whites with non-college-educated single mothers

are about 1 percent and about 3 percent (respectively) below the results for the full sample. The

values for whites with college educated parents are close to those for the 90th percentile of the XiB̂
distribution.

Overall, it appears that, except for the lowest stratum of student background, many students are

close enough to the decision margin for a major shift in school quality to be a deciding factor in

determining enrollment in a four-year college.

7.4 NLS Results for Years of Postsecondary Education and Permanent Log Wages

Table 6 displays the lower bound estimates of the impact of 10th-to-90th and 10th-to-50th shifts

in school/neighborhood quality on years of postsecondary education and permanent log wages for

the NLS72 sample. The baseline lower bound estimate that excludes the between-school residual

vs implies that a 10-90 shift in school quality increases years of postsecondary education by .22

years, which is about .12 standard deviations. Including standardized tests among the observable

characteristics reduces this estimate to 0.02 years, which is not statistically significant. The lower

bound is not informative in this case. Note, though, that since the NLS72 data are collected in

12th grade, the standardized test scores are particularly likely to reflect high school quality, making

the full specification particularly conservative. Furthermore, adding in the contribution of vs raises

these estimates to .50 and .41 years respectively. Collectively, the estimates suggest a substantive

impact of shifts in school quality on years of college education.

Columns 3-6 contain analogous estimates for the permanent component of log wages. Columns

32



3-4 reflect specifications in which years of postsecondary education is not included as a control,

while columns 5-6 include years of postsecondary education to focus on the effect on log wages that

does not occur via postsecondary education. In practice, the two sets of estimates are quite similar.

The estimates that exclude the residual vs imply that a 10-90 shift in school quality increases wages

by around 13.7 percent (100e0.128−100). The 10-50 shifts are half as large at around 6.6 percent.

Estimates that include vs imply that a 10-90 shift in school/neighborhood quality increases wages

by 0.20 log points or about 22 percent. For comparison, standard deviation of the log permanent

wage component is 0.305. Thus, at least for the 1972 cohort, shifts in school/neighborhood quality

seem to have important impacts on longer run outcomes of prime importance for worker welfare.

Chetty and Hendren (2015) find that 20 years in a one standard deviation better neighborhood

raises the log of adult earnings by about 0.10. When we include vs we find that a one standard

deviation shift in school/neighborhood raises log permanent wage rates by 0.078. Several factors

contribute to the modest difference in the estimates from the studies.27

7.5 Alternative Estimators

In this subsection we compare our lower bound estimates above with two alternative estimators

of school and neighborhood effects more commonly observed in the literature.

In Online Appendix Tables A1 - A2 we report estimates of Var(XsG1 +Z2sG2 + vs), or equiv-

alently Var(Ys−XsB). By including XsG1, these estimates reintroduce peer effects that operate

through school averages of observable or unobservable student characteristics as well as other un-

observed school inputs that are predictable based on Xs given Z2s. But XsG1 also includes the com-

ponent XsΠΠΠxU
i Xs

, which reflects student sorting on unobservable characteristics. In Online Appendix

A7, we show that XsΠΠΠxU
i Xs

= 0 when XU
i does not affect location preferences and the assumptions of

Proposition 1 hold, in which case Var(XsG1 +Z2sG2 + vs) = Var(ZsΓΓΓ+ zU
s + ξs). This is the true

variance in school/neighborhood treatment effects (including common shocks). When unobserv-

ables do contribute to sorting, then Var(XsG1 +Z2sG2 +vs) will generally overstate the variance in

school/neighborhood treatment effects.28

Indeed, across all of the specifications and outcomes for the panel surveys these estimates

are noticeably larger than our lower bound estimates. For example, for the full specification in

ELS2002, the sorting-on-observables estimator attributes 3.2% of the variance in the latent in-

dex that determines high school graduation to schools/neighborhoods, compared to 2.1% for the

lower bound estimate of Var(Z2sG2+vs). The associated effect of a 10th-to-90th quantile shift

27Sources of the difference in estimates include differences in the outcome measure (wage rate versus earnings),
school/neighborhood geography (school versus county), birth cohort, period of exposure to a school/neighborhhood and
the fact that our estimates are lower bounds.

28From (14), (18), and (19), Var(XsG1+Z2sG2+vs) =Var(ZsΓΓΓ+zU
s +ξs+XsΠΠΠxU

i Xs
βββ

U). If the covariances between
XsΠΠΠxU

i Xs
and the components of the school treatment effect ZsΓΓΓ+ zU

s + ξs are sufficiently negative, then one can find
Var(XsG1 +Z2sG2 +vs)<Var(ZsΓΓΓ+ zU

s +ξs). In this case, which we consider unlikely, even Var(XsG1 +Z2sG2 +vs)
would understate the true contribution of schools/neighborhoods to the variance in outcomes.
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in school/neighborhood quality on graduation is 0.077 (relative to 0.062 for the lower bound es-

timate).29 For enrollment in a four-year college, the corresponding school/neighborhood variance

fractions for the ELS full specification is 4.3% (versus 3.7% for the lower bound estimate). These

variances correspond to 10th-to-90th shifts in the probability of enrollment of 0.204 (versus 0.188).

V̂ar(XsG1 +Z2sG2 + vs) is higher than V̂ar(Z2sG2 + vs) in every dataset and specification we con-

sider.

In Online Appendix Table A3 we report estimates of Var(Z2sG2) and Var(Z2sG2 + vs) from a

four-year college enrollment specification in which the school-averages Xs are omitted. A small

fraction of the variance previously absorbed by the control function is now captured by Z2sĜ2,

while the bulk of it now enters the between-school residual v̂s. Thus, V̂ar(Z2sG2) increases slightly

relative to our main college enrollment estimates in Table 3, while V̂ar(Z2sG2 + vs) increases sub-

stantially, to the point that they typically exceed the sorting-on-observables estimates V̂ar(XsG1 +

Z2sG2 + vs) reported in the previous paragraph. Online Appendix Table A4 report corresponding

estimates for years of postsecondary education, and again exhibit substantially higher estimates of

Var(Z2sG2 + vs).

Taken together, the results from these alternative estimators suggest that our lower bound es-

timates, while more conservative than other existing estimators, still seem to capture a substantial

portion of the variation in the contributions of schools/neighborhoods.

7.6 Empirical Evidence on the Spanning Condition

In Online Appendix A3 we explore the factor structure of Xs to test Assumption A5.1, which

is a necessary condition for Assumption A5 and therefore Proposition 1. Recall that Assumption

A5.1 is violated if the number of amenity factors driving sorting on Xi (AX) exceeds the number

of observed characteristics that compose Xi (Dim(Xi)). We adopt two separate approaches. First,

we use principal components analysis to compute the eigenvalues and eigenvectors of V̂ar(Xs), the

estimated covariance matrix of Xs. While Var(Xs) must be positive semidefinite, V̂ar(Xs) need

not be positive semidefinite given sampling error and the fact that our sample is unbalanced. In

practice we obtain small negative values for some of the eigenvalues. We interpret these estimates

as corresponding to eigenvalues that are in fact 0 or very close to 0. We find that for each of our three

survey datasets the number of positive eigenvalues is less than L, indicating that V̂ar(Xs) is rank

deficient. This means that each element of Xs can be written as a linear combination of a smaller

number of latent factors (generally between 25 and 30 factors, depending on the specification and

29The effects of a 10-to-90th shift in XsG1 +Z2sG2 + vs are constructed as

E[Ŷ 90− Ŷ 10] =
1
I ∑

i
wiΦ(

[XiB̂+ X̂sĜ1 +Z2sĜ2 +1.28(V̂ar(XsG1 +Z2sG2 + vs))
.5]

(1)
)

− 1
I ∑

i
wiΦ(

[XiB̂+ X̂sĜ1 +Z2sĜ2−1.28(V̂ar(XsG1 +Z2sG2 + vs))
.5]

(1)
). (26)
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dataset). Since the rank of Var(Xs) should reflect the dimension of the amenity vector AX, this

supports our assumption that the dimension of AX ≤ L. Indeed, we further show that in each dataset

an even smaller number of latent factors (generally around 10) can explain 90% of the sum of

the variances of the elements of Xs, suggesting that the variation in student composition across

schools is driven primarily by a small number of amenity factors. Bootstrap 90% confidence interval

estimates of the number needed to explain 90% of the variances are fairly tight. The number of

latent factors required to explain a given percentage of the sum of the variances of the elements of

Xs is larger in the full specification, which contains more variables. This would be expected in the

presence of sampling error in V̂ar(Xs). However, it might also indicate that there are in fact a few

additional amenity factors that play a very small role in driving sorting (and thus have very small

eigenvalues) and are picked up by the additional elements of Xs in the full specification.

Our second approach draws on the literature on testing for the number of factors or the matrix

rank, including Lewbel (1991), Cragg and Donald (1997), Robin and Smith (2000), Bai and Ng

(2002) and Kleibergen and Paap (2006). The test of the rank of a matrix proposed by Kleibergen

and Paap (2006) fits our application well. The test involves a singular value decomposition of

V̂ar(Xs), and can accommodate arbitrary forms of heteroskedasticity and correlation at the school

level. We perform tests of the null hypothesis of rank(Var(Xs)) = j) against the alternative that

rank(Var(Xs)) > j. For all three data sets and specifications, we cannot reject the null hypothesis

for values of j well below L. See Online Appendix Tables A6 and A7.

8 Concluding Remarks

In this paper we provide conditions under which the tactic of controlling for group averages of

observed individual-level characteristics can control perfectly for group averages of unobservables.

This insight leads to a way to estimate a lower bound on the contribution of group effects to indi-

vidual outcomes. We also examine the conditions under which causal effects of particular observed

group characteristics can be estimated. We apply our methodological insight and demonstrate its

empirical value by addressing a classic question in social science: How much does the school and

surrounding community that we choose for our children matter for their long run educational and

labor market outcomes?

The key takeaway from the empirical analysis is that even conservative estimates of the contri-

bution of schools and surrounding neighborhoods to later outcomes suggest that improving school

and neighborhood environments could have a substantial impact on high school graduation rates

and college enrollment rates. As we noted in the introduction, prior evidence on this topic is mixed,

in part because prior research showing substantial across-school and across-neighborhood variation

in outcomes is subject to concerns about sorting on unobservables that we address in this paper.

The control function approach can also be applied to other situations in which selective sorting

into units makes identification of the independent effect of the units difficult. In Online Appendix
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A13, we consider identification of teacher value added. Teacher value added is one of a set of

problems in which sorting into groups (classrooms in this case) is mediated by an administrator

rather than the result of individual choices. We show that most of the analysis in Section 2 can be

adapted to the teacher value added application, although we have not yet extended Proposition 1

to the case in which the administrator internalizes the effect that allocating a particular student to a

classroom has on the other students. Nevertheless, our analysis suggests that the common practice

of including classroom averages of student characteristics (such as in Chetty et al. (2014)) may play

a potentially powerful role in purging value-added estimates of biases stemming from non-random

student sorting on unobservables and observables.

Importantly, unlike the school application, where we only bound the variance of school effects,

one can point identify teacher value added because the treatment of interest (the teacher) is observed

in multiple groups or units (classrooms). The classrooms feature varying levels of other valued

amenities (e.g. time of day) that cause within-teacher variation in group composition. Recent

work by Fletcher et al. (2014) uses patient data matched to physicians to estimate the effects of

physicians on health outcomes. They control for very detailed patient characteristics but not for the

physician-specific averages of patient characteristics. Our analysis suggests that adding physician-

clinic averages of patient characteristics for doctors who work in more than one setting would allay

concerns about sorting on patient unobservables.

Consider also cases in which a particular group input, say spending per pupil, varies experimen-

tally or quasi-experimentally across schools. This solves the problem that spending per pupil is cor-

related with other unobserved education inputs, such as peer quality. But as Caetano (2012) points

out, individuals may re-sort in response to the change in spending, leading to bias in a difference-

in-difference design. Our analysis suggests that one might be able to identify the causal effect of

spending by combining an IV strategy with the use of school averages of individual characteristics

to address the sorting problem.30

In principle, one could adapt the model of group choice and the control function approach to the

analysis of the effects of years of schooling, dosage levels, or other endogenous choice problems

that have a natural ordering. We leave an analysis of this possibility to future research.31

We briefly discussed the possibility of using an outcome model that allows for interactions be-

tween observed and unobserved student characteristics and observed and unobserved neighborhood

characteristics. We are currently pursuing this in Agrawal et al. (in progress). Future research

30We have in mind an IV regression of Yit on Xit, Xst and Z2st in the post policy intervention period using the pre-
period value Xst−1 and the exogenous policy change as the excluded instrumental variables. Similarly, when re-sorting is
not considered likely but the policy intervention instrument depends in part on XU

st−1, using Xst to control for XU
st might

also lead to a valid IV strategy.
31Let s denote number of years of schooling. Each schooling level has an associated set of characteristics As governing

the pecuniary and non-pecuniary return to choosing level s. As is weighted by Xi and XU
i . This leads to a relationship

between Xs and XU
s that could serve as the basis for a control function for XU

s . However, as pointed out at the beginning
of Section 3.2, there must be at least as many levels of s as there are elements of Xs. Otherwise s will not vary conditional
on Xs unless restrictions are available that reduce the dimension of the index of Xs required to control for XU

s . Essentially,
there are fewer degrees of freedom (the number of levels) than there are parameters in the coefficient vector on Xs (G1 in
our outcome equation).
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should also examine whether a variant of Proposition 1 carries over to more general specifications

of preferences than the class that we work with, and to two-sided selection problems, such as the

sorting of students across universities or workers across firms.

A1 Proof of Proposition 1

Equation (2) states that the utility of each location s depends on Xi, XU
i , and Qi only through

Wi. This fact and independence of εsi from Xi, XU
i , and Qi imply that

Pr(s(i) = s|Xi,XU
i ,Qi,Wi) = Pr(s(i) = s|Wi) (27)

where Pr(.) is the probability function. The above fact and Bayes rule imply that32

f (Xi|Wi,s(i) = s) = f (Xi|Wi) (28)

f (XU
i |Wi,s(i) = s) = f (XU

i |Wi) . (29)

These equations then imply that E[Xi|Wi,s(i) = s] = E[Xi|Wi] and E[XU
i |Wi,s(i) = s] = E[XU

i |Wi].

Consequently, using the Law of Iterated Expectations, we have:

XU
s ≡ E[XU

i |s(i) = s] = E[E(XU
i |Wi,s(i) = s)|s(i) = s] = E[E(XU

i |Wi)|s(i) = s] (30)

Xs ≡ E[Xi |s(i) = s] = E[E(Xi |Wi,s(i) = s)|s(i) = s] = E[E(Xi |Wi)|s(i) = s]. (31)

Next we find expressions for E[XU
i |Wi] and E[Xi|Wi], which appear in the above equations.

Since by construction X̃U
i is uncorrelated with Xi, and Qi is uncorrelated with both Xi and X̃U

i ,

Cov(W′
i, X̃

U
i ) = Cov(ΘΘΘU′X̃U′

i , X̃U
i ) = ΘΘΘ

U′Var(X̃U
i ) (32)

Cov(W′
i,Xi) = Cov(Θ̃ΘΘ′X′i,Xi) = Θ̃ΘΘ

′Var(Xi). (33)

Since from assumption A4 E[Xi|Wi] and E[XU
i |Wi] are linear in Wi, E[X̃U

i |Wi] is also linear in Wi.

32One can write the conditional density f (Xi|Wi,si = s) as

f (Xi|Wi,si = s) =
Pr(s(i) = s|Xi,Wi) f (Wi|Xi)

Pr(s(i) = s|Wi) f (Wi)
f (Xi)

=
Pr(s(i) = s|Wi) f (Wi|Xi)

Pr(s(i) = s|Wi) f (Wi)
f (Xi)

= f (Xi|Wi)

where the first equality is Bayes rule, the second equality uses (27), and the third follows from cancellation of terms and
Bayes rule. The same line of argument establishes that f (XU

i |Wi,s(i) = s) = f (XU
i |Wi).
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Consequently, assumption A4, equations (32)-(33), and basic regression theory imply that

E[X̃U
i |Wi] = WiVar(Wi)

−1Cov(W′
i, X̃

U
i ) = WiVar(Wi)

−1
ΘΘΘ

U′Var(X̃U
i ) (34)

E[Xi|Wi] = WiVar(Wi)
−1Cov(W′

i,Xi) = WiVar(Wi)
−1

Θ̃ΘΘ
′
Var(Xi). (35)

Next, if we use the spanning assumption A5 to replace ΘΘΘ
U′ with Θ̃ΘΘ

′R′ in (34), and then use the

expression for E[Xi|Wi] from (35), we obtain:

E[X̃U
i |Wi] = WiVar(Wi)

−1
Θ̃ΘΘ
′R′Var(X̃U

i )

= WiVar(Wi)
−1

Θ̃ΘΘ
′Var(Xi)Var(Xi)

−1R′Var(X̃U
i )

= E[Xi|Wi]Var(Xi)
−1R′Var(X̃U

i ). (36)

To find E[XU
i |Wi] first take expectations of both sides of (5) conditional on Wi:

E[XU
i |Wi] = E[Xi|Wi]ΠΠΠXUX +E[X̃U

i |Wi]. (37)

Substitution for E[X̃U
i |Wi] using (36) leads to

E[XU
i |Wi] = E[Xi|Wi](ΠΠΠXUX +Var(Xi)

−1R′Var(X̃U
i )). (38)

The final step is to take expectations of both sides of the above equation conditional on s(i) = s

and employ equations (30) and (31). Doing so leads to

XU
s = Xs[ΠΠΠXUX +Var(Xi)

−1R′Var(X̃U
i )].

This completes the proof.
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Gómez, Eusebio, Miguel A Gómez-Villegas, and J Miguel Marı́n (2003) ‘A survey on continuous
elliptical vector distributions.’ Revista matemática complutense 16(1), 345–361
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Tables and Figures

Table 1: Variables Used in Baseline and Full (in Italics) Specifications, by Dataset

Description of Variable(s) NLS72 NELS88 ELS2002 NC

Student Characteristics

Race Indicators, 1(Female) X X X X

1(Immigrant) X X X

Student Ability

Math Standardized Score, Reading Standardized Score X X X X
1(Gifted at Math), 1(Gifted at Reading) X

Student Behavior

Hrs./Wk. Spent on Homework X X X
Hrs./Wk. Spent on Leisure Reading, Hrs./Wk. Spent Watching TV X X X
Hrs./Wk. Spent on Computer X
1(Physical Fight This Year), Parents Often Check Homework X X

Family Background

Standardized SES, Number of Siblings X X X
Indicators for Presence of Biological Parents X X X
Father’s Yrs. of Ed., Mother’s Yrs. of Ed. X X X X
Moth. Yrs. Ed. Missing X X X X
Average of Grandparents’ Education X
Log(Family Income), 1(English Spoken at Home) X X X
Indicators for Parental Religion X X X
1(Parents are Married) X X
1(Immigrant Father), 1(Immigrant Mother) X X
Indicators for Father’s Occupation Group X X
Indicators for Mother’s Occupation Group X X
Home Environ. Indicators (1st Prin. Comp.) X X X
Parental Sch. Involv. Indicators (1st Prin. Comp.) X X
1(Eligible for Free/Reduced Price Lunch) X
1(Currently Limited English Proficiency), 1(Ever LEP) X

Parental Expectations

Mother’s Desired Yrs. Of Ed., Father’s Desired Yrs. Of Ed. X X

School Characteristics (Treated as elements of Xs)*

School Pct. Minority X X X
School Pct. Free/Reduced Price Lunch X X
School Pct. LEP, School Pct. Special Ed. X X
School Pct Remedial Reading, School Pct. Remedial Math X X
Frequency of Fights (Administrator’s Impression) X X

School Characteristics (Treated as elements of Z2s)

1 (Catholic School), 1 (Private Non-Catholic School) X X X
Total School Enrollment, Student-Teacher Ratio X X X X
Log(Min. Teacher Salary) X X
% Tch. Turnover, % of Teachers w/ Master’s Degrees or More X X X X
% of Teachers w/ Certification X
School Teacher Pct. Minority X X X
1(Minimum Competency Test Exists) X
1(Gifted Program Exists), 1(Collectively Bargained Contract) X
1(Tracking System), Age of School Building X
Distance to 4-year College, Distance to Community College X
Teacher Evaluation Mechanism Indicators (1st Principal Component) X
Teacher Incentives Indicators (1st Principal Component) X
School Security Policy Indicators (1st, 2nd Principal Components) X
School Security Implementation Indicators (1st & 2nd Prin. Comps.) X X
Sch. Environ. Indicators (1st and 2nd Prin. Comps.) X
Sch. Facilities Indicators (Admin. Survey, 1st & 2nd Prin. Comps.) X
Teacher Access to Tech. Indicators (Admin. Survey, 1st Prin. Comp.) X
Magnet School, Charter School, Sch. Tch. % Highly Qualified X
# of Library Books per Student X

Neighborhood Characteristics (Treated as elements of Z2s)

Urbanicity Indicators X X X X
Indicators for U.S. Census Region X X X
Neighborhood Crime Level Category (Sch. Admin. Survey) X
*School characteristics treated as elements of Xs are included to reduce measurement error in school sample averages of student char-
acteristics. They do not contribute to the estimated lower bound on contributions of schools/neighborhoods.
School averages of all student-level variables are also included in each specification. The school population average is used where
available (see the “School Characteristics (Treated as elements of Xs)” category in this table); otherwise the average among sampled
students is used in its place. 43



Table 2: Lower Bound Estimates of the Contribution of School Systems and Neighborhoods to
High School Graduation Decisions

Panel A: Fraction of Latent Index Variance Determining Graduation
Attributable to School/Neighborhood Quality

Lower Bound NC NELS88 gr8 ELS2002

Baseline Full Baseline Full Baseline Full

(1) (2) (3) (4) (5) (6)

LB no unobs 0.018 0.010 0.011 0.006 0.012 0.009
Var(Z2sG2) (0.008) (0.004) (0.006) (0.007) (0.010) (0.009)

LB w/ unobs 0.051 0.038 0.050 0.044 0.032 0.021
Var(Z2sG2 + vs) (0.017) (0.010) (0.009) (0.010) (0.010) (0.009)

Panel B: Effect on Graduation Probability of a School System/Neighborhood at
the 50th or 90th Percentile of the Quality Distribution vs. the 10th Percentile

Lower Bound NC NELS88 gr8 ELS2002

Baseline Full Baseline Full Baseline Full

(1) (2) (3) (4) (5) (6)

LB no unobs: 10th-90th 0.104 0.079 0.064 0.048 0.047 0.041
Based on Var(Z2sG2) (0.019) (0.010) (0.013) (0.022) (0.013) (0.013)

LB w/ unobs: 10th-90th 0.178 0.153 0.135 0.128 0.076 0.062
Based on Var(Z2sG2 + vs) (0.023) (0.016) (0.017) (0.019) (0.012) (0.012)

LB no unobs: 10th-50th 0.055 0.042 0.035 0.026 0.026 0.022
Based on Var(Z2sG2) (0.011) (0.006) (0.008) (0.012) (0.008) (0.008)

LB w/ unobs: 10th-50th 0.098 0.084 0.079 0.073 0.044 0.034
Based on Var(Z2sG2 + vs) (0.015) (0.010) (0.010) (0.012) (0.008) (0.007)

Sample Mean 0.769 0.769 0.827 0.827 0.897 0.897

Bootstrap standard errors based on resampling at the school level are in parentheses.
Panel A reports lower bound estimates of the fraction of variance in the latent index that determines
high school graduation that can be directly attributed to school/neighborhood choices for each dataset.
The row labelled “LB no unobs” reports Var(Z2sG2) and excludes the unobservable vs while the row
labeled “LB w/ unobs” reports Var(Z2sG2 + vs).
Panel B reports estimates of the average effect of moving students from a school/neighborhood at the
10th quantile of the quality distribution to one at the 50th or 90th quantile.
The columns headed “NC” are based on the North Carolina data and refer to a decomposition that
uses the 9th grade school as the group variable. The columns headed “NELS88 gr8” are based on the
NELS88 sample and refer to a decomposition that uses the 8th grade school as the group variable. The
columns headed “ELS2002” are based on the ELS2002 sample and refer to a decomposition that uses
the 10th grade school as the group variable.
For each data set the variables used in the baseline and full models are specified in 1.
The full variance decompositions underlying these estimates are presented in Online Appendix Table
A20.
Online Appendices A9 and A10 discuss estimation of model parameters and the variance decomposi-
tions. Section 5.4 discusses estimation of the 10-50 and 10-90 differentials.
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Table 3: Lower Bound Estimates of the Contribution of School Systems and Neighborhoods to
Four Year College Enrollment Decisions

Panel A: Fraction of Latent Index Variance Determining Enrollment
Attributable to School/Neighborhood Quality

Lower Bound NLS72 NELS88 gr8 ELS2002

Baseline Full Baseline Full Baseline Full

(1) (2) (3) (4) (5) (6)

LB no unobs 0.027 0.018 0.017 0.015 0.019 0.014
Var(Z2sG2) (0.006) (0.005) (0.006) (0.005) (0.010) (0.008)

LB w/ unobs 0.048 0.038 0.049 0.038 0.052 0.037
Var(Z2sG2 + vs) (0.009) (0.007) (0.009) (0.008) (0.017) (0.011)

Panel B: Effect on Enrollment Probability of a School System/Neighborhood at
the 50th or 90th Percentile of the Quality Distribution vs. the 10th Percentile

Lower Bound NLS72 NELS88 gr8 ELS2002

Baseline Full Baseline Full Baseline Full

(1) (2) (3) (4) (5) (6)

LB no unobs: 10th-90th 0.140 0.115 0.123 0.111 0.138 0.116
Based on Var(Z2sG2) (0.016) (0.013) (0.018) (0.017) (0.020) (0.020)

LB w/ unobs: 10th-90th 0.189 0.166 0.208 0.180 0.230 0.188
Based on Var(Z2sG2 + vs) (0.019) (0.017) (0.020) (0.020) (0.021) (0.020)

LB no unobs: 10th-50th 0.065 0.054 0.059 0.053 0.067 0.057
Based on Var(Z2sG2) (0.007) (0.006) (0.008) (0.008) (0.009) (0.009)

LB w/ unobs: 10th-50th 0.086 0.077 0.096 0.084 0.108 0.090
Based on Var(Z2sG2 + vs) (0.008) (0.007) (0.009) (0.009) (0.010) (0.009)

Sample Mean .267 .267 .310 .310 .365 .365

Bootstrap standard errors based on resampling at the school level are in parentheses.
The notes to Table 2 apply, except that Table 3 reports results for enrollment in a 4-year college two
years after graduation.
The column headed NLS72 refers to a variance decomposition that uses the 12th grade school as the
group variable.
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Table 4: The Impact of 10th-90th Percentile Shifts in School Quality on High School Graduation
Rates for Selected Subpopulations

NC NELS88 gr8 ELS2002

Subpopulation Baseline Full Baseline Full Baseline Full

(1) (2) (3) (4) (5) (6)

XB: 10th Quantile
LB no unobs 0.144 0.120 0.109 0.090 0.082 0.086

Based on Var(Z2sG2) (0.023) (0.015) (0.024) (0.041) (0.023) (0.028)

LB w/ unobs 0.247 0.233 0.233 0.241 0.134 0.128
Based on Var(Z2sG2 + vs) (0.027) (0.022) (0.030) (0.037) (0.021) (0.024)

XB: 90th Quantile
LB no unobs 0.060 0.031 0.019 0.011 0.013 0.006

Based on Var(Z2sG2) (0.013) (0.005) (0.004) (0.005) (0.004) (0.002)

LB w/ unobs 0.100 0.058 0.039 0.027 0.021 0.009
Based on Var(Z2sG2 + vs) (0.017) (0.008) (0.005) (0.005) (0.004) (0.002)

Black
LB no unobs 0.105 0.079 0.067 0.052 0.053 0.050

Based on Var(Z2sG2) (0.019) (0.010) (0.015) (0.024) (0.016) (0.017)

LB w/ unobs 0.179 0.153 0.142 0.138 0.086 0.075
Based on Var(Z2sG2 + vs) (0.023) (0.016) (0.018) (0.021) (0.014) (0.015)

White w/ Single Mother
Who Did Not Attend College

LB no unobs 0.141 0.109 0.098 0.076 0.066 0.057
Based on Var(Z2sG2) (0.018) (0.010) (0.022) (0.021) (0.012) (0.011)

LB w/ unobs 0.242 0.210 0.208 0.202 0.108 0.085
Based on Var(Z2sG2 + vs) (0.023) (0.016) (0.028) (0.019) (0.011) (0.010)

White w/ Both Parents,
At Least One Completed College

LB no unobs 0.058 0.041 0.029 0.020 0.021 0.016
Based on Var(Z2sG2) (0.013) (0.006) (0.006) (0.009) (0.007) (0.006)

LB w/ unobs 0.098 0.079 0.060 0.052 0.034 0.024
Based on Var(Z2sG2 + vs) (0.017) (0.009) (0.008) (0.009) (0.006) (0.005)

Bootstrap standard errors based on re-sampling at the school level are in parentheses.
The table reports the average effect for the subpopulation indicated by the row heading of moving students from
a school/neighborhood at the 10th quantile of the quality distribution to one at the 90th quantile.
“XB: 10th Quantile” and “XB: 90th Quantile” refer to students whose values of XiB is equal the estimated 10th
(90th) quantile value of the XiB distribution. See Section 7.3.
See the notes to Table 2 for row and column definitions
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Table 5: The Impact of 10th-90th Percentile Shifts in School Quality on Four-Year College
Enrollment Rates for Selected Subpopulations

NLS72 NELS88 gr8 ELS2002

Subpopulation Baseline Full Baseline Full Baseline Full

(1) (2) (3) (4) (5) (6)

XB: 10th Quantile
LB no unobs 0.079 0.026 0.070 0.044 0.091 0.044

Based on Var(Z2sG2) (0.010) (0.004) (0.011) (0.007) (0.014) (0.009)

LB w/ unobs 0.105 0.036 0.118 0.070 0.150 0.070
Based on Var(Z2sG2 + vs) (0.012) (0.005) (0.013) (0.009) (0.016) (0.009)

XB: 90th Quantile
LB no unobs 0.193 0.177 0.155 0.142 0.150 0.112

Based on Var(Z2sG2) (0.022) (0.020) (0.022) (0.021) (0.021) (0.020)

LB w/ unobs 0.260 0.258 0.265 0.231 0.246 0.181
Based on Var(Z2sG2 + vs) (0.026) (0.027) (0.025) (0.026) (0.023) (0.021)

Black
LB no unobs 0.132 0.105 0.122 0.111 0.131 0.107

Based on Var(Z2sG2) (0.016) (0.013) (0.018) (0.017) (0.019) (0.018)

LB w/ unobs 0.178 0.153 0.208 0.180 0.217 0.174
Based on Var(Z2sG2 + vs) (0.020) (0.017) (0.020) (0.020) (0.021) (0.019)

White w/ Single Mother
Who Did Not Attend College

LB no unobs 0.110 0.094 0.098 0.081 0.126 0.110
Based on Var(Z2sG2) (0.016) (0.014) (0.018) (0.017) (0.021) (0.021)

LB w/ unobs 0.148 0.137 0.166 0.131 0.210 0.178
Based on Var(Z2sG2 + vs) (0.020) (0.018) (0.021) (0.021) (0.023) (0.022)

White w/ Both Parents,
At Least One Completed College

LB no unobs 0.182 0.154 0.149 0.138 0.154 0.129
Based on Var(Z2sG2) (0.020) (0.018) (0.022) (0.021) (0.022) (0.022)

LB w/ unobs 0.246 0.224 0.254 0.225 0.256 0.209
Based on Var(Z2sG2 + vs) (0.025) (0.023) (0.025) (0.025) (0.024) (0.023)

Bootstrap standard errors based on resampling at the school level are in parentheses.
The notes to Table 4 apply, except that Table 5 reports results for enrollment in a four-year college two
years after graduation, and the NLS72 is one of the data sets.
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Table 6: Lower Bound Estimates of the Contribution of School Systems and Neighborhoods to
Completed Years of Postsecondary Education and Permanent Wages (NLS72 data)

Panel A: Fraction of Variance
Attributable to School/Neighborhood Quality

Lower Bound Yrs. Postsec. Ed.
Perm. Wages Perm. Wages

No Post-sec Ed. w/ Post-sec Ed.

Baseline Full Baseline Full Baseline Full

(1) (2) (3) (4) (5) (6)

LB no unobs 0.002 0.000 0.025 0.028 0.032 0.033
Var(Z2sG2) (0.002) (0.001) (0.010) (0.011) (0.012) (0.012)

LB w/ unobs 0.013 0.009 0.070 0.070 0.085 0.082
Var(Z2sG2 + vs) (0.004) (0.003) (0.019) (0.019) (0.023) (0.022)

Panel B: Effects on Years of Postsecondary Education and Permanent Wages
of a School System/Neighborhood at the 50th or 90th Percentile

of the Quality Distribution vs. the 10th Percentile

Lower Bound Yrs. Postsec. Ed.
Perm. Wages Perm. Wages

No Post-sec Ed. w/ Post-sec Ed.

Baseline Full Baseline Full Baseline Full

(1) (2) (3) (4) (5) (6)

LB no unobs: 10th-90th 0.216 0.018 0.121 0.128 0.125 0.128
Based on Var(Z2sG2) (0.064) (0.064) (0.021) (0.022) (0.021) (0.022)

LB w/unobs: 10th-90th 0.502 0.407 0.203 0.203 0.203 0.200
Based on Var(Z2sG2 + vs) (0.077) (0.076) (0.031) (0.030) (0.031) (0.031)

LB no unobs: 10th-50th 0.108 0.009 0.061 0.064 0.063 0.064
Based on Var(Z2sG2) (0.032) (0.032) (0.011) (0.011) (0.011) (0.011)

LB w/unobs: 10th-50th 0.251 0.203 0.102 0.102 0.102 0.100
Based on Var(Z2sG2 + vs) (0.039) (0.038) (0.016) (0.015) (0.016) (0.015)

Sample Mean 1.62 1.62 2.88 2.88 2.88 2.88

Bootstrap standard errors based on resampling at the school level are in parentheses.
Panel A of Table 5 reports lower bound estimates of the fraction of variance of years of postsecondary
education and permanent wage rates (with and without controls for postsecondary education) that can
be directly attributed to school/neighborhood choices for each dataset. The sample is NLS72.
The row labelled “LB no unobs” reports Var(Z2sG2) and excludes the unobservable vs while the row
labeled “LB w/ unobs” reports Var(Z2sG2 + vs).
Panel B reports estimates of the average effect of moving students from a school/neighborhood at the
10th quantile of the quality distribution to one at the 50th or 90th quantile. It is equal to 2∗1.28 times
the value of [V̂ar(Z2sG2 + vs)]

0.5 or [V̂ar(Z2sG2)]
0.5 in the corresponding column of the table.

See Table 1 for the variables in the baseline model and the full model. The full variance decompositions
are in Online Appendix Table A22. Online Appendices A9 and A10 discuss estimation of model
parameters and the variance decompositions.
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A2 Spanning Condition Examples

Consider first a scenario in which there are two observed student characteristics X≡ [X1,X2], two

outcome-relevant unobserved student characteristics XU = [XU
1 ,XU

2 ], and two school/neighborhood

amenity factors, A = [A1,A2].

Case 1: rank(ΘΘΘU)≤ rank(Θ̃ΘΘ) = dim(A)

Suppose that the matrices Θ̃ΘΘ = ΘΘΘ+ΠΠΠXUXΘΘΘ
U and ΘΘΘ

U, are each full rank. For example:

Θ̃ΘΘ =

{
1 1

0 1

}
ΘΘΘ

U =

{
1 2

2 1

}

Then we can write ΘΘΘ
U = RΘ̃ΘΘ, where

R =

{
1 1

2 −1

}

Thus, the spanning condition is satisfied in this case. If ΘΘΘ
U were rank-deficient, then the spanning

condition would still be satisfied, but R would be rank-deficient.

Now suppose that there are instead three outcome-relevant unobserved characteristics: XU =

[XU
1 ,XU

2 ,XU
3 ], each of which affects WTP for the two amenities differentially. Suppose that X and

Θ̃ΘΘ are unchanged from Case 1:

Θ̃ΘΘ =

{
1 1

0 1

}
ΘΘΘ

U =


1 2

2 1

1 1


Then we can write ΘΘΘ

U = RΘ̃ΘΘ, where

R =


1 1

2 −1

1 0


Thus, the spanning condition is satisfied in this case. We see that dim(X) can be less than dim(XU)

without violating the spanning condition, as long as the row rank of Θ̃ΘΘ is at least as large as the

row rank of ΘΘΘ
U. Any scenario satisfying rank(ΘΘΘU)≤ rank(Θ̃ΘΘ) = dim(A) will satisfy the spanning

condition in Proposition 1.
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Case 2: rank(Θ̃ΘΘ)< rank(ΘΘΘU)≤ dim(A)

Suppose instead that neither X1 nor X2 predicts willingness to pay for A2. Further, suppose that

neither X1 nor X2 is correlated with any elements of XU that predict willingness to pay for A2. This

implies that the second column of Θ̃ΘΘ is a zero vector:

Θ̃ΘΘ =

{
1 0

2 0

}
ΘΘΘ

U =

{
1 2

2 1

}

Since Θ̃ΘΘ is now rank-deficient, there is no matrix R such that RΘ̃ΘΘ = ΘΘΘ
U. In particular, for any matrix

R, each entry in column 2 be zero, but the second column of ΘΘΘ
U contains non-zero entries. Similarly,

if both X1 and X2 affect WTP for A1 and A2 in the same proportion (and are each uncorrelated with

XU, so that ΠΠΠXUX = 0, a rank-deficiency will also occur:

Θ̃ΘΘ =

{
1 2

2 4

}
.

Here, an incremental unit of X1 or X2 will affect WTP for A2 by twice as much as it will affect WTP

for A1. As in the previous example, there is no matrix R such that RΘ̃ΘΘ = ΘΘΘ
U. For any choice of

R, in each row of RΘ̃ΘΘ the second column will always be twice as large as the first column, but the

second row of ΘΘΘ
U has a first column entry that is only half as large as its second column entry. Both

these examples violate the spanning condition. If the row rank of Θ̃ΘΘ is less than the row rank of ΘΘΘ
U,

then the row space of ΘΘΘ
U cannot possibly be a subspace of the row space of Θ̃ΘΘ.

Case 3: rank(ΘΘΘU)≤ rank(Θ̃ΘΘ)< dim(A)

Suppose now that both X and XU are scalars: X ≡ X1, XU ≡ XU
1 . Consider first the case where

X1 only predicts WTP for A1, XU
1 only predicts WTP for A2, and X1 and XU

1 are uncorrelated:

Θ̃ΘΘ =
{

1 0
}

ΘΘΘ
U =

{
0 1

}
Regardless of the 1x1 scalar R, the product RΘ̃ΘΘ will have a zero in the second column, which does

not match ΘΘΘ
U. Despite the fact that rank(Θ̃ΘΘ) = rank(ΘΘΘU) = 1, the spanning condition fails because

the row space of ΘΘΘ
U is not a subspace of the row space of Θ̃ΘΘ.

Indeed, suppose that we alter Θ̃ΘΘ and ΘΘΘ
U so that both X1 and XU

1 affect WTP for both amenities

(but in different proportions):

Θ̃ΘΘ =
{

1 1
}

ΘΘΘ
U =

{
2 4

}
There is no scalar R such that RΘ̃ΘΘ = ΘΘΘ

U, since any value of R will preserve the one-to-one ratio

between the first and second entries in ΘΘΘ, while ΘΘΘ
U has a one-to-two ratio between its first and

second entries. The spanning condition also fails in this case because the row space of ΘΘΘ
U is not a
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subspace of the row space of Θ̃ΘΘ. This example demonstrates that if the set of factors that individuals

consider when choosing groups is large, one will generally need an equally large set of observable

characteristics in order to satisfy the spanning condition in Proposition 1.

Finally, suppose that both X1 and XU
1 only affect willingness to pay for A1 (Q may affect taste

for A2, so that A2 is still relevant for school choice):

Θ̃ΘΘ =
{

1 0
}

ΘΘΘ
U =

{
2 0

}
Then for R = 2, RΘ̃ΘΘ = ΘΘΘ

U, and the spanning condition is satisfied. Note that the row space of Θ̃ΘΘ is

a subspace of the row space of ΘΘΘ
U, despite the fact that both Θ̃ΘΘ and ΘΘΘ

U are rank deficient. This last

example illustrates that the observed characteristics need not predict WTP for all choice-relevant

amenities as long as the rows of Θ̃ΘΘ span the same amenity subspace (or a superspace of the amenity

subspace) spanned by the rows of ΘΘΘ
U.

A3 Testing Whether dim(AX) Is Less Than the Number of Elements
of Xs

As discussed in Section 3.2.2, Assumption 5.1 is one of the two key sufficient conditions for the

spanning assumption, Assumption 5, to hold. Assumption 5.1 requires that the vector of observables

Xi captures enough independent factors determining families’ preferences over group amenities so

that knowledge of Xs is sufficient to determine the value of the amenities (denoted AX
s ) for which

Xi affects tastes, either through direct effects on willingness to pay or indirectly through correlation

between Xi and elements of XU
i . For the particular linear specification of utility featured in (2), this

condition is tantamount to requiring that rank(Θ̃ΘΘ)≥ dim(AX
s ).

The restriction rank(Θ̃ΘΘ)≥ dim(As
X) restricts rank(Var(Xs)), which forms the basis for our test.

To see this, note that taking expectations of both sides of (35) conditional on s implies that

Xs = WsVar(Wi)
−1

Θ̃ΘΘ
′Var(Xi),

where Ws ≡ E(Wi|si = s) is the average of the willingness to pay vector for those who choose s.

Thus Xs is a linear combination of Ws. Recall that the length of Ws is K, the number of valued

amenities. Consequently, if L > K, then the L elements of Xs are all linear combinations of the

smaller number of components of the average willingness to pay vector Ws. But this implies that

Var(Xs) will be rank deficient, with rank(Var(Xs))=K. In fact, if WTP for some of the K amenities

is not influenced by Xi, then some of the columns of Θ̃ΘΘ will be 0. In this case, rank(Var(Xs)) =

dim(AX)< K further reducing the rank of Var(Xs). This is a testable condition.

More generally, suppose Assumption 5.1 is nearly satisfied, so that a small number of amenity

factors drive the vast majority of the variation in Xs, but elements of Xi slightly influence tastes

for several other amenities. Our simulations in section A6 suggest that such minor departures from
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the Assumptions 5.1 and 5.2 have little impact on the ability of Xs to effectively control for the

unobservable between-school variation XU
s . But in such contexts, a small number of amenity factors

should account for a very large fraction of the variation in Xs, with only a very small amount of

unexplained residual variation.

We test these predictions by performing principal components analysis (PCA) on Xs. Because

the sample school averages of observable characteristics X̂s are noisy measures of the expected

values Xs ≡ E[Xi|s(i) = s], we do not fit the PCA model to X̂s directly. Instead, we estimate the

underlying true covariance matrix Var(Xs),33 and then directly perform the principal components

analysis on the estimated covariance matrix.34

The results are in Online Appendix Table A5. Panel A reports, for each dataset we use, the

number of principal components necessary to explain 75%, 90%, 95%, 99%, and 100% of the sum

∑
L
`=1Var(Xs`) of the variances of the standardized values of the L characteristics in Xs, respectively.

This is the standard output from a factor analysis. In Panel B, we also provide the number of

principal components necessary to explain 75%, 90%, 95%, 99%, and 100% of the variance in

XsĜ1, the regression index formed by using the estimated coefficients on school-level averages

from our empirical analysis.

Both Panel A and Panel B provide strong evidence that rank(Θ̃ΘΘ) ≥ dim(AX
s ), implying that

Assumption 5.1 for the spanning condition ΘΘΘ
U =RΘ̃ΘΘ is satisfied in the datasets we use. Specifically,

in each dataset, Var(Xs) is found to be rank deficient. For example, in the full specification using

ELS2002, only 33 latent factors are needed to explain all of the variance in Xs (Panel A, Row 6,

Column 6), compared to L = 51 elements of Xs. Similarly, in the NELS88 full specification, only

32 factors fully explain the variance in the 49 factors of Xs.

Furthermore, the PCA analysis also suggests that a much smaller number of factors can account

for the vast majority of the variation in either ∑
L
`=1Var(Xs`) or Var(XsĜ1). In the ELS2002 full

specification, only 19 and 15 factors are needed to explain 95% of the variation in ∑
L
`=1Var(Xs`)

and Var(XsĜ1), respectively (Panels A and B, Row 4, Column 6). For NELS88, only 20 and 13

factors are needed to explain 95% of the variation in the corresponding two measures (Panels A and

B, Row 4, Column 4). The number of latent factors required to explain a given percentage of the

sum of the variances of the elements of Xs is larger in the full specification, which contains more

variables. This would be expected in the presence of sampling error in V̂ar(Xs). However, it might

also indicate that there are in fact additional amenity factors that play a small role in driving sorting

(and thus have small eigenvalues) that can be picked up by the additional elements of Xs in the full

33Specifically, we estimate V̂ar(Xi) and V̂ar(Xi−Xs) by taking the sample (weighted) covariances of Xi and Xi−
X̂s, performing the requisite degrees-of-freedom adjustment, and then obtaining V̂ar(Xs) via V̂ar(Xs) = V̂ar(Xi)−
V̂ar(Xi−Xs).

34When constructing our control function in our main estimating equations we augment the vector X̂s that comes from
directly aggregating student level variables Xi with school-level aggregates directly reported by the school administrators
(e.g. percent minority), since these are likely to measure the true school population average Xs with minimal error.
However, when performing the principal components analysis of Xs, we do not include these additional measurements
that come directly from schools, since they are likely to be nearly collinear with X̂s, and could cause us to find spurious
evidence of rank deficiency in Var(Xs).
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specification.

Note, though, that because we only observe small samples of students in each school in our panel

surveys and only have a sample of schools, the covariance matrix V̂ar(Xs) that is decomposed

by PCA is merely a consistent estimate of the population covariance matrix Var(Xs), and thus

contains sampling error. The assumption underlying the spanning condition pertains to the rank of

the population matrix Var(Xs). We address this issue in two ways. First, Panel A and B of Online

Appendix Table A5 report 90% bootstrap confidence interval estimates of the number needed to

explain the specified percentages of ∑
L
l Var(Xsl) and Var(XsĜ1). They are fairly tight.

Second, we also implement the formal test of rank proposed by Kleibergen and Paap (2006).

Building on Cragg and Donald (1997) and Robin and Smith (2000), this test exploits the fact that

a rank deficient matrix will have a subset of its singular values equal to 0, and tests whether the

smallest singular values are farther from zero than one would expect based on sampling error.35 The

test compares the null hypothesis that rank(Var(Xs)) = q, for some q < L, against the alternative

that rank(Var(Xs)) > q. Thus, Table A6 report the p-value from this test for each possible rank

1, . . . ,L− 1 for each of our panel survey datasets for our baseline specification. Table A7 displays

the corresponding p-values across datasets for our full specification.

One advantage of this test is that it can accommodate both heteroskedasticity and autocorrelation

among the error components. However, while the tests that cluster at the school-level allow for the

most general correlation structure, they sometimes fail to converge in our samples (indicated by

“NaN” in Tables A6 and A7). Consequently, for each dataset we display p-values both from tests

that are robust to heteroskedasticity but assume zero autocorrelation as well as those that cluster at

the school-level and are robust to both heteroskedasticity and autocorrelation.

Across tests and datasets, the results are broadly quite consistent with the PCA results reported

above. In particular, not only do the tests consistently fail to reject rank values well below the

number of observables, but in fact the p-values generally converge to values indistinguishable from

1 as the numbers of factors being tested nears the number of principal components identified in

Table A5. In sum, the Kleibergen/Paap tests provide no evidence against the null hypothesis that

the number of factors that drive sorting on the observables Xi is substantially small than dimension

of Xi.

35Specifically, Kleibergen and Paap (2006) show that if the vectorized form of the covariance matrix estimator has a
normal limiting distribution, then the limiting distribution of an orthogonal transformation of the smallest singular values
of this matrix is also normal. Their rank statistic thus consists of a quadratic form of this orthogonal transformation with
respect to the inverse of its covariance matrix, and hence follows a χ2 limiting distribution. Bai and Ng (2002) provide
an alternative approach.
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A4 The Relationship between XU
s and Xs when E(Xi|Wi) and E(XU

i |Wi)

are Nonlinear

Decompose E[X̃U
i |Wi] and E[Xi|Wi] as

E[X̃U
i |Wi] = E∗[X̃U

i |Wi]+ eX̃U

i (39)

E[Xi|Wi] = E∗(Xi|Wi)+ eX
i (40)

where the vectors E∗[X̃U
i |Wi] and E∗[Xi|Wi] are the linear least squares projections of X̃U

i and Xi

on Wi and the error vectors eX̃U

i and eXU

i are uncorrelated with Wi.

Proposition 1A: Assume that Assumptions A1, A2, A3, and A5 hold.

Then the expectation XU
s is

XU
s = Xs[ΠΠΠXUX +Var(Xi)

−1R
′
Var(X̃U

i )]

−E[eX
i |s(i) = s][Var(Xi)

−1R′Var(X̃U
i )]+E[eX̃U

i |si = s] (41)

A4.1 Proof of Proposition 1A:

The key steps of the proof are identical to first steps of the proof of Proposition 1 that lead to

(30) and (31). These say that

XU
s ≡ E[XU

i |s(i) = s] = E[[E(XU
i |Wi)]|s(i) = s]

Xs ≡ E[Xi |s(i) = s] = E[[E(Xi|Wi)]|s(i) = s].

Next we find expressions for E[XU
i |Wi] and E[Xi|Wi] involving E∗[X̃U

i |Wi] and E∗[Xi|Wi] and

eX̃U

i and eX
i By definition of a linear projection,

E∗[X̃U
i |Wi] = WiVar(Wi)

−1
ΘΘΘ

U′Var(X̃U
i ) (42)

E∗[Xi|Wi] = WiVar(Wi)
−1

Θ̃ΘΘ
′
Var(Xi). (43)

Assumption A5 says that ΘΘΘ
U = RΘ̃ΘΘ. Substituting for ΘΘΘ

U′ in (42) and using (43) leads to

E∗[X̃U
i |Wi] = WiVar(Wi)

−1
Θ̃ΘΘ
′R′Var(X̃U

i ))

= WiVar(Wi)
−1

Θ̃ΘΘ
′Var(Xi)Var(Xi)

−1R′Var(X̃U
i )

= E∗[Xi|Wi]Var(Xi)
−1R′Var(X̃U

i ). (44)

Using

E[XU
i |Wi] = E[Xi|Wi]ΠΠΠXUX +E[X̃U

i |Wi]. (45)
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and (39), (40) and (44), we obtain:

E[XU
i |Wi] = [E∗[Xi|Wi]+ eX

i ]ΠΠΠXU X +E∗[Xi|Wi]Var(Xi)
−1R′Var(X̃U

i )+ eX̃U

i . (46)

The final step is to take expectations of both sides of the above equation conditional on s(i) = s

and use (30) and (31). Doing so leads to

XU
s = E[E∗[Xi|Wi]+ eXi |si = s][ΠΠΠXU X +Var(Xi)

−1R′Var(X̃U
i )]

−E[eX
i |si = s][Var(Xi)

−1R′Var(X̃U
i )]+E[eX̃U

i |si = s].

= Xs[ΠΠΠXUX +Var(Xi)
−1R′Var(X̃U

i )]

−E[eX
i |si = s][Var(Xi)

−1R′Var(X̃U
i )]+E[eX̃U

i |si = s]

where the second and third terms combine to form an approximation error. This completes the

proof. As we discuss in Section 5.2, the approximation error would contribute to the school/neighborhood

error component vs of the outcome model (12). This would lead to upward bias in the less conser-

vative of our two estimators of the variance of school/neighborhood effects.

A5 Deriving an Analytical Formula for XU
s when the Spanning As-

sumption (A5) Is Not Satisfied

We begin by introducing new notation that will be necessary to generalize Proposition 1 to the

case when Assumption (A5) is not satisfied.

Partition XU
i into a subset XU

1i that is correlated with Xi and a subset XU
2i that is not correlated

with Xi. Let L denote the number of elements of Xi, LU1 denote the number of elements of XU
1i, and

let LU2 denote the number of elements of XU
2i. Recall that Assumption 5.2 will fail if XU

2i affects

preferences for an amenity that neither Xi nor XU
1i affect preferences for.

Denote by AU2 the subvector of A that is not contained in AX. Similarly, let K1 be the number

of amenities in AX and let K2 capture the number of amenities in AU2. Write the taste matrix ΘΘΘ
U as:

ΘΘΘ
U =

{
ΘΘΘ

U
11 ΘΘΘ

U
12

ΘΘΘ
U
21 ΘΘΘ

U
22

}
=

{
ΘΘΘ

U
11 0

ΘΘΘ
U
21 ΘΘΘ

U
22

}

where ΘΘΘ
U
11 is LU1×K1, ΘΘΘ

U
21 is LU2×K1, ΘΘΘ

U
12 is LU1×K2, and ΘΘΘ

U
22 is LU2×K2. Note that since XU

1i

does not affect WTP for any amenities in AU2, ΘΘΘ
U
12 = 0. Similarly, write the taste matrix ΘΘΘ as

ΘΘΘ =
{

ΘΘΘ1 ΘΘΘ2

}
=
{

ΘΘΘ1 0
}

,
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where ΘΘΘ1 is L×K1 and ΘΘΘ2 = 0 is L×K2.

We can then write Θ̃ΘΘ as:

Θ̃ΘΘ =
{

Θ̃ΘΘ1 Θ̃ΘΘ2

}
=
{

ΘΘΘ1 +ΠΠΠ
1
XU X ΘΘΘ

U
11 0

}
where ΠΠΠ

1
XU X represents the first LU1 columns of ΠΠΠXU X .

Consider replacing assumption (A5) with the following assumptions, (A5’) and (A5”):

• (A5’): There exists an LU1×L matrix R1 such that ΘΘΘ
U
11 = R1Θ̃ΘΘ1.

• (A5”): There exists an LU2×L matrix R2 such that ΘΘΘ
U
21 = R2Θ̃ΘΘ1.

We can also define the LU ×L matrix R as:

R =

{
R1

R2

}

Given these definitions and additional assumptions, we are now ready to develop a more general

expression for E[X̃U
i |s(i) = s]. We begin by generalizing the expression for E[X̃U

i |Wi]. Note first

that since E[Xi|Wi] and E[XU
i |Wi] are linear in Wi (from Assumption (A4)), E[X̃U

i |Wi] is also linear

in Wi. Basic regression theory then implies that

E[X̃U
i |Wi] = WiVar(Wi)

−1Cov(Wi
′, X̃U

i ) (47)

E[Xi|Wi] = WiVar(Wi)
−1Cov(Wi

′,Xi). (48)

Next, recall that we can write Wi as:

Wi = XiΘ̃ΘΘ+ X̃U
i ΘΘΘ

U +QiΘΘΘ
Q

where Xi, X̃U
i , and Qi are mutually uncorrelated by construction. This leads to the following ex-

pression for Cov(Wi
′, X̃U

i ):

Cov(Wi
′, X̃U

i ) = Cov(ΘΘΘU′X̃U′
i , X̃U

i ) = Cov(

{
ΘΘΘ

U′
11 ΘΘΘ

U′
21

ΘΘΘ
U′
12 ΘΘΘ

U′
22

}{
X̃U′

1i

X̃U′
2i

}
,
{

X̃U
1i X̃U

2i

}
)

=

{
Cov(ΘΘΘU′

11X̃U′
1i , X̃

U
1i)+Cov(ΘΘΘU′

21X̃U′
2i , X̃

U
1i) Cov(ΘΘΘU′

11X̃U′
1i , X̃

U
2i)+Cov(ΘΘΘU′

21X̃U′
2i , X̃

U
2i)

Cov(ΘΘΘU′
12X̃U′

1i , X̃
U
1i)+Cov(ΘΘΘU′

22X̃U′
2i , X̃

U
1i) Cov(ΘΘΘU′

12X̃U′
1i , X̃

U
2i)+Cov(ΘΘΘU′

22X̃U′
2i , X̃

U
2i)

}

=

{
ΘΘΘ

U′
11Var(X̃U

1i)+ΘΘΘ
U′
21Cov(X̃U′

2i , X̃
U
1i) ΘΘΘ

U′
11Cov(X̃U′

1i , X̃
U
2i)+ΘΘΘ

U′
21Var(X̃U

2i)

ΘΘΘ
U′
22Cov(X̃U′

2i , X̃
U
1i) ΘΘΘ

U′
22Var(X̃U

2i)

}

=

{
Θ̃ΘΘ
′
1R1

′Var(X̃U
1i)+ Θ̃ΘΘ

′
1R2

′Cov(X̃U′
2i , X̃

U
1i) Θ̃ΘΘ

′
1R1

′Cov(X̃U′
1i , X̃

U
2i)+ Θ̃ΘΘ

′
1R2

′Var(X̃U
2i)

ΘΘΘ
U′
22Cov(X̃U′

2i , X̃
U
1i) ΘΘΘ

U′
22Var(X̃U

2i)

}
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Where the last two lines impose (A5’), (A5”) and ΘΘΘ
U
12 = 0.

Similarly, we have:

Cov(Wi
′,Xi) = Cov(Θ̃ΘΘ′X′i,Xi) = Θ̃ΘΘ

′Var(Xi) = (49){
Θ̃ΘΘ
′
1

Θ̃ΘΘ
′
2

}
Var(Xi) =

{
ΘΘΘ
′
1 +ΘΘΘ

U′
11ΠΠΠ

1′
XU X

0

}
Var(Xi) (50)

Plugging in the formulas for Cov(Wi
′, X̃U

i ) and Cov(Wi
′,Xi) into 47 and 48 , we obtain:

E[X̃U
i |Wi] = WiVar(Wi)

−1

{
Θ̃ΘΘ
′
1R1

′Var(X̃U
1i)+ Θ̃ΘΘ

′
1R2

′Cov(X̃U′
2i , X̃

U
1i) Θ̃ΘΘ

′
1R1

′Cov(X̃U′
1i , X̃

U
2i)+ Θ̃ΘΘ

′
1R2

′Var(X̃U
2i)

ΘΘΘ
U′
22Cov(X̃U′

2i , X̃
U
1i) ΘΘΘ

U′
22Var(X̃U

2i)

}
(51)

E[Xi|Wi] = WiVar(Wi)
−1

{
Θ̃ΘΘ
′
1

0

}
Var(Xi). (52)

Using (52), we can rewrite (51) as:

E[X̃U
i |Wi] = E[Xi|Wi]Var(Xi)

−1
{

R1
′ R2

′
}{ Var(X̃U

1i) Cov(X̃U′
1i , X̃

U
2i)

Cov(X̃U′
2i , X̃

U
1i) Var(X̃U

2i)

}
(53)

+WiVar(Wi)
−1

{
0 0
ΘΘΘ

U′
22Cov(X̃U′

2i , X̃
U
1i) ΘΘΘ

U′
22Var(X̃U

2i)

}

= E[Xi|Wi]Var(Xi)
−1R′Var(X̃U

i )+WiVar(Wi)
−1

{
0 0
0 ΘΘΘ

U′
22

}
Var(X̃U

i ) (54)

Plugging back into the original iterated expectations formula and taking expectations at the school

level, we recover:

X̃U
s = XsVar(Xi)

−1R′Var(X̃U
i )+WsVar(Wi)

−1

{
0 0
0 ΘΘΘ

U
22

}
Var(X̃U

i ) (55)

Note that in equilibrium E[Wi|s(i) = s] will depend on the full joint distribution of amenities and

the joint distribution of Wi. With a finite number of students and schools and with idiosyncratic

student-school match components in preferences (εis), there exists no closed-form solution for the

equilibrium mapping between the amenity vector As and school averages of the WTP for amenities

Ws.

However, we can gain additional insight by re-considering the continuous version of the model

analyzed in Altonji and Mansfield (2014). In that context we assumed a continuum of schools and

therefore a continuous joint distribution of amenity vectors. In Appendix A3 of Altonji and Mans-

field (2014), we solve for an explicit unique equilibrium mapping between As and Ws under the
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assumptions that a) [Xi,XU
i ,Qi] and As(i) are each jointly normally distributed (with variance ma-

trices for Wi and As(i) of ΣΣΣW and ΣΣΣA respectively), b) the εis are 0, and c) the equilibrium allocation

takes a linear form: As(i) = ΨΨΨWi
′. The unique linear equilibrium mapping is

ΨΨΨ = ΣΣΣ
−1/2
W′ (ΣΣΣ

1/2
W′ ΣΣΣAΣΣΣ

1/2
W′ )ΣΣΣ

−1/2
W′ . (56)

Note that the spanning condition (A5) is not necessary to derive the equilibrium relationship (56).

Since every positive definite matrix is invertible, we can also express the vector Wi for any

individual as a linear function of the amenity vector of their chosen school:

Wi = (ΨΨΨ−1As(i))
′. (57)

In the continuous version of the model with εis = 0, every individual at the same school has the

same value of Wi. Thus, we also obtain:

E(Wi|s = s(i))≡Ws = (ΨΨΨ−1As(i))
′. (58)

Substituting (58) into ( 61) leads to

X̃U
s = XsVar(Xi)

−1R′Var(X̃U
i )+As(i)

′
ΨΨΨ
−1Var(Wi)

−1

{
0 0
0 ΘΘΘ

U′
22

}
Var(X̃U

i ) . (59)

This shows more clearly that the variances and covariances involving Xi, X̃U
i and Qi play

a role, and that Var(As) plays a role in determining the variation in X̃U
s not accounted for by

XsVar(Xi)
−1R′Var(X̃U

i ).

However, note that the variance of As(i)
′
ΨΨΨ
−1Var(Wi)

−1

{
0 0
0 ΘΘΘ

U′
22

}
Var(X̃U

i ) is not the resid-

ual variance of XU
s conditional on Xs. This is because Xs and As co-vary, which leads the two terms

in (59) for X̃U
s to co-vary.

Next, recall the composition of Wi:

Wi = XiΘ̃ΘΘ+ X̃U
i ΘΘΘ

U +QiΘΘΘ
Q (60)

Taking expectations of both sides of the above equation conditional on s = s(i) one may substi-

tute for Ws in (55). This leads to.

X̃U
s =Xs{Var(Xi)

−1R′Var(X̃U
i )+[XsΘΘΘ+X̃U

1sΘΘΘ
U
1 +X̃U

2 ΘΘΘ
U
2 +QsΘΘΘ

Q]Var(Wi)
−1

{
0 0
0 ΘΘΘ

U′
22

}
Var(X̃U

i )

(61)

Now suppose that in addition to Assumption (A4), we assume that E[Qi|Wi] is also linear in
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Wi, so that:

E[Qi|Wi] = WiVar(Wi)
−1Cov(Wi

′,Qi). (62)

If we take iterated expectations of equations (47), (48), and (62) conditional on school s(i) and

replace Ws with (ΨΨΨ−1As(i))
′, we obtain:

X̃U
s = As(i)

′
ΨΨΨ
−1Var(Wi)

−1
ΘΘΘ

U′Var(X̃U
i ) (63)

Xs = As(i)
′
ΨΨΨ
−1Var(Wi)

−1
Θ̃ΘΘ
′
Var(Xi) (64)

Qs = As(i)
′
ΨΨΨ
−1Var(Wi)

−1
ΘΘΘ

Q′Var(Qi) (65)

Collecting terms involving Xs and substituting equations (63) and (65) into (61) yields:

X̃U
s = Xs{Var(Xi)

−1R′Var(X̃U
i )+ Θ̃ΘΘ

′Var(Wi)
−1

{
0 0
0 ΘΘΘ

U′
22

}
Var(X̃U

i )} (66)

+As(i)
′
ΨΨΨ
−1Var(Wi)

−1
ΘΘΘ

U′Var(X̃U
i )ΘΘΘ

UVar(Wi)
−1

{
0 0
0 ΘΘΘ

U′
22

}
Var(X̃U

i ) (67)

+As(i)
′
ΨΨΨ
−1Var(Wi)

−1
ΘΘΘ

Q′Var(Qi)ΘΘΘ
QVar(Wi)

−1

{
0 0
0 ΘΘΘ

U′
22

}
Var(X̃U

i ) (68)

Even this does not let us decompose Var(X̃U
s ) into a term involving Xs and an uncorrelated

residual piece. the reason is that As(i) will be correlated with Xs.

But consider projecting the amenity column subvectors As
X and As

U2 onto Xs:

As
X′ = XsΠΠΠAXXs + ÃX′

s = XsΠΠΠAXXs (69)

As
U2′ = XsΠΠΠAU2Xs + ÃU2′

s (70)

where ΠΠΠAXXs is an L×K1 projection matrix, ΠΠΠAXXs is an L×K2 projection matrix, and ÃX′
s(i) and

ÃU2′
s are the residuals from these projections. Note that ÃX′

s = 0 in the continuous version of the

model as long as Θ̃ΘΘ1 is full rank (essentially Assumption A5.1 adapted to the linear utility case).

This implies:

X̃U
s = Xs[Var(Xi)

−1R′Var(X̃U
i )+ Θ̃ΘΘ

′Var(Wi)
−1

{
0 0
0 ΘΘΘ

U′
22

}
Var(X̃U

i )+M]

+{0, ÃU2′
s }ΨΨΨ−1Var(Wi)

−1[ΘΘΘU′Var(X̃U
i )ΘΘΘ

U +ΘΘΘ
Q′Var(Qi)ΘΘΘ

Q]Var(Wi)
−1

{
0 0
0 ΘΘΘ

U′
22

}
Var(X̃U

i )

(71)
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where the matrix M is

M= {ΠΠΠAXXs ,ΠΠΠAU2Xs}ΨΨΨ
−1Var(Wi)

−1[ΘΘΘU′Var(X̃U
i )ΘΘΘ

U+ΘΘΘ
Q′Var(Qi)ΘΘΘ

Q]Var(Wi)
−1

{
0 0
0 ΘΘΘ

U′
22

}
Var(X̃U

i )

(72)

While cumbersome, the second term in (71) provides an expression for the component of X̃U
s

that cannot be predicted by Xs (and thus may be a source of bias in our lower bound estimates of

the variance in school/neighborhood treatment effects). The variance in this component depends

on the following five factors: a) the full joint distribution of amenities (through ΨΨΨ); b) the joint

distribution of the WTP vector Wi (entering via the covariance matrix Var(Wi)); c) the WTP co-

efficient matrix ΘΘΘ
U capturing the effect of XU on willingness to pay for particular amenities; d)

the joint distribution of the residual component of unobserved outcome-relevant student character-

istics (entering via the covariance matrix Var(X̃U
i ); and e) the joint distribution of the unobserved

outcome-irrelevant (but school choice-relevant) student characteristics weighted by effects on WTP

(entering via ΘΘΘ
Q′Var(Qi)ΘΘΘ

Q).

Given the complicated manner in which each of these five factors enters the second term in (71),

we do not see a straightforward way bound the variance of this error component.

A6 Monte Carlo Evidence on the Properties of the Control Function
Estimator

This section describes a set of monte carlo simulations designed to explore the performance

of our control function estimator across a number of key dimensions. We do not attempt to fully

characterize the performance of our estimator.36 Instead, our simulations center around a stylized

test case that is calibrated to represent a plausible description of the school/neighborhood choice

context. We focus on sensitivity to deviations among a set of key parameters designed to reveal

the strengths and weaknesses of our approach. In the first set of simulations, we restrict attention to

cases in which the conditions of Proposition 1 are satisfied in an infinite population, and consider

the sensitivity of the performance of the control function approach in removing bias from sorting on

unobservables to various parameters capturing the structure of tastes, amenities, school sizes, and

survey sampling design. Then, in a second set of simulations, we fix the parameters considered in

the first set of simulations at a set of baseline values, and examine the sensitivity of our approach

to violations of the key spanning condition in Proposition 1 that vary in nature and degree. Section

A6.1 lays out the simulation methodology, while section A6.2 presents and interprets the results.

36A full characterization is a daunting task given the large number of parameters that determine the full spatial equi-
librium sorting of students to schools. The parameters include those characterizing the joint distribution of the individual
characteristics affecting choice [Xi,XU

i ,Qi], the joint distribution of the amenities As, and the distribution of the idiosyn-
cratic tastes εsi. The parameters also include the ΘΘΘ, ΘΘΘ

U, and ΘΘΘ
Q matrices that capture how observed and unobserved

characteristics affect WTP.
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A6.1 Methodology

The stylized test case we consider is one in which:

1. The elements of [Xi,XU
i ,Qi] are jointly normally distributed; the elements of Qi are inde-

pendent of each other and [Xi,XU
i ], and each pair of characteristics in [Xi,XU

i ] features a .25

correlation.37

2. The latent amenity vectors As are normally distributed with a .25 correlation between any pair

of amenities across schools.

3. The matrices of taste parameters ΘΘΘ and ΘΘΘ
U represent draws from a multivariate normal distri-

bution in which (a) corr(Θk`,Θ jm)≡ ρΘ if j = k or `=m, and 0 otherwise, (b) corr(ΘU
k`,Θ

U
jm)=

ρΘ if j = k or `= m, and 0 otherwise, and (c) corr(Θk`,Θ
U
jm) = ρΘ if `= m, and 0 otherwise.

4. The number of elements of Qi is equal to the number of elements of As. ΘΘΘ
Q is the identity

matrix.

5. The variances of the elements of As, [Xi,XU
i ,Qi], and εi,s (i.i.d. draws from a normal distribu-

tion) are chosen to create interclass correlations for Xi and XU
i of between .1 and .25 across

specifications. These values are in line with the range observed across the datasets used in the

empirical analysis.

6. There are no school/neighborhood effects, so that Y = Xiβββ + xU
i , where xU

i ≡ XU
i βββ

U . Conse-

quently, our estimating equation also omits the school level controls Z2s that are not averages

of student characteristics. These simplifications allow us to focus attention exclusively on the

extent to which a vector of group averages of observable individual characteristics can absorb

between-school variation in the outcome contributions of unobservable individual character-

istics.

7. All the observable and unobservable characteristics in Xi and XU
i are equally important in

determining the outcome, so that each characteristic features the same (unit) variance, β` =

1 ∀ `, and βU
` = 1 ∀ `.

Our test case implies considerable sorting into schools along many dimensions of school ameni-

ties and along many observable and unobservable dimensions of student quality. It represents

a conservative case because one might expect that in reality a few key observable (and unob-

servable) individual level factors (e.g. parental income, education, and wealth) and a few key

school/neighborhood amenities (e.g. ethnic composition, crime, principal quality) drive most of the

systematic sorting of students to schools. Given restrictions 1-7, we complete the model by choos-

ing particular sets of seven remaining parameters. The first parameter is the number of students per

school. For simplicity, we impose that each school has capacity equal to a common student/school

ratio.38 The student/school ratio is denoted “# Stu” in Online Appendix Table A8. The second

37This is the average correlation between observed continuous student-level characteristics in ELS2002.
38We believe that this is essentially without loss of generality. Without a finite elasticity of supply of land/school

vacancies though, it is hard to avoid having tiny school sizes in locations with low values of amenities that tend to be
highly desired. Fixed costs would prevent this.
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parameter is the total number of school/neighborhood combinations available (denoted “# Sch”).

The parameter #Con is the number of schools in the consideration set for each household. This

captures the possibility that most parents only realistically consider a limited number of possible

locations. We implement this by distributing schools uniformly throughout the unit square, and

drawing a random latitude/longitude combination for each household. The households then consider

the preset number of schools that are closest to their location. Thus, consideration sets of different

households are overlapping.

The fourth and fifth parameters (denoted “# Ob.” and “# Un.”) specify the number of observed

and unobserved student characteristics that affect outcomes. The sixth parameter is the dimension

of the amenity vector over which households have preferences (#Am). In most of the specifications

we assume that it is less then or equal to the number of observed characteristics and that the rows of

ΘΘΘ
U form a linear subspace of the rows of Θ̃ΘΘ, as required by Proposition 1.

The seventh parameter is ρΘ, introduced in the definition of our stylized test case, which governs

the correlation between pairs of random variables from which each (Θk`,Θ jm) or (ΘU
k`,Θ

U
jm) is a

draw. If ρΘ is high, then student characteristics that have a strong positive effect on willingness

to pay for one amenity factor will also tend to have a relatively strong positive effect on WTP

for other amenities. In addition, when ρΘ is high the amenities that are strongly weighted by one

characteristic are likely to be strongly weighted by other characteristics. That is, WTP for some

amenity factors may generally be particularly sensitive to student characteristics.

In addition, in a second set of simulations we hold fixed these seven parameters at their baseline

values, and consider additional specifications that illustrate the degree to which our control function

approach is robust to various failures of the spanning condition from Proposition 1 (i.e. cases

in which ΘΘΘ
U 6= RΘ̃ΘΘ for any R). These simulations consider robustness of the control function

approach to changes in the structure of the three matrices that determine whether a one-to-one

mapping from a vector of group-average unobservables to a vector of group-average observables

exists at the population level: (1) the projection matrix ΠΠΠXUX, which captures the degree to which

individual-level unobservables project onto the space of individual-level observables, (2) the taste

matrix ΘΘΘ, which captures the degree to which each of the student-level observables affects tastes for

each of the school/neighborhood amenities, and (3) the corresponding taste matrix for unobservable

student characteristics, ΘΘΘ
U.

We have two related metrics for evaluating the effectiveness of our control function approach.

The first is the fraction of the between-group variance in the outcome contribution of unobservable

individual-level characteristics (Var(xU
s )≡Var(XU

s βββ
U) that can be predicted using group-averages

of observable characteristics (after adjusting for the degrees of freedom absorbed by the vector of

observables). This is the adjusted R2 from a regression of the potential bias from unobservable

sorting, xU
s , on the vector Xs. In cases where the conditions of Proposition 1 are satisfied, R2

ad j

should converge to 1 as the number of students per school gets large. However, the rate at which it

does so is important for the efficacy of the control function approach.
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The second metric is [(1−R2
ad j)Var(xU

s )]/Var(Ysi), which is the fraction of the total variance

in the outcome Ysi attributable to the variance of the residual component of xU
s not accounted for

by Xs. In Appendix tables A8 and A9, we denote our measures “Adj-R-sq” and “Resid” (short for

“residual sorting variance fraction”).

We present values of adjusted R-squared and the residual sorting variance fraction from specifi-

cations where the full population of students is used to calculate the school averages of observables

X̂s that compose the control function (denoted “Adj-R-sq (All)” and “Resid (All)”, respectively),

as well as values from specifications in which random samples of 10, 20, or 40 students from

each school are used to calculate X̂s (these values are denoted “Adj-R-sq (10/20/40)” and “Resid

(10/20/40)”, respectively, in our tables).

We draw Xi, XU
i , Qi, and {εis} from the distributions described above to calculate the WTP of

each household for each school.39 Since our method does not require observation of the equilibrium

price function P(A), rather than iterating on an excess demand function to find the equilibrium

matching, we instead exploit the fact that a perfectly competitive market will always lead to a pareto

efficient allocation. The problem of allocating students to schools to maximize total consumer

surplus can be written as a linear programming problem and solved quickly at relatively large scale

using the simplex method combined with sparse matrix techniques.40

A6.2 Simulation Results

The simulation results are presented in online Appendix Table A8. Row (1) presents the base

parameter set to which other parameter sets will be compared. It features 1000 students per school

and 50 schools in the area, all of which are considered by each family when the school choice

is made. It also features 5 amenities, 10 observable student characteristics, and 10 unobservable

student characteristics. The variances of these characteristics are all identical, so that sorting on

unobservables is as strong as sorting on observables. This is probably a conservative choice. Finally,

the within-row and within-column correlation ρΘ among the elements of the random matrices from

which the taste weight matrices ΘΘΘ and ΘΘΘ
U are drawn is assumed to be .25.

The first takeaway from Row (1) is that the control function approach is extremely effective

even with reasonably-sized schools of 1000 students each (most of the schools in the North Car-

olina sample enroll between 250 and 2000 students) and a moderate number of available schools:

99.8 percent of the variance in the school-level contribution of unobserved student characteristics

can be predicted by a linear combination of school-average observable characteristics (Column 9).

Furthermore, the control function only leaves three hundredths of a percent of the variance in the

outcome Ysi that can be attributed to residual between-school sorting (Column 10).

39To minimize the statistical “chatter” introduced by the particular ΘΘΘ and ΘΘΘ
U matrices that we happened to draw, we

drew ten different sets of ΘΘΘ and ΘΘΘ
U matrices from the prescribed distributions, ran the simulations for each parameter set

for each of these sets of matrices, and then averaged the results across the ten iterations within each parameter set.
40The problem can actually be classified as a binary assignment problem (a subset of linear programming problems),

but we were unable to implement the standard binary assignment algorithms at scale.
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The second insight from Row (1) is that the performance of the control function may suffer

somewhat when estimation is based on small subsamples of students at each school. We see that the

adjusted R-squared falls from .998 to .869 when school averages are merely approximated based

on samples of 10 students (top entry in Column (11)). Increasing the sample size to 20 students

per school (middle entry in Column (11)) raises the adjusted R-squared to .926, while increasing

it further to 40 students per school (bottom entry in Column (11)) raises the adjusted R-squared to

.959. Column (12) shows that the fraction of the outcome variance consisting of residual between-

school sorting unabsorbed by the control function is .016/.009/.005 when 10/20/40 student samples,

respectively, are used to construct the vector of school averages, Xs.

Rows (2) and (3) illustrate the impact of adapting the specification in Row (1) by decreasing or

increasing the number of individuals per group. Decreasing school sizes from 1000 to 500 decreases

the R-squared from .998 to .996, while increasing from 1000 to 2000 increases the R-squared to .999

(Column (9)). Perhaps not surprisingly, more individuals per school has almost no impact on the

effectiveness of the control function if the larger number of individuals are not used to construct the

group averages of individual characteristics, Xs. In Columns (11) and (12), the adjusted R-squared

values and residual sorting variance fraction when samples of 10, 20 and 40 students are used to

construct Xs are nearly identical across Rows (1) - (3).

Comparing Row (4) to Row (1), we see that increasing the number of schools from 50 to 100 has

almost no impact on the performance of the control function when the full population of students is

used to construct school averages. Interestingly, reducing the number of schools does not exacerbate

problems posed by using small samples of students from each school to construct Xs (Column (11)).

Similarly, Row (5) shows that restricting the number of schools in each household’s consideration

set from 50 to 10 reduces the control function’s ability to absorb unobservable sorting, but only

negligibly. The adjusted R-squared is effectively unchanged when the full population of students

is used to construct Xs, but drops slightly from Row (1) to Row (5) when samples of 10, 20, or

40 students are used instead. Nonetheless, the high adjusted R-squared and low variance of the

residual sorting component in Row (5) reveals that our approach works well even if households

only consider a relatively small number of schools.

Row (6) illustrates the impact of doubling both the number of observable and unobservable

outcome relevant characteristics. By increasing the numbers of both observable and unobservable

characteristics symmetrically, we can show the impact of utilizing a richer control set while holding

fixed the strength of sorting on observables relative to unobservables.41 Doubling the number of ele-

ments of Xi and XU
i increases the adjusted R-squared from .9979 in Row (1) to .9993, and decreases

the fraction of outcome variance attributable to the residual sorting component to two hundredths of

41In all of these simulations, we assumed that the strength of sorting on unobservables mirrored the strength of sorting
on unobservables. In results not shown, we also experimented with weakening the degree of sorting on unobservables by
making ΘΘΘ

U smaller in magnitude and increasing the variance of Qi to compensate. While the control function absorbs
a slightly smaller fraction of the between-school variance of the regression index of unobservable outcome-relevant
characteristics when sorting on these characteristics is weak, this is precisely the case when the magnitude of the between-
school variance in outcome-relevant unobservables is small. Thus, there is very little potential bias to be absorbed.
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a percentage point. This very small increase understates the importance of the richness of the con-

trol set, since the control function was already nearly perfectly effective for the baseline parameter

set. Column 11 shows that when only 10 students are used to construct sample school averages,

doubling the control set from 10 to 20 characteristics increases the adjusted R-squared from .869 to

.897. This highlights the importance of collecting data on a wide variety of student/parent inputs

that capture different dimensions of taste (as the panel surveys we use do).

Row (7) shows that doubling the number of amenity factors from 5 to 10 very slightly reduces

the effectiveness of the control function, dropping the adjusted R-squared from .9979 in Row (1)

to .9933. The impact of doubling the number of amenities is also small when small samples of

students are used to construct school averages. Comparing Row (8) to Row (6) reveals that the

performance of the control function really depends on the dimension of the amenity space relative

to the dimension of Xs, rather than the absolute number of amenities: when Xs has 20 elements, the

fraction of absorbed sorting bias barely changes as the number of amenities rises from 5 to 10.

Finally, Row (9) displays the results of a specification in which all of the Θk` and ΘU
k` elements

are drawn independently (ρΘ = 0). Compared to Row (1), the adjusted R-squared for the full pop-

ulation falls slightly (.9979 to .9941), but the adjusted R-squared when samples of (10/20/40) are

used to construct Xs falls more substantially, from (.87/.93/.97) to (.65/.78/.87). However, remov-

ing correlation among the elements of ΘΘΘ also reduces the amount of sorting on unobservables to be

explained. When the school averages of the various unobservables become more weakly correlated

with one another, their contributions to student outcomes are more likely to cancel each other out.

Consequently, the fraction of between-school outcome variation that can be attributed to residual

school-level differences in unobservable student characteristics that is unpredictable based on the

vector of school-average observables Xs remains quite small (Row 9, Col. 11).

Overall, the results in Online Appendix Table A8 indicate that the control function approach

could potentially work extremely well even in settings where 1) individuals have idiosyncratic tastes

for particular groups, 2) there are only a moderate number of total groups to join, and 3) only a subset

of these are considered by any given individual.42 The simulations suggest that the control function

works well even when only a small sample of individuals is observed in each group. In Online

Appendix A11, we use the North Carolina administrative data to directly assess the effect of using

smaller samples of students to construct Xs for some of the outcomes and characteristics we actually

consider. We find that our main results are relatively insensitive to restricting school sample sizes

to match the distribution of sample sizes observed in the NLS72, NELS88, and ELS2002 datasets.

42In other simulations available upon request, we have also examined the impact of altering the variance of εis. We
find that increasing Var(εis) reduces the between-school variance in both Xi and XU

i symmetrically, but does not erode
the effectiveness of Xs as a control for XU

s . Intuitively, as Var(εis)→ ∞, idiosyncratic tastes fully drive choice, and the
between school variation in Xi and XU

i disappears, so that there is no more sorting problem to address.
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A6.2.1 Performance of the Control Function When the Spanning Condition Fails

All the specifications in Online Appendix Table A8 consider cases in which the assumptions

of Proposition 1 are satisfied, so we should expect the control function to perfectly absorb sorting

on observables as the number of students per school gets sufficiently large. However, there also

may be many contexts in which the set of observables is not sufficiently rich to make the spanning

condition plausible. Thus, we are also interested in the extent to which the addition of group-

averages of individual characteristics can substantially reduce bias from sorting on unobservables,

even if it cannot completely eliminate the bias. Online Appendix Table A9 considers a number of

such scenarios.

Recall from the discussion in Section 3.1 that Θ̃ΘΘ can be represented as the sum of ΘΘΘ and

ΠΠΠXU X ΘΘΘ
U. The dependence on ΘΘΘ indicates that the mapping from XU

s to Xs is generated partly

because observed characteristics Xi and unobserved characteristics XU
i directly affect WTP for over-

lapping sets of amenities (which creates a degree of overlap in the row spaces of ΘΘΘ and ΘΘΘ
U). The

term ΠΠΠXUXΘΘΘ
U captures the part of the mapping that arises because Xi indirectly predicts WTP for

the amenities for which XU
i predicts WTP through the correlation between Xi and XU

i (thereby cre-

ating further overlap in the row spaces of ΘΘΘ and ΘΘΘ
U). The spanning condition (ΘΘΘU = RΘ̃ΘΘ for some

LU × L matrix R) is satisfied whenever these two pathways, working in combination, produce a

preference matrix Θ̃ΘΘ whose row space is a linear superspace of the row space of ΘΘΘ
U.

Thus, before investigating the impact of violations of the spanning condition, we illustrate the

importance of both pathways by considering specifications in which one or the other pathway is shut

down. Row (1) is identical to Row (1) of Online Appendix Table A8, and represents the baseline

case against which the other specifications are compared. Row (2) considers the case in which the

entire vector of unobservable characteristics XU
i is independent of the vector of observables Xi, so

that ΠΠΠXUX converges to the zero matrix as school sizes become large. However, Xi and XU
i predict

tastes for a common set of amenities (A1−A5), so that ΘΘΘ has (full) rank K and the row space of ΘΘΘ
U

is a linear subspace of the row space of ΘΘΘ. The results in Row (2) suggest that the control function

approach still works quite well when large populations of students at each school are available

(adjusted R-squared of .965), but suffers somewhat when school averages are constructed using

subsamples of 10, 20 or 40 students: adjusted R-squared values fall to .49/.61/.72 (Column 10),

with substantial residual bias from sorting on unobservables left uncaptured by the control function

X̂s (Column 11).

Row (3) considers the opposite case in which the spanning condition is satisfied only through

the indirect pathway that operates via the correlation between Xi and XU
i . Specifically, in row (3)

the observables and unobservables affect tastes for disjoint sets of amenities ({A1, . . . ,A4} and {A5}
respectively). This means that the row space of ΘΘΘ

U is orthogonal to the row space of ΘΘΘ. However,

each element of Xi is correlated .25 with each element of XU
i , so that ΠΠΠXUX is full rank and the

row space of ΘΘΘ
U is a linear subspace of the row space of ΠΠΠXUXΘΘΘ

U. The results in Row (3) are

quite similar to those in Row (2): strong when large samples are used to construct school averages,
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weaker otherwise. Rows (2) and (3) combined illustrate that the two pathways by which a mapping

between Xs and XU
s may be generated are each sufficient in isolation to produce desirable finite

sample properties with large samples of students per school. But they also show that it is the blend

of both pathways to spanning that produced the surprisingly strong finite sample results in Online

Appendix Table A8.

The remaining rows of Online Appendix Table A9 consider cases in which the spanning condi-

tion fails (the row space of ΘΘΘ
U is not a linear subspace of the row space of Θ̃ΘΘ = ΘΘΘ+ΠΠΠXUXΘΘΘ

U). Row

(4) presents results from the worst-case scenario: (a) the entire vector of unobservable characteris-

tics is independent of the entire vector of observable characteristics (ΠΠΠXU X converges to 0 as school

sizes become large), and (b) the unobservable characteristics only predict WTP for an amenity (A5)

that the observable characteristics do not affect taste for (they exclusively weight A1−A4). Thus,

ΘΘΘ and ΘΘΘ
U have orthogonal row spaces as well. Since the group averages of the observables and

unobservables are functions of disjoint sets of amenities, it comes as no surprise that only 15% of

the variance in XU
s is predictable given Xs, even when the universe of students at each school is

observed (Column 8).43

Row (5) alters the scenario from Row (4) by allowing the unobservable characteristics XU
i to

predict WTP for amenities A1 to A4 in addition to A5. The control function performs somewhat

better: 52% of the variance in XU
s is absorbed by the coefficients on Xs.

These two scenarios are quite pessimistic, however. If WTP for an amenity is unaffected by the

entire vector Xi, then it seems likely that a subset of the unobservables may not predict WTP for

this amenity either. Thus, we consider two additional scenarios in which WTP for the last amenity

(A5) is only affected by one of the ten components of the unobserved vector XU
i . In Row (6), XU

i,10

affects WTP for A5 only. In Row (7), XU
i,10 predicts willingness to pay for all amenities A1 to A5.

Rows (6) and (7) reveal that our control function performs quite well in these scenarios: it absorbs

around 95% of the variation in XU
s in each case.

Finally, Rows (8) and (9) replicate the scenarios in Rows (6) and (7) but allow each of the unob-

servable characteristics except the one affecting taste for A5 (XU
i,10) to exhibit a .25 correlation with

each of the observed characteristics. In this case both ΠΠΠXUXΘΘΘ
U and ΘΘΘ would be linear superspaces

of ΘΘΘ
U in the absence of the last unobservable, XU

i,10. The performance of the control function for

these specifications is every bit as strong as in the baseline specification in Row (1). This suggests

that a violation of the spanning condition in Proposition 1 need not produce appreciable bias if it is

driven by only a small number of characteristics that weakly affect school/neighborhood choices.

We conclude that our control function approach may be quite robust to the violations of the

spanning condition that are arguably the most plausible: namely, cases in which just a few compo-

nents of the subvector of XU
i that is orthogonal to Xi affect WTP for just a few additional amenities

for which Xi does not affect WTP.

43The limited explanatory power we do obtain derives from correlation between A5 and A1−A4.
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A7 Proof of Proposition 2

Let ∆ denote the operator that takes deviations from school/neighborhood means, so that, for

example, ∆XU
i ≡ (XU

i −XU
s ). Define ΠΠΠ∆XU∆X as the coefficient matrix from the following within-

school regression:

∆XU
i = ∆XiΠΠΠ∆XU∆X + ∆̃XU

i (73)

Recall the projection equation (5): XU
i = XiΠΠΠXUX + X̃U

i . We now state and prove an expanded

version of Proposition 2 that includes an expression for BBB and GGG1.

Proposition 2: Assume that assumptions A1-A5 from Proposition 1 hold.

Then equations (13)-(17) simplify to:

B = βββ +ΠΠΠ∆XU∆Xβββ
U +ΠΠΠ

ηU
si Xi

(74)

G1 = [−ΠΠΠ∆XU∆X +ΠΠΠXUX +Var(Xi)
−1R

′
Var(X̃U

i )]βββ
U +ΓΓΓ1 +ΠΠΠzU

s Xs (75)

G2 = ΓΓΓ2 +ΠΠΠzU
s Z2s (76)

vs = z̃U
s +ξs (77)

vsi− vs = ∆x̃U
si + η̃si +ξi (78)

Proof: Recall the projection equation (9):

xU
i = XiΠΠΠxU

i Xi
+XsΠΠΠxU

i Xs
+Z2sΠΠΠxU

i Z2s
+ x̃U

i

Note that this projection is the sum of a within-school and between-school projection:

∆xU
si = XiΠΠΠ1 +XsΠΠΠ2 +Z2sΠΠΠ3 +∆x̃U

si = ∆XiΠΠΠ1 +Xs[ΠΠΠ2 +ΠΠΠ1]+Z2sΠΠΠ3 +∆x̃U
si (79)

xU
s = ∆XiΠΠΠ4 +XsΠΠΠ5 +Z2sΠΠΠ6 + x̃U

s = ∆XiΠΠΠ4 +Xs[ΠΠΠ5 +ΠΠΠ4]+Z2sΠΠΠ6 + x̃U
s (80)

Consider (79) first. Note that the deviation from group mean ∆Xi and ∆x̃U
si are orthogonal to both

Xs and Z2s, so the projection of ∆xU
si on ∆Xi, Xs, and Z2s boils down to the projection of ∆xU

si on

∆Xi. Consequently,

ΠΠΠ1 = ΠΠΠ∆XU∆Xβββ
U

ΠΠΠ2 +ΠΠΠ1 = 000 or ΠΠΠ2 =−ΠΠΠ1

ΠΠΠ3 = 000

where in the first equality ΠΠΠ∆XU∆X is the coefficient matrix from (73) and we have used the definition

xU
i ≡ XU

i βββ
U .

Now, consider the between-school regression (80). By Proposition 1, XU
s =Xs[ΠΠΠXUX+Var(Xi)

−1R′Var(X̃U
i )].
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Post-multiplying both sides by βββ
U, we obtain:

XU
s βββ

U ≡ xU
s = Xs[ΠΠΠXUX +Var(Xi)

−1R
′
Var(X̃U

i )]βββ
U (81)

But since xU
s can be perfectly predicted by Xs, we have:

ΠΠΠ4 = 0 (82)

ΠΠΠ5 = [ΠΠΠXUX +Var(Xi)
−1R

′
Var(X̃U

i )]βββ
U (83)

ΠΠΠ6 = 0 (84)

x̃U
s = 0 (85)

Adding together ΠΠΠ1 and ΠΠΠ4, ΠΠΠ2 and ΠΠΠ5, and ΠΠΠ3 and ΠΠΠ6 yields:

ΠΠΠxU
i Xi

= ΠΠΠ
∆XU∆Xβββ

U (86)

ΠΠΠxU
i Xs

= [−ΠΠΠ
∆XU∆X +ΠΠΠXUX +Var(Xi)

−1R
′
Var(X̃U

i )]βββ
U (87)

ΠΠΠxU
i Z2s

= 0 (88)

Plugging equations (85)-(88) back into equations (13)- (17) yields:

B = βββ +ΠΠΠ∆XU∆Xβββ
U +ΠΠΠ

ηU
si Xi

(89)

G1 = [−ΠΠΠ∆XU∆X +ΠΠΠXUX +Var(Xi)
−1R

′
Var(X̃U

i )]βββ
U +ΓΓΓ1 +ΠΠΠzU

s Xs (90)

G2 = ΓΓΓ2 +ΠΠΠzU
s Z2s (91)

vs = z̃U
s +ξs (92)

vsi− vs = x̃U
si + η̃si +ξi (93)

This concludes the proof.

It is interesting to briefly discuss what happens if the linear conditional expectations assumption

A4 fails. Then Proposition 1A in Online Appendix A4 establishes that

XU
s βββ

U ≡ xU
s = Xs[ΠΠΠXUX +Var(Xi)

−1R′Var(X̃U
i )]βββ

U + ṽvv∗s βββ
U

where ṽvv∗s =−E[eX
i |si = s][Var(Xi)

−1R′Var(X̃U
i )]+E[eX̃U

i |si = s]. It is straightforward to show that

a correlation between Z2s and ṽvv∗s βββ
U would alter the coefficient vector G2. Part of ṽvv∗s βββ

U would also

appear in vs.
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A7.1 Proof that under Assumptions A1-A5, G1 = ΓΓΓ1+ΠΠΠzU
s Xs in the Absence of Sort-

ing on XU
i

Under A1-A5, Proposition 1 holds. The case in which XU
i does not influence the choice of

s corresponds to the case in which ΘΘΘ
U = 000. A5 says that ΘΘΘ

U = RΘ̃ΘΘ. As we noted in Section 3.2,

RRR= 000 when ΘΘΘ
U = 000. Thus, equation (7) from Proposition 1 implies immediately that XU

s =XsΠΠΠXUX

when ΘΘΘ
U = 000, where ΠΠΠXUX is the coefficient matrix of the projection of XU

i on Xi introduced in (5).

This result, the fact that Proj(XU
i |Xi,Xs) = Proj(XU

i |Xi−Xs,Xs) and the fact that Xs is orthogonal

to [Xi−Xs] together imply that Proj(XU
i |Xi,Xs) can be written as

Proj(XU
i |Xi,Xs) = [Xi−Xs]ΠΠΠ∆∆∆XU∆∆∆X +XsΠΠΠXUX,

where ΠΠΠ∆∆∆XU∆∆∆X is the coefficient matrix of the regression of XU
i −XU

s on Xi−Xs. By the law of

iterated projections ,

XiΠΠΠXUX ≡ Proj(XU
i |Xi) = Proj(Proj(XU

i |Xi,Xs)|Xi) = XiΠΠΠ∆∆∆XU∆∆∆X +XiΠΠΠXsXi [ΠΠΠXUX−ΠΠΠ∆∆∆XU∆∆∆X].

After rearranging terms, the above equation implies that for all XXX i,

XiΠΠΠXsXi [ΠΠΠXUX−ΠΠΠ∆∆∆XU∆∆∆X] = Xi[ΠΠΠXUX−ΠΠΠ∆∆∆XU∆∆∆X]

Provided that Xi varies within groups, XiΠΠΠXsXi is not equal to Xi, in which case ΠΠΠXUX must equal

ΠΠΠ∆∆∆XU∆∆∆X for the equation to hold. Using ΠΠΠXUX = ΠΠΠ∆∆∆XU∆∆∆X and the fact that Var(Xi)
−1R′Var(X̃U

i )

= 000 when R = 000 to evaluate (75) establishes that G1 = ΓΓΓ1 +ΠΠΠzU
s Xs , as claimed.

A8 Proof of Proposition 3 and Analysis of Assumptions A6.1 and A6.2

A8.1 Proof of Proposition 3:

We begin by reproducing assumptions A6.1 and A6.2 and restating the proposition.

A6.1:

Var(Xs[ΓΓΓ1 +ΠΠΠzU
s Xs ])+2Cov(Xs[ΓΓΓ1 +ΠΠΠzU

s Xs ],Z2s[ΓΓΓ2 +ΠΠΠzU
s Z2s ])+Var(z̃U

s )≥ 0

A6.2:

Var(Xs[ΓΓΓ1 +ΠΠΠzU
s Xs ])+2Cov(Xs[ΓΓΓ1 +ΠΠΠzU

s Xs ],Z2s[ΓΓΓ2 +ΠΠΠzU
s Z2s ])−Var(ξs)≥ 0 (94)

Proposition 3: If assumptions A1-A5 from Proposition 1 and A6.1 hold, then Var(Z2sG2) ≤
Var(ZsΓΓΓ+ zU

s ). If assumptions A1-A5 and A6.2 hold, then Var(Z2sG2 + vs)≤Var(ZsΓΓΓ+ zU
s ).
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Proof: By definition, Var(Z2sG2)+Var(vs) will understate or equal the true school contribution

if

Var(ZsΓΓΓ+ zU
s )≥Var(Z2sG2)+Var(vs).

Recall the definition ZsΓΓΓ≡XsΓΓΓ1+Z2sΓΓΓ2. Also, under the assumptions in Proposition 1, Propo-

sition 2 establishes that G2 = ΓΓΓ2 +ΠΠΠzU
s Z2s

and vs = z̃U
s + ξs. Using these three equations, we can

rewrite the previous inequality as

Var(XsΓΓΓ1 +Z2sΓΓΓ2 + zU
s )≥Var(Z2s(((ΓΓΓ2 +++ΠΠΠzU

s Z2s
))))+Var(z̃U

s +ξs). (95)

Next, substituting for zU
s using the projection equation zU

s = XsΠΠΠzU
s Xs

+Z2sΠΠΠzU
s Z2s

+ z̃U
s we obtain

Var(Xs[[[ΓΓΓ1 +++ΠΠΠzU
s Xs

]]]+Z2s[[[ΓΓΓ2 +ΠΠΠzU
s Z2s

]]]+ z̃U
s )≥Var(Z2s[ΓΓΓ2 +++ΠΠΠzU

s Z2s
])+Var(z̃U

s +ξs). (96)

Using the formula for the variance of a sum and the lack of correlation (by definition) between

all components of Zs and ξs,

Var(Xs[[[ΓΓΓ1 +++ΠΠΠzU
s Xs

]]])+2Cov(Xs[[[ΓΓΓ1 +++ΠΠΠzU
s Xs

]]],Z2s[[[ΓΓΓ2 +++ΠΠΠzU
s Z2s

]]])

+Var(Z2s[[[ΓΓΓ2 +++ΠΠΠzU
s Z2s

]]])+Var(z̃U
s )≥Var(Z2s[ΓΓΓ2 +++ΠΠΠzU

s Z2s
])+Var(z̃U

s )+Var(ξs) (97)

Cancelling common terms from both sides yields A6.2:

Var(Xs[[[ΓΓΓ1 +++ΠΠΠzU
s Xs

]]])+2Cov(Xs[[[ΓΓΓ1 +++ΠΠΠzU
s Xs

]]],Z2s[[[ΓΓΓ2 +++ΠΠΠzU
s Z2s

]]])−Var(ξs)≥ 0 (98)

In the case of our more conservative estimator, Var(Z2sG2), the proof follows the exact same

logic, except that the terms Var(z̃U
s ) and Var(ξs) do not appear on the right side in (95), and thus

Var(z̃U
s ) does not cancel and Var(ξs) need not be subtracted in (98). This leaves the inequality A6.1:

Var(Xs[[[ΓΓΓ1 +++ΠΠΠzU
s Xs

]]])+2Cov(Xs[[[ΓΓΓ1 +++ΠΠΠzU
s Xs

]]],Z2s[[[ΓΓΓ2 +++ΠΠΠzU
s Z2s

]]])+Var(z̃U
s )≥ 0 (99)

This concludes the proof.

A8.2 Analysis of Assumption 6

In this subsection we present theoretical and statistical considerations as well as the empirical

evidence specific to our application that all indicate that

Var(Xs[[[ΓΓΓ1 +++ΠΠΠzU
s Xs

]]])+2Cov(Xs[[[ΓΓΓ1 +++ΠΠΠzU
s Xs

]]],Z2s[[[ΓΓΓ2 +++ΠΠΠzU
s Z2s

]]])≥ 0. (100)
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This condition is stronger than A6.1 (since it omits Var(z̃U
s )), and is equivalent to A6.2 in contexts

where common shocks either do not exist (such as high school graduation) or are considered part

of the group treatment effect component z̃U
s (since individuals who choose different schools will

receive different common shocks). Because 1) we discuss common shocks elsewhere, 2) we intro-

duced the conservative estimator V̂ar(Z2sG2) to eliminate their influence, and 3) our sorting model

provides no guidance about their size, we focus attention here on the case where common shocks

do not exist (ξs = 0 ∀ s).

From a theoretical standpoint, note that standard sorting patterns would suggest a positive rather

than a negative covariance between the observable peer effect term XsΓΓΓ1 and the observed school

input term Z2sΓΓΓ2. Without loss of generality, suppose that each element Xi has been defined so that

higher values increase Yi (i.e. each element of βββ is positive). Most evidence suggests that concen-

trations of better prepared students and parents (high values of Xs) are likely to provide stronger

peer effects relative to concentrations of less prepared students and parents, suggesting that XsΓΓΓ1

would be positive when Xs values are high. And wealthier, more educated parents with more able

children (presumed to be positive Xi inputs) tend to be willing to pay more for neighborhoods fea-

turing schools with better inputs. Thus, standard assumptions about sorting would predict that XsΓΓΓ1

would display a positive covariance with the direct school inputs captured by Z2s(ΓΓΓ2+ΠΠΠzU
s Z2s). And

because zU
s is likely to partially represent peer effects associated with unobserved school character-

istics XU
s ΓΓΓ

U
1 , and XU

s projects fully onto Xs under Proposition 1, XsΠΠΠzU
s Xs is likely to also capture

peer effects associated with concentrations of parents/students with high values of unobserved char-

acteristics. So we would also expect Cov(XsΠΠΠzU
s Xs ,Z2s(ΓΓΓ2 +ΠΠΠzU

s Z2s)) to be positive as well.

The most plausible scenario that could produce a negative covariance is one in which parents

mostly value the composition of students at schools, and states seek to compensate for high peer

effects at some schools by, for example, allocating less funding to these schools or providing in-

centives for high quality teachers to move to schools in disadvantaged neighborhoods. If such

compensation were sufficiently strong, this could in principle create a negative correlation between

peer inputs and direct school inputs. However, in order to produce a violation of Assumption 6, the

correlation would need to be quite negative and Var(Xs[ΓΓΓ1 +ΠΠΠzU
s Xs ]) would need to be fairly small.

To see this, first note that since vs = z̃U
s is uncorrelated by definition with Xs[ΓΓΓ1 +ΠΠΠzU

s Xs ],

Cov(Xs[ΓΓΓ1 +ΠΠΠzU
s Xs ],Z2s[ΓΓΓ2 +ΠΠΠzU

s Z2s ]) =Cov(Xs[ΓΓΓ1 +ΠΠΠzU
s Xs ],Z2s[ΓΓΓ2 +ΠΠΠzU

s Z2s ]+ z̃U
s ).

Next use this result and the definition of correlation to rewrite (100) as

Var(Xs[ΓΓΓ1 +ΠΠΠzU
s Xs ])+

2Corr(Xs[ΓΓΓ1 +ΠΠΠzU
s Xs ],Z2s[ΓΓΓ2 +ΠΠΠzU

s Z2s
]+ z̃U

s )
√

Var(Xs[ΓΓΓ1 +ΠΠΠzU
s Xs ])

√
Var(Z2s[ΓΓΓ2 +ΠΠΠzU

s Z2s
]+ z̃U

s )≥ 0.

(101)
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Define the following scalar parameters:

ρ ≡Corr(Xs[ΓΓΓ1 +ΠΠΠzU
s Xs ],Z2s[ΓΓΓ2 +ΠΠΠzU

s Z2s ]+ z̃U
s )

µ ≡
Var(Xs[ΓΓΓ1 +ΠΠΠzU

s Xs ])

Var(Z2s[ΓΓΓ2 +ΠΠΠzU
s Z2s ]+ z̃U

s )
≡

Var(Xs[ΓΓΓ1 +ΠΠΠzU
s Xs ])

Var(Z2sG2 + vs)
.

ρ captures the correlation between the school inputs that project onto Xs and the school inputs that

either project onto Z2s or form the residual. The parameter µ captures the ratio of variances of

these objects. Then we can rewrite the difference between our “lower bound” estimator and the true

variance in school effects Var(ZsΓΓΓ+ zU
s ) as a fraction of our estimator (i.e. the size of the potential

overstatement of the true variance in percentage terms) in terms of only ρ and µ:

Var(ZsΓΓΓ+ zU
s )−Var(Z2sG2 + vs)

Var(Z2sG2 + vs)

=
Var(Xs[ΓΓΓ1 +ΠΠΠzU

s Xs ])+2Cov(Xs[ΓΓΓ1 +ΠΠΠzU
s Xs ],Z2s[ΓΓΓ2 +ΠΠΠzU

s Z2s ]+ z̃U
s )

Var(Z2sG2 + vs)

=
µVar(Z2sG2 + vs)+2ρ

√
µVar(Z2sG2 + vs)

Var(Z2sG2 + vs)

= µ +2ρ
√

µ

Generally speaking, this expression is only negative (implying that our estimator overstates the

true treatment effect variance) for combinations of highly negative values of ρ and low values of µ .

Table A23 summarizes the relationship between ρ , µ , and µ +2ρ
√

µ .

Specifically, the rows in Column 1 display the values of ρ from −0.1 to −1. Column 2 displays

the maximum overstatement of treatment effect variance as a fraction of our estimate for each value

of ρ (i.e. maxµ µ + 2ρ
√

µ), while Column 3 displays the size of µ that generates this maximum

(argmaxµ µ +2ρ
√

µ). Column 4 provides the threshold value of µ (denoted µ0(ρ)) beyond which

Assumption 6 is satisfied (i.e. the value of µ such that our lower bound estimator actually equals

the true school treatment effect variance: µ0(ρ)+2ρ
√

µ0(ρ) = 0).

Table A23 shows that when moderate compensation exists (e.g. ρ =−0.2), the maximum bias

is very small: even our larger lower bound estimator only overstates the true school/neighborhood

effect variance by 4 percent. And even this scenario requires that peer effects and other school inputs

projecting onto Xs be quite trivial in magnitude. The bias is maximized when Var(Xs[ΓΓΓ1 +ΠΠΠzU
s Xs ])

is only 4 percent as large as Var(Z2sG2 + vs). Note that Var(Z2sG2 + vs) is typically estimated

to be around 2 percent of the variance in the latent index determining our binary outcomes. Fur-

thermore, the overstatement is eliminated when µ is 16 percent of Var(Z2sG2 + vs); higher levels

of µ lead our estimator to understate the true school effect variance. Indeed, large overstatement

of the treatment effect variance can only occur with arguably unrealistically strong compensation

by states and schools. Specifically, the scenarios that produce large overstatement of true school

effects generally require peer effects to be quite weak compared to Z2s(ΓΓΓ2 +ΠΠΠzU
s Z2s) (low µ). But
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if compensation using these school inputs was so strong and these inputs were so important relative

to peer effects (so that schools are dramatically overcompensating for peer effects), it is hard to

believe that the parents/students with high individual contributions Xi would continue to cluster in

the schools providing such low value added.

Finally, other aspects of our variance decompositions also suggest that a violation of Assumption

6 is unlikely. Specifically, we report 2Cov(XsG1,Z2sG2)+Var(XsG1)= 2Cov(XsG1,Z2sG2+vs)+

Var(XsG1) for each of our outcomes and specifications in Appendix Tables (A20)-(A22). From

(75), we know that G1 6= ΓΓΓ1 due to the presence of ΠΠΠx̃U
i Xs

(our control function absorbs sorting

on unobservables!). However, the magnitude of 2Cov(XsG1,Z2sG2)+Var(XsG1) is generally at

least the half the size of (and often exceeding) that of Var(Z2sG2), suggesting that the sorting on

unobservables component XsΠΠΠx̃U
i Xs

would need to be quite substantial for µ to be low enough to be

consistent with a violation of Assumption 6.

Indeed, as we pointed out in Section 8 of the paper, under the stronger but standard selection-

on-observables-only assumption, XsB would fully capture student sorting, ΠΠΠx̃U
i Xs

= 0 and G1 =

ΓΓΓ1+ΠΠΠzU
s Xs . Thus, under selection-on-observables, 2Cov(XsG1,Z2sG2)+Var(XsG1) =Var(ZsΓΓΓ+

ξs)−Var(Z2sG2+vs), capturing directly the degree to which our estimator Var(Z2sG2+vs) under-

states or overstates the true neighborhood/school effect variance. And this sum is positive in every

specification and outcome we use, and usually substantially so. Thus, the limited evidence that our

empirical estimates provide about Assumption 6 strongly suggest that it holds in our data.

Even when Assumption 6 is violated (but Assumptions 1-5 hold), the quantity Var(Z2sG2) is

still an object of interest. In particular, it still represents a component of variance that purely captures

across school/neighborhood differences in external inputs. When interpreting our estimated shifts in

outcomes from moving from a 10th to 90th quantile school, we have generally considered the move

from the perspective a single family making a school/neighborhood choice. Through that lens, when

Assumption 6 is violated the shifts we estimate could overstate the change in the expected outcome

for the student from such a family, because the improvement in school inputs and policies captured

by Z2sG2 would be partially offset by a decrease in peer inputs (or other school inputs that project

onto Xs).

However, the same 10th-to-90th quantile shifts could also be interpreted as an estimate of the

gain in expected outcomes of students at the 10th quantile school that would occur if the non-

peer school inputs and policies Z2s of a school at the 90th quantile of Var(Z2sG2) were bestowed

upon the 10th quantile school. This counterfactual is more relevant for the state policy maker or

principal, who wants a broader understanding of how important school inputs and policies are for

student outcomes. Importantly, this counterfactual holds the peer inputs at each school fixed when

changing school inputs, so that the correlation between peer and school inputs induced by sorting

or compensation is irrelevant. Thus, violations of Assumption 6 do not change what we learn about

the importance of school inputs in producing student outcomes, and about the potential for outcome

gains from applying superior school inputs or successful policies currently observed in some high

value-added schools (conditional on peer inputs) to other schools in the nation.
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A9 Estimation of Model Parameters

In this section we discuss estimation of the coefficients B, G1, G2 and the variances of the error

components Var(vs) and (vsi−vs). The estimation strategy depends on the outcome, so we consider

the outcomes in turn. To simplify the notation, let v′si ≡ vsi− vs

A9.1 Years of Postsecondary Academic Education

Parameter estimation is most straightforward in the case of years of postsecondary academic

education. Recall that Zs is comprised of two components: Zs = [Xs;Z2s]. Z2s consists of school

and neighborhood characteristics for which direct measures are available, such as student/teacher

ratio, city size, and school type. Xs consists of school wide averages for each variable in Xi, such

as parental education or income, which we do not observe directly but must estimate from sample

members at each school. Consequently, the makeup of Xs differs across specifications that use

different X vectors. G1 and G2 are the corresponding subsets of the coefficients in G. We replace

Xs with X̂s, where X̂s is the average of Xi computed over all available students from the school,

leading to the equation below.44 The regression model is

Ysi = XiB+X̂sG1 +Z2sG2 +[Xs−X̂s]G1+vs + v′si (102)

using the appropriate panel weights from the surveys. We estimate the model parameters us-

ing restricted maximum likelihood (REML). We treat vs as a random effect and assume the error

components are normally distributed, ignoring the error component [Xs−X̂s]G1. REML accounts

for degrees of freedom in estimating Var(vs) and Var(v′si), while maximum likelihood does not.45

Computations were performed using the STATA Version 14 procedure mixed with the REML op-

tion. Because we experienced computational difficulties when using panel weights, the estimates

are unweighted.

A9.2 Permanent Wage Rates

Abstracting from the effects of labor market experience and a time trend, let the log wage Ysit of

individual i, from school s, at time t be governed by

Ysit = Ysi + ςsit .

44A substantial number of students who appear in the base year of the surveys can be used to construct X̂s but cannot be
used to estimate (102) because some variables, such as test scores, are missing, or because the students are not included
in the follow-up surveys that provide the measure of Ysi. As we discuss in Section 6, we impute missing values for most
of our explanatory variables prior to estimating B and G, but we do not use the imputed values when constructing the
school averages.

45See Harvey (1977) for an overview. In the normal regression model without the random effect vs, the REML estimator
of Var(v′si) is the usual OLS estimator—the sum of squared residuals divided by the sample size minus 1 plus the number
of regressors. The ML estimator of Var(v

′
si) divides the sum of squared residuals by the sample size only, thus ignoring

the lost degrees of freedom absorbed by additional regressors.
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In the above equation Ysi is i’s “permanent” log wage (given that he/she attended high school s) as

of the time by which most students have completed education and spent at least a couple of years

in the labor market, which we take to be 1979 in the case of NLS72. ςsit is a stationary component

that evolves as a result of luck in the job search process or within a company, changes in motivation

or productivity due to health and other short term factors that may persist for up to 7 years. It also

includes measurement error.46 The determination of Ysi is given by (8) which leads to the regression

equation (12). After substituting for Ysi and replacing Xs with X̂s, the wage equation is

Ysit = XiB+ X̂sG1 +Z2sG2 +(Xs− X̂s)G1 + vs + v′si + ςsit .

We estimate the model by REML under the assumption that the error components are normally

distributed and that Cov(ςsi1979,ςsi1986) is 0.47

A9.3 High School Graduation and College Enrollment

For binary outcomes such as high school graduation we reinterpret Ysi to be the latent variable

that determines the indicator for whether a student graduates, HSGRADsi. That is,

HSGRADsi = 1(Ysi > 0),

or, after substituting for Ysi,

HSGRADsi = 1(XiB+XsG1 +Z2sG2 + vs + v′si > 0). (103)

We replace Xs with X̂s and estimate the equation

HSGRADsi = 1(XiB+ X̂sG1 +Z2sG2 +(Xs− X̂s)G1 + vs + v′si > 0) (104)

via maximum likelihood random effects probit using STATA xtprobit (version 14). Because of

software constraints, student weights are set to the average student-level weights for the students’

schools. The procedure for enrollment in a four-year college is analogous to that of high school

graduation. In both cases, we adjust the ML estimates of Var(vs) and Var(v′si) to correct for degrees

of freedom. Essentially, we treat the equation for the latent variable Ysi as a continuous regression
46In prior drafts of the paper we used a different estimation procedure based on the method of moments. We were able

to include a random walk component esit as well as ςsit , and we did so because the earnings dynamics literature typically
finds evidence of a highly persistent wage component. Some studies fail to reject the hypothesis that esit is a random
walk. Recent examples include Baker and Solon (2003), Haider (2001), and Meghir and Pistaferri (2004). We were
unable to modify the method of moments estimator of Var(vs) to account for the degrees of freedom used in estimating
the regression coefficients. The mixed effects estimator we use assumes that Var(ςsit) does not depend on t. This rules
out a random walk component.

47In reality, we also include a vector Tit consisting of a dummy indicator for the year 1979 (relative to 1986), years of
work experience of i at time t, and experience squared. Let ϒϒϒ be the corresponding vector of wage coefficients. The term
Titϒ̂ϒϒ does not contribute to Ysi and does not play a role in the variance decompositions. The estimate of ϒ̂ϒϒ depends on
whether tests, postsecondary education, or both are in Xi. We report results with and without these variables. In our main
specification, we exclude postsecondary education from Xi.
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model and assume that the small sample bias corrections for the regression model carry over. We

provide the necessary detail in the next section.

A9.3.1 Formulae for Estimating Var(vi) and Var(vs) in the Case of Binary Outcome Variables

We start with formulae for the unweighted case. In the random effects regression model with a

continuous dependent variable, the formula for the unbiased estimator of Var(vi) is:

V̂ar(vi) =
∑

S
s=1 ∑

Ns
i=1 êis

2

N−S−Kw−1
, (105)

where Kw is the number elements of Xi (i.e., the number of regressors that vary within schools) and

S is the number of schools. In the continuous case, the ML estimator is:

V̂ar(vi)ML =
∑

S
s=1 ∑

Ns
i=1 êis

2

N−S−1
. (106)

In the binary case Ysi is latent, so the squared residual êit
2 is also unobserved. However, since

the variance of the latent index is not identified, the probit estimator normalizes scale so that the

variance of eis is 1. In the ML case, this means that the scale is chosen so that:

V̂ar(vi)ML =
∑

S
s=1 ∑

Ns
i=1 êis

2

N−S−1
= 1. (107)

This equation and (105) implies that we can estimate Var(vi) via

V̂ar(vi) =
N−S−1

N−S−Kw−1
V̂ar(vi)ML =

N
N−S−Kw−1

(1). (108)

In the continuous case the standard unbiased estimator for the group-level error component,

Var(vs), is:

V̂ar(vs) = max{0, SSRb

S−Kb
− V̂ar(vi)

Ns
} (109)

where the max function is taken to prevent a negative variance estimate, Kb is the number of vari-

ables that vary only across s (Xs and Z2s), Ns is the harmonic mean of the number of observations

(students) per school, and SSRb is the sum of squared residuals from the between-group regression:

SSRb =
S

∑
s=1

(Y s−XsB̂−XsĜ1−Z2sĜ2)
2.

Let V̂ar(vs)ML denote the ML estimator of Var(vs), which does not correct for the degrees of

freedom used to estimate G1 and G2:

V̂ar(vs)ML = max{0, SSRb

S
− V̂ar(vi)

Ns
}. (110)
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In the binary case the group mean Y s of the latent index Yi is unobserved for the binary outcomes,

so we must approximate SSRb. In the continuous case one can see from (110) that ML will choose

Var(vs) to be equal to the remaining between-school variance not accounted for by (1) the between

school variance contributed by XsB̂+XsĜ1 +Z2sĜ2 or (2) variation across schools in the mean of

vi for students chosen for the sample. Reasoning by analogy (and assuming a non-negative variance

estimate), in the binary case we approximate V̂ar(vs)ML as:

V̂ar(vs)ML ≈
SSRb

S
− V̂ar(vi)

Ns
, (111)

where S is the number of schools. Rearranging, we obtain:

SSRb ≈ S(V̂ar(vs)ML +
V̂ar(vi)

Ns
). (112)

Using the above approximation and incorporating the estimator V̂ar(vi), our estimator of Var(vs)

becomes:

V̂ar(vs)=max{0,
S(V̂ar(vs)ML +

V̂ar(vi)

Ns
)

S−Kb
− V̂ar(vi)

Ns
}=max{0, S

S−Kb
V̂ar(vs)ML+(

S
S−Kb

−1)(
V̂ar(vi)

Ns
)}.

(113)

where V̂ar(vi) is given by (108) above.

The bias-corrected estimators must be modified when sampling weights are incorporated into

the ML estimator. We replace the sample size N in (108) by Kish’s “effective sample size”, NE f f =
(∑N

i=1 wi)
2

∑
N
i=1 w2

i
, where wi is the observation weight:

V̂ar(vi) =
Ne f f

Ne f f −S−Kw−1
(1). (114)

We redefine SSRb and N̄s to be their school-weighted counterparts and we replace S with Kish’s

“effective sample size” of schools, SE f f =
(∑S

s=1 ws)
2

∑
S
s=1 w2

s
, where ws is the mean of the individual weights

wi of the sampled students at the school. Let V̂ar(vs)WML be the weighted maximum likelihood

estimator. This yields:

V̂ar(vs) = max{0, SE f f

SE f f −Kb
V̂ar(vs)WML +(

SE f f

SE f f −Kb
−1)(

V̂ar(vi)

Ns
)}. (115)

where our estimator for V̂ar(vi) is given by (114) above.

In the probit model Var(vi) is normed to 1, so the final step is to divide V̂ar(vs) by V̂ar(vi)

and then set V̂ar(vi) to 1. We perform analogous scale adjustments to the estimates of the variance

and covariances among the regressions indices that enter into the variance decompositions and the

10−90 treatment effect calculations.
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A9.4 Estimating the Variances and Covariances of the Components of the Regres-
sion Index

Here we describe how we account for the effects of sampling error in the B̂, Ĝ1, and Ĝ2 coef-

ficient vectors when estimating Var(XiB), Var(XsG1), Var(Z2sG2), and the covariance terms that

enter the variance decompositions reported in the paper. Consider the case of Var(ZsG2). Recalling

that Z2s has mean 0, note first that

Var(Z2sĜ2) =
1
N ∑

i
(Zs(i)Ĝ2Ĝ′2Z′s(i)) (116)

=
1
N ∑

i
(Z2s(i)G2G′2Z′2s(i))+

1
N ∑

i
Zs(i)[Ĝ2−G2][Ĝ2−G2]

′Z′s(i). (117)

In the above equation we have made the dependence of s on i explicit. The expectation of the first

term on the right is Var(Z2sG2). The second term is the effect of sampling error in Ĝ2, conditional

on Z2s(i). It has expectation
1
N ∑

i
Z2s(i)Var(Ĝ2)Z

′
2s(i). (118)

Using (118) we generate a bias-adjusted estimator of Var(Z2sG2) as

V̂ar(Z2sG2) =[
1
N ∑

i
(Z2s(i)Ĝ2Ĝ′2Z′2s(i))−

1
N ∑

i
Z2s(i)V̂ar(Ĝ2)Z′2s(i)]

In the above formula V̂ar(Ĝ2) is the estimator based on the formula for the asymptotic variance

associated with the estimator Ĝ1, which depends on the outcome. We do not account for the use of

imputed data. In practice, we report population weighted variances, so sample weights appear in the

two sums. The estimators of Var(XiB), Var(XsB) and Var(Z2sG2) are almost exactly analogous.

To estimate Cov(XsG1,Z2sG2), we first estimate Var(ZsG)≡Var(XsG1 +Z2sG2) via:

V̂ar(ZsG) =[
1
N ∑

i
(Zs(i)ĜĜ′Z′s(i))−

1
N ∑

i
Zs(i)V̂ar(Ĝ)Z′s(i)] (119)

Then we generate Ĉov(XsG1,Z2sG2) via:

Ĉov(XsG1,Z2sG2) =
V̂ar(ZsG)−V̂ar(XsG1)−V̂ar(Z2sG2)

2
(120)

We use an analogous procedure for Cov(XsB,XsG1) and Cov(XsB,Z2sG2).
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A10 Decomposing the Variance in Educational Attainment and Per-
manent Wages

In this section we discuss an analysis of variance based on (23) that can be used to place a lower

bound on the importance of factors that are common to students from the same school.48 As with

parameter estimation, the details of our procedure depend upon the outcome. We begin with years

of postsecondary education and permanent wages.

A10.1 Years of Postsecondary Education and Wages

We start with years of education. One may decompose Var(Ysi) into its within and between

school components

Var(Ysi) =Var(Ysi−Ys)+Var(Ys)

where Ys is the average outcome for students from s. From (21) we obtain

(Ysi−Ys) = (Xi−Xs)B+(vsi− vs)

and

Ys = XsB+XsG1 +Z2sG2 + vs.

Thus, one may express the outcome variance as49

Var(Ysi) = [Var((Xi−Xs)B)+Var(vsi− vs)]+ (121)

[Var(XsB)+2Cov(XsB,XsG1)+2Cov(XsB,Z2sG2)+Var(XsG1)+ (122)

2Cov(XsG1,Z2sG2)+Var(Z2sG2)+Var(vs)]. (123)

We replace the population moments on the right hand side with the population weighted estimates

discussed in the proceeding section. The sum of the weighted estimates of the components of

Var(Ysi) need not equal the weighted sample variance of Ysi, so we use:

V̂ar(Ysi)≡ [V̂ar((Xi−Xs)B)+V̂ar(vsi− vs)]+ (124)

[V̂ar(XsB)+2Ĉov(XsB,XsG1)+2Ĉov(XsB,Z2sG2)+V̂ar(XsG1)+ (125)

2Ĉov(XsG1,Z2sG2)+V̂ar(Z2sG2)+V̂ar(vs)]. (126)

as the estimator of Var(Ysi). We express the variance and covariance estimates as fractions of

Var(Ysi) by dividing the variance and covariance terms by V̂ar(Ysi). For example, we compute

V̂ar(Z2sG2)/V̂ar(Y s). The fractions are reported in Table 6, Columns 1 and 2 and Appendix Table

48Jencks and Brown (1975) propose and implement a similar decomposition.
49The equation below imposes Cov(Xi,vsi−vs) = 0, which is implied by our definition of B and vsi−vs. The equation

also imposes Cov(Xs,vs) = 0 and Cov(Z2s,vs) = 0, which are implied by our definition of [G1,G2] and vs (see Section
4).
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A22, Columns 1 and 2.

The procedure for decomposing the variance of the permanent log wage component Ysi is essen-

tially the same as the procedure just described for years of postsecondary education. We exclude

V̂ar(ςsit) from V̂ar(Ysi) because ςsit is transitory. The fractions of variance for permanent log wages

are reported in Table 6, Columns 3-6 and Appendix Table A22, Columns 3-6.

A10.2 High School Graduation and College Enrollment

For both of our binary outcomes, high school graduation and enrollment in a four-year college,

we decompose the latent variable that determines the outcome. Given that there is no natural scale

to the variance of the latent variable, we normalize Var(vsi−vs) to one, and define the total variance

of the latent variable to be

Var(Ysi)≡Var((Xi−Xs)B)+1+ (127)

[Var(XsB)+2Cov(XsB,XsG1)+2Cov(XsB,Z2sG2)+Var(XsG1)+

2Cov(XsG1,Z2sG2)+Var(Z2sG2)+Var(vs)] (128)

We thus estimate Var(Ysi) via:

V̂ar(Ysi)≡ V̂ar((Xi−Xs)B)+1 (129)

[V̂ar(XsB)+2Ĉov(XsB,XsG1)+2Ĉov(XsB,Z2sG2)+V̂ar(XsG1)+ (130)

2Ĉov(XsG1,Z2sG2)+V̂ar(Z2sG2)+V̂ar(vs)]. (131)

In the tables we report the fractions of Var(Ysi) contributed by the various components.

A10.3 Calculation of Standard Errors

We calculate bootstrap standard errors for each of our point estimates and bound estimates based

on re-sampling schools with replacement using 500 replications. We bootstrap the entire estimation

procedure, including imputation of missing data, estimation of model parameters, variance decom-

positions, and treatment effects. To preserve the size distribution of the samples of students from

particular schools, we divide the sample into five school sample size classes and re-sample schools

within class.

A11 Using the North Carolina Data to Assess the Magnitude of Bias
from Limited Samples of Students Per School

The monte carlo simulations in Online Appendix A6 suggest that estimation based on sub-

samples of 20 students per school (similar to those used to construct Xs in the three panel survey
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datasets) could diminish the ability of school-average observables to capture sorting on unobserv-

ables. However, these simulations are based on particular assumptions about the dimensionality of

the underlying desired amenities, the joint distribution of the observable and unobservable charac-

teristics, and the degree to which these characteristics predict tastes for schools/neighborhoods.

In this appendix, we assess the potential for bias in our survey-based estimates more directly

by drawing samples of students from North Carolina schools using either the NLS72, NELS88, or

ELS2002 sampling schemes and re-estimating the model for high school graduation using these

samples. By comparing the results derived from such samples to the true results based on the

universe of students in North Carolina, we can determine which if any of the survey datasets is

likely to produce reliable results. To remove the chatter produced by a single draw from these

sampling schemes, we computed estimate averages over 200 samples drawn from each sampling

scheme.

Tables A10 and A11 present the results of this exercise for the baseline and full specifications,

respectively. For comparison, the first column of Panel A in each table presents the variance decom-

position described in Section 5 for the entire North Carolina sample, while the first column of Panel

B converts the variance components isolating school/neighborhood effects into our lower bound

estimates of the average impact of moving from the 10th to the 90th quantile of the distribution

of school/neighborhood contributions. Columns 2 through 4 display the results from recomputing

these estimates for subsamples of the North Carolina population featuring the same distributions of

school-specific sample sizes as the high schools in NLS72 and ELS2002 and the 8th grade schools

in NELS88. In both tables, Columns 2-4 report very similar numbers to one another, and reveal

that the use of small student samples at each school may produce relatively small amounts of bias

for each of our panel survey datasets. Most of the rows of Panel A exhibit close matches between

the true results in Column 1 and the sample-based results in Columns 2-4. Of particular interest

are the last two rows of Panel A. In the baseline specification in Table A10, we see that the panel

survey sample size distributions lead to an understatement of the true variance fraction for the lower

bound without common shocks (Var(Z2sG2)) of around 25% but fairly accurate estimates of the

unobserved school component (Var(vs)). These translate to underestimates of the impact of a 10th-

90th quantile shift in school quality on the probability of graduation of around one percentage point

for both the estimators that include and exclude Var(vs). The results for the full specification in

Table A11 show much smaller understatement of Var(Z2sG2) (around 10%), but now also display a

10% understatement of Var(vs). Overall, the effects of 10th-to-90th shifts in school/neighborhood

quality are understated by less than half a percentage point for our more conservative estimator

based on Var(Z2sG2) and by closer to a percentage point for our less conservative estimator based

on Var(Z2sG2 + vs).

Taken together, Tables A10 and A11 show that the use of small samples from each school to

construct the school averages Xs need not generate significant bias in our lower bound estimators

of the impact of shifts in school/neighborhood quality. If anything, the slight bias that is generated

only serves to make the lower bound estimators more conservative.
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A12 Construction and Use of Weights

In the NLS72 analyses of four-year college enrollment and postsecondary years of education, we

use a set of panel weights (w22) designed to make nationally representative a sample of respondents

who completed the base-year and fourth-follow up (1979) questionnaires. For the NLS72 wage

analysis, we chose a set of panel weights (comvrwt) designed for all 1986 survey respondents for

whom information exists on 5 of 6 key characteristics: high school grades, high school program,

educational attainment as of 1986, gender, race, and socioeconomic status. Since there are very

few 1986 respondents who did not also respond in 1979, this weight matches the wage sample

fairly well. For the NELS88 sample, we use a set of weights (f3pnlwt) designed to make nationally

representative the sample of respondents who completed the first four rounds of questionnaires

(through 1994, when our outcomes are measured). For the ELS02 sample, we use a set of weights

(f2bywt) designed to make nationally representative a sample of respondents who completed the

second follow up questionnaire (2006) and for whom information was available on certain key

baseline characteristics (gathered either in the base year questionnaire or the first follow-up). This

seemed most appropriate given that our outcomes are measured in the 2006 questionnaire and we

require non-missing observations on key characteristics for inclusion in the sample.

We use panel weights in the estimation when possible for a number of reasons. The first is

to reduce the influence of choice-based sampling, which is an issue in NELS88. It is also a po-

tential issue for the wage analysis based on NLS72, but we had difficulty computing weighted

estimates. The second is to correct for non-random attrition from follow-up surveys. The third is a

pragmatic adjustment to account for the possibility that the link between the observables and out-

comes involves interaction terms or nonlinearities that we do not include. The weighted estimates

may provide a better indication of average effects in such a setting. Finally, various populations

and school types were oversampled in the three datasets, so that applying weights makes our sam-

ple more representative of the universe of American 8th graders, 10th graders, and 12th graders,

respectively. For all outcomes, including wages, we employ sample weights when using the regres-

sion model parameters to construct estimates of Var(Z2sG2), Var(XsG1). Note, though, that we do

not adjust weights for item non-response associated with the key variables required for inclusion

in our sample. As discussed in section 5.1, due to computational difficulties, for our continuous

outcomes (years of postsecondary education and log wages) we do not incorporate weights into the

REML procedure used to estimate the coefficients B, G1, and G2 and the error component variances

Var(vsi− vs) and Var(vs). However, conditional on the estimated coefficient vectors and error vari-

ances, panel weights are still used to compute the variances of the various regression indices (such

as Var(Z2sG2)), and they are still used to average over the population of students when estimating

the impact of 10th-to-90th quantile shifts in school quality.
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A13 Other Applications: Estimating Teacher Value-Added

This section examines how our central insight that group averages of observed individual char-

acteristics can control for group averages of unobserved individual characteristics can be extended

to contexts in which group assignments are determined by a central administrator rather than a de-

centralized competitive equilibrium. The particular context we consider is one in which a school

principal is assigning students to classrooms based on a combination of observed and unobserved

(to the econometrician) student inputs, where the goal is to estimate each teacher’s value-added to

test score achievement.

A13.1 Sorting of Students Across Class Rooms

Assume for now that the administrator has already determined which teachers to allocate to

which courses for which periods of the day, so that a classroom c can be effectively captured by a

vector of amenity values Ac. Some of the amenities are likely to reflect the demographic makeup

of the class and thus are endogenous to classroom assignment. Others can be considered exogenous

to the principal’s student-to-classroom allocation problem. These would include the principal’s per-

ceptions of various teacher attributes or skills, but could also include classroom amenities unrelated

to teacher quality that might capture whether the heating works, the quality of classroom technology

in the room, the time in the day that the class is held, or the difficulty level of the class.

We can then adapt the utility function featured in (2) to model the payoff that the principal

obtains from assigning student i to class c (simply replace all s subscripts with c subscripts). As

before, Xi is a vector of student characteristics that are observed by the econometrician and are

relevant for the outcome Ysi, the student’s end-of-year standardized test score. Similarly, XU
i is

a vector of student characteristics that are unobserved by the econometrician but are observed by

the principal and are relevant for test score performance, and Qi represents a vector of student

characteristics that are unobserved by the econometrician and observed by the principal, but do not

affect test score performance. The ΘΘΘ, ΘΘΘ
U and ΘΘΘ

Q matrices might capture a principal’s belief about

which types of students are most likely to benefit from a better teacher or difficulty level. ΘΘΘ, ΘΘΘ
U,

and ΘΘΘ
Q might also reflect the desire to placate parents or students, where students/parents with

certain values of Xi, XU
i , or Qi are more likely to advocate for particular classroom assignments.

Some parental or student characteristics may predict a stronger preference for a particular difficulty

level or time of day, while others predict a stronger preference for teacher quality. Similarly, the

idiosyncratic match value εic might capture, for example, the desire to fulfill a particular family’s

request that their child be assigned to the same teacher that his brother had. Thus, we model parent

and student preferences as affecting choice through their impact on principal preferences.50

50Rothstein (2009) provides a useful classroom assignment model in which principals assign students to classrooms
based on student characteristics that are observable to both the principal and the econometrician Xi and student character-
istics that are only available to the principal (part of XU

i ). He discusses bias in VAM models that include Xi and possibly
other controls. He does not consider the potential for Xc to control for XU

c .
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Let I represent the set of students to be allocated, and let C represent the set of available class-

rooms (each of which has an associated teacher). First we consider the special case in which none of

the amenities reflect the demographic makeup of the class and thus Ac can be considered exogenous

to the principal’s student-to-classroom allocation problem. The principal’s problem is to choose the

mapping c : I → C from students to classrooms that maximizes the sum of student utilities, sub-

ject to the constraints that each classroom cannot exceed its capacity and every student (or perhaps

student-subject combination at the high school level) can only be assigned to one classroom:

max
c:I→C

∑
i∈I

Uic(i)

s.t. ∑
c′
1(c(i) = c′) = 1 ∀ i

s.t. ∑
i′
1(c(i′) = c) =Cc ∀ c ∈ C (132)

where 1(c(i) = c′) indicates that student i is assigned to classroom c′, and Cc′ is the capacity of

classroom c′.

This optimization problem can be recast as a binary integer programming problem:

max
d

a∗d

s.t. Mi ∗d = 1 ∀ i ∈I

s.t. Nc ∗d =Cc ∀ c ∈ C

s.t. d ∈ {0,1} (133)

Here a consists of a 1× (I ∗C) row vector of the student utility values associated with each

potential student-classroom combination:

a =
(

U11 . . . UI1 U12 . . . UI2 . . . U1C . . . UIC

)
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d consists of a (I ∗C)×1 vector of potential student-classroom assignments:

d =



d11
...

dI1

d12
...

dI2
...

d1C
...

dIC


where dic′ = 1(c(i) = c′) is an indicator for whether student i is assigned to classroom c′.

Mi consists of a 1× I ∗C row vector capturing the number of classrooms to which each student

(or student-subject combination) is assigned (restricted here to be 1 ∀ i):

Mi =

 i−1︷ ︸︸ ︷
0 . . .0 1

I−i︷ ︸︸ ︷
0 . . .0︸ ︷︷ ︸

repeated C times

. . .

i−1︷ ︸︸ ︷
0 . . .0 1

I−i︷ ︸︸ ︷
0 . . .0


Nc consists of a 1× I ∗C row vector capturing the number of students assigned to classroom c

(restricted to be less than or equal to the classroom capacity Cc):

Nc =

(c−1)∗I︷ ︸︸ ︷
0 . . .0 1 . . .1︸ ︷︷ ︸

I

(C−c)∗I︷ ︸︸ ︷
0 . . .0

 .

Koopmans and Beckmann (1957) show that the solution to this binary integer program problem

can be sustained by a one-sided set of prices for classrooms {Pc}.51 This means that the optimal

assignment for each individual is also the solution to his/her utility maximization problem:

c(i) = argmax
c

Ũic−Pc ≡Uic (134)

Notice that the structure of this utility maximization problem is isomorphic to that of the decentral-

ized school choice problem from Section 2. Consequently, if the spanning condition ΘΘΘ
U = RΘ̃ΘΘ is

satisfied for some matrix R, Xc will be a linear function of XU
c .

51The case they consider is 1:1, but it easy to recast the classroom assignment problem as assignment of students to
seats. Each class room has a fixed number of seats that have exactly the same value of Ac and the same shadow price.
A student’s preferred seats will all be in one classroom, and he/she will be indifferent among them. The student lets the
principal (who is also indifferent) assign a specific seat.
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Exogeneity of the amenity vector may be a reasonable assumption in some high school and col-

lege contexts in which students submit course preferences and a schedule-making algorithm assigns

students to classrooms. However, in the elementary and middle school contexts, it is likely that

some elements of Ac reflect the student makeup of the class. Anticipated peer effects complicates

the principal’s problem, since now the utility from assigning a given student to a classroom would

depend on the other students assigned to the classroom. The classroom sorting problem differs from

the school/neighborhood sorting problem in that the principal would internalize the effect that allo-

cating a student to c has on Ac, while parents would take As as given. We have not yet extended

Proposition 1 to a classroom assignment problem with endogenous amenities.

A13.2 Implications for Estimation of Teacher Value Added

Suppose that the true classroom contribution to a given student i’s test scores can be captured by

ZcΓΓΓ+ zU
c +ηci, mirroring (8). As before, partition the vector of observed classroom characteristics

into two parts Zc = [Xc,Z2c], where Xc captures classroom averages of observed student character-

istics and Z2c represents other observed classroom characteristics. Consider the classroom version

of our estimating equation (21):

Ysi = XiBBB+XcG1 +Z2cG2 + vci, (135)

When past test scores are elements of Xi and a design matrix Dc(i) indicating which classrooms

were taught by which teachers is included in Z2c, (135) represents a standard teacher value-added

specification.52

Suppose that Proposition 1 can be extended to the classroom choice setting (as proven in the

exogenous amenities case) and that the corresponding spanning condition is satisfied, so that Xc

and Xc
U are linearly dependent. Suppose in addition that the principal’s perception of teacher

quality is noisy, so that Dc is not collinear with Ac (and therefore not collinear with Xc). Then

our analysis in Section 4.3 suggests that G2 = ΓΓΓ2 +ΠΠΠZc
U Z2c

. Since Z2c includes the teacher design

matrix Dc(i), we see that including classroom averages of student characteristics Xc in teacher value-

added regressions will purge estimates of individual teachers’ value-added from any bias from non-

random student sorting on either observables or unobservables. Any remaining bias ΠΠΠZc
UZ2c

stems

from the possible correlation between the assignment of the chosen teacher to the classroom and

other aspects of the classroom environment. Note that G1 should be allowed to differ across schools

or districts if the preference parameters ΘΘΘ and ΘΘΘ
Uare believed to differ.

However, suppose that all unobserved classroom factors that are inequitably distributed across

teachers are either being used as a basis for student allocation to classrooms (i.e. are elements of

Ac) or are directly included as other controls in Z2c. If in addition the mapping from Ac to Xc

is linear, then the analysis in Section 4.3.1 reveals that including classroom averages of observed

52Z2c might also include a set of indicators for the teacher’s experience level. We assume here that teacher quality is
not classroom-specific, as in most teacher value-added models.
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student characteristics will also purge teacher value-added estimates G2 of any omitted variables

bias driven by inequitable access to advantageous classroom environments (the subvector of ΠΠΠZU
c Z2c

corresponding to the teacher design matrix Dc will equal 0).

Of course, our simulations suggest that the effectiveness of the control function approach de-

pends on observing moderately large samples of students with each teacher. And in practice there

may be classroom factors ignored by students and principals that do not even out across teachers.

While these caveats should be kept in mind, our analysis may partially explain the otherwise sur-

prising finding that non-experimental OLS estimators of teacher quality produce nearly unbiased

estimates of true teacher quality as ascertained by quasi-experimental and experimental estimates

(Chetty et al. (2014), Kane and Staiger (2008)).

90



Appendix Tables

Table A1: Estimates of the Contribution of School Systems and Neighborhoods to High School
Graduation Decisions Under the Assumption that Only Observables Xi Drive Sorting

Panel A: Fraction of Latent Index Variance Determining Graduation
Attributable to School/Neighborhood Quality

Lower Bound NC NELS88 gr8 ELS2002

Baseline Full Baseline Full Baseline Full

(1) (2) (3) (4) (5) (6)

No Unobs. Sort. 0.052 0.042 0.090 0.083 0.049 0.032
Var(XsG1 +Z2sG2 + vs) (0.017) (0.011) (0.009) (0.009) (0.011) (0.010)

Panel B: Effect on Graduation Probability of a School System/Neighborhood at
the 50th or 90th Percentile of the Quality Distribution vs. the 10th Percentile

Lower Bound NC NELS88 gr8 ELS2002

Baseline Full Baseline Full Baseline Full

(1) (2) (3) (4) (5) (6)

No Unobs. Sort.: 10th-90th 0.181 0.162 0.183 0.175 0.095 0.077
Based on Var(XsG1 +Z2sG2 + vs) (0.025) (0.015) (0.015) (0.019) (0.009) (0.009)

No Unobs. Sort.: 10th-50th 0.100 0.089 0.111 0.105 0.056 0.044
Based on Var(XsG1 +Z2sG2 + vs) (0.017) (0.010) (0.024) (0.013) (0.006) (0.006)

Sample Mean 0.769 0.769 0.827 0.827 0.897 0.897

Bootstrap standard errors based on resampling at the school level are in parentheses.
Panel A reports lower bound estimates of the fraction of variance in the latent index that determines high school
graduation that can be directly attributed to school/neighborhood choices for each dataset.
The label “No Unobs. Sort.” reports Var(XsG1 + Z2sG2 + vs), which captures the variance in true
school/neighborhood contributions under the assumption that sorting is driven only by Xi.
Panel B reports estimates of the average effect of moving students from a school/neighborhood at the 10th quantile
of the quality distribution to one at the 50th or 90th quantile.
The columns headed “NC” are based on the North Carolina data and refer to a decomposition that uses the 9th
grade school as the group variable. The columns headed “NELS88 gr8” are based on the NELS88 sample and
refer to a decomposition that uses the 8th grade school as the group variable. The columns headed “ELS2002” are
based on the ELS2002 sample and refer to a decomposition that uses the 10th grade school as the group variable.
For each data set the variables in the baseline and full models are specified in Table 1.
The full variance decompositions underlying these estimates are presented in Online Appendix Table A20.
Online Appendices A9 and A10 discuss estimation of model parameters and the variance decompositions. Section
5.4 discusses estimation of the 10-50 and 10-90 differentials.
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Table A2: Estimates of the Contribution of School Systems and Neighborhoods to Four Year
College Enrollment Decisions Under the Assumption that Only Observables Xi Drive Sorting

Panel A: Fraction of Latent Index Variance Determining Enrollment
Attributable to School/Neighborhood Quality

Lower Bound NLS72 NELS88 gr8 ELS2002

Baseline Full Baseline Full Baseline Full

(1) (2) (3) (4) (5) (6)

No Unobs. Sort. 0.062 0.046 0.076 0.071 0.068 0.043
Var(XsG1 +Z2sG2 + vs) (0.012) (0.006) (0.009) (0.007) (0.007) (0.005)

Panel B: Effect on Enrollment Probability of a School System/Neighborhood at
the 50th or 90th Percentile of the Quality Distribution vs. the 10th Percentile

Lower Bound NLS72 NELS88 gr8 ELS2002

Baseline Full Baseline Full Baseline Full

(1) (2) (3) (4) (5) (6)

No Unobs. Sort.: 10th-90th 0.216 0.184 0.261 0.246 0.264 0.204
Based on Var(XsG1 +Z2sG2 + vs) (0.017) (0.016) (0.018) (0.016) (0.018) (0.015)

No Unobs. Sort.: 10th-50th 0.097 0.084 0.117 0.112 0.124 0.097
Based on Var(XsG1 +Z2sG2 + vs) (0.007) (0.006) (0.007) (0.007) (0.008) (0.007)

Sample Mean .267 .267 .310 .310 .365 .365

Bootstrap standard errors based on resampling at the school level are in parentheses.
The notes to Table A1 apply, except that Table A2 reports results for enrollment in a 4-year college two years after
graduation.
The column headed NLS72 refers to a variance decomposition that uses the 12th grade school as the group
variable.
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Table A3: Lower Bound Estimates of the Contribution of School Systems and Neighborhoods to
Four Year College Enrollment Decisions (Naive OLS Specification: School-Averages Xs omitted

from estimating equation)

Panel A: Fraction of Latent Index Variance Determining Enrollment
Attributable to School/Neighborhood Quality

Lower Bound NLS72 NELS88 gr8 ELS2002

Baseline Full Baseline Full Baseline Full

(1) (2) (3) (4) (5) (6)

LB no unobs 0.028 0.017 0.023 0.022 0.024 0.016
Var(Z2sG2) (0.007) (0.004) (0.005) (0.005) (0.010) (0.007)

LB w/ unobs 0.066 0.049 0.075 0.073 0.072 0.050
Var(Z2sG2 + vs) (0.015) (0.008) (0.009) (0.009) (0.023) (0.016)

Panel B: Effect on Enrollment Probability of a School System/Neighborhood at
the 50th or 90th Percentile of the Quality Distribution vs. the 10th Percentile

Lower Bound NLS72 NELS88 gr8 ELS2002

Baseline Full Baseline Full Baseline Full

(1) (2) (3) (4) (5) (6)

LB no unobs: 10th-90th 0.141 0.111 0.138 0.136 0.152 0.124
Based on Var(Z2sG2) (0.013) (0.011) (0.014) (0.013) (0.014) (0.013)

LB w/ unobs: 10th-90th 0.219 0.187 0.253 0.246 0.266 0.218
Based on Var(Z2sG2 + vs) (0.016) (0.014) (0.014) (0.013) (0.017) (0.015)

LB no unobs: 10th-50th 0.066 0.052 0.065 0.064 0.073 0.060
Based on Var(Z2sG2) (0.005) (0.005) (0.006) (0.006) (0.007) (0.006)

LB w/ unobs: 10th-50th 0.098 0.085 0.114 0.111 0.124 0.104
Based on Var(Z2sG2 + vs) (0.007) (0.006) (0.007) (0.006) (0.008) (0.007)

Sample Mean .267 .267 .310 .310 .365 .365

“Naive OLS Specification” refers to a specification in which school-averages of individual charac-
teristics Xs are omitted from the estimating equation (or equivalently, the coefficient vector G1 is
constrained to be equal to 0).
The notes to Table 2 apply, except that Table A3 reports results for enrollment in a 4-year college two
years after graduation, and the naive OLS specification and estimates are used, as described in Section
7.5
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Table A4: Lower Bound Estimates of the Contribution of School Systems and Neighborhoods to
Completed Years of Postsecondary Education in NLS72 data (Naive OLS Specification:

School-Averages Xs omitted from estimating equation)

Panel A: Fraction of Variance
Attributable to School/Neighborhood Quality

Lower Bound Yrs. Postsec. Ed.

Baseline Full

(1) (2)

LB no unobs 0.006 0.003
Var(Z2sG2) (0.002) (0.001)

LB w/ unobs 0.024 0.014
Var(Z2sG2 + vs) (0.004) (0.003)

Panel B: Effects on Years of Postsecondary Education
of a School System/Neighborhood at the 50th or 90th Percentile

of the Quality Distribution vs. the 10th Percentile

Lower Bound Yrs. Postsec. Ed.

Baseline Full

(1) (2)

LB no unobs: 10th-90th 0.353 0.227
Based on Var(Z2sG2) (0.052) (0.045)

LB w/unobs: 10th-90th 0.679 0.526
Based on Var(Z2sG2 + vs) (0.059) (0.056)

LB no unobs: 10th-50th 0.176 0.114
Based on Var(Z2sG2) (0.026) (0.022)

LB w/unobs: 10th-50th 0.339 0.263
Based on Var(Z2sG2 + vs) (0.029) (0.028)

Sample Mean 1.62 1.62

“Naive OLS Specification” refers to a specification in which school-averages
of individual characteristics Xs are omitted from the estimating equation (or
equivalently, the coefficient vector G1 is constrained to be equal to 0).
Panel A reports lower bound estimates of the fraction of variance
of years of postsecondary education that can be directly attributed to
school/neighborhood choices in NLS72.
Panel B reports estimates of the average effect of moving students from a
school/neighborhood at the 10th quantile of the quality distribution to one
at the 50th or 90th quantile. It is equal to 2 ∗ 1.28 times the value of
[V̂ar(Z2sG2 + vs)]

0.5 or [V̂ar(Z2sG2)]
0.5 in the corresponding column of the

table.
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Table A5: Principal Components Analysis of the Vector of School Average Observable
Characteristics Xs

Panel A: Fraction of Total Variance in Xs
Explained by Various Numbers of Principal Components

NLS72 NELS88 gr8 ELS2002
Baseline Full Baseline Full Baseline Full

(1) (2) (3) (4) (5) (6)

(1) # of Variables in Xs 32 34 39 49 40 51

# Factors Needed to Explain:

(2) 75% of Total Xs Var. 7 7 7 9 6 8
[7,8] [8,8] [7,8] [8,9] [6,7] [7,8]

(3) 90% of Total Xs Var. 12 12 13 16 11 14
[11,12] [12,13] [11,13] [14,15] [11,12] [14,15]

(4) 95% of Total Xs Var. 15 15 17 20 14 19
[14,15] [14,15] [14,16] [18,19] [14,15] [17,19]

(5) 99% of Total Xs Var. 20 21 22 26 20 25
[18,19] [17,18] [19,21] [23,25] [18,20] [23,25]

(6) 100% of Total Xs Var. 24 25 27 32 26 33
[21,23] [18,19] [23,26] [29,31] [23,25] [29,31]

Panel B: Fraction of Variance in the Regression Index XsĜ1
Explained by Various Numbers of Principal Components

NLS NELS gr8 ELS
Baseline Full Baseline Full Baseline Full

(1) (2) (3) (4) (5) (6)

(1) # of Variables in Xs 32 34 39 49 40 51

# Factors Needed to Explain:

(2) 75% of Var(XsG1) 3 3 6 5 2 5
[3,5] [3,6] [3,7] [5,8] [2,3] [4,7]

(3) 90% of Var(XsG1) 8 7 10 10 5 11
[5,9] [5,10] [6,11] [9,14] [3,7] [8,14]

(4) 95% of Var(XsG1) 10 9 13 13 7 15
[8,13] [7,11] [9,14] [12,17] [5,11] [11,17]

(5) 99% of Var(XsG1) 14 15 19 20 14 22
[13,17] [10,15] [13,19] [19,24] [11,16] [17,23]

(6) 100% of Var(XsG1) 24 25 27 32 26 33
[21,23] [18,19] [23,26] [29,31] [23,25] [29,31]

See Online Appendix A3 for details. The numbers in brackets are bootstrapped 90% confidence in-
terval estimates of the number of factors required to explain the variance fraction specified in a given
row. 95



Table A6: Estimating the Number of Latent Amenities (dim(As)): Kleibergen and Paap (2006)
Heteroskedasticity-Robust and Cluster Robust Tests of the Rank of the Xs Covariance Matrix

(Baseline Specification Results)

Dataset (Number of Variables in Xs)

NLS72 (32) NELS88 gr8 (39) ELS2002 (40)

Het. Only Cluster Het. Only Cluster Het. Only Cluster

# Fact. (1) (2) (3) (4) (5) (6)
H0 HA P-val P-val P-val P-val P-val P-val

0 1+ 0 NaN 0 NaN 0 NaN
1 2+ 0 NaN 0 NaN 0 NaN
2 3+ 0 .483 0 NaN 0 NaN
3 4+ 0 .332 0 NaN 0 NaN
4 5+ 0 .137 0 NaN 0 NaN
5 6+ 0 .096 0 NaN 0 NaN
6 7+ 0 .049 0 NaN 0 NaN
7 8+ 0 .066 0 NaN 0 NaN
8 9+ 0 .230 0 NaN 0 NaN
9 10+ 0 .270 0 .485 0 NaN
10 11+ 0 .210 0 .401 0 NaN
11 12+ 0 .199 0 .370 0 NaN
12 13+ 0 .211 .001 .389 0 NaN
13 14+ .016 .354 .001 .368 .047 NaN
14 15+ .278 .485 .009 .309 .532 NaN
15 16+ .834 .641 .139 .253 .942 NaN
16 17+ .995 .944 .557 .349 .993 NaN
17 18+ .999 .950 .718 .349 .999 NaN
18 19+ 1 .991 .879 .576 1 NaN
19 20+ 1 .996 .984 .705 1 NaN
20 21+ 1 .990 .998 .747 1 NaN
21 22+ 1 .994 .999 .865 1 NaN
22 23+ 1 .999 1 .867 1 NaN
23 24+ 1 .999 1 .902 1 NaN
24 25+ 1 1 1 .918 1 NaN
25 26+ 1 1 1 .990 1 .499
26 27+ 1 1 1 .986 1 .580
27 28+ 1 1 1 .991 1 .690
28 29+ 1 1 1 .997 1 .701
29 30+ .998 .999 1 .999 1 .888
30 31+ .982 .978 1 .999 1 .973
31 32+ .921 .940 1 1 1 .991
32 33+ – – 1 1 1 .997
33 34+ – – 1 1 1 .999
34 35+ – – 1 1 1 1
35 36+ – – 1 1 1 1
36 37+ – – .999 .999 1 1
37 38+ – – .998 .998 1 1
38 39+ – – .985 .985 .998 1
39 40+ – – – – .886 1

Under the conditions laid out in Proposition 1 of the paper, the rank of the covariance of Xs
reveals the number of amenity factors driving sorting. See Online Appendix A3 for details.
Each element in the table reports a p-value from a test based on Kleibergen and Paap (2006)
of the null that the rank of the covariance matrix of school-averages of observable student
characteristics Xs is equal to value associated with the row label, against the alternative
hypothesis that the rank exceeds this value. “Het. Only” refers to the heteroskedasticity-
robust (but unclustered) version of the test. “Cluster” refers to the more general test that
is robust to arbitrary correlation in sampling error within clusters. We cluster at the school
level. Each test is implemented via the STATA ranktest.ado code provided by Kleibergen
and Paap (2006).
‘–’ indicates that the entry corresponds to a case in which the hypothesized rank associated
with the row is as large as or larger than the size of the covariance matrix whose rank is
being tested (which corresponds to the number of variables in Xs for the dataset associated
with the chosen column), thus obviating the need for a rank test.
‘NaN’ indicates that the entry corresponds to a case in which the Kleibergen-Paap rank test
returned an error due to a non-positive definite covariance matrix.
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Table A7: Estimating the Number of Latent Amenities (dim(As)): Kleibergen and Paap (2006)
Heteroskedasticity-Robust and Cluster Robust Tests of the Rank of the Xs Covariance Matrix

(Full Specification Results)

Dataset (Number of Variables in Xs)
NLS72 (34) NELS88 gr8 (49) ELS2002 (51)

Het. Only Cluster Het. Only Cluster Het. Only Cluster
# Fact. (1) (2) (3) (4) (5) (6)

H0 HA P-val P-val P-val P-val P-val P-val

0 1+ 0 NaN 0 NaN 0 NaN
1 2+ 0 NaN 0 NaN 0 NaN
2 3+ 0 NaN 0 NaN 0 NaN
3 4+ 0 NaN 0 NaN 0 NaN
4 5+ 0 .471 0 NaN 0 NaN
5 6+ 0 .341 0 NaN 0 NaN
6 7+ 0 .199 0 NaN 0 NaN
7 8+ 0 .185 0 NaN 0 NaN
8 9+ 0 .336 0 NaN 0 NaN
9 10+ 0 .347 0 NaN 0 NaN
10 11+ 0 .351 0 NaN 0 NaN
11 12+ 0 .275 0 NaN 0 NaN
12 13+ 0 .187 0 NaN 0 NaN
13 14+ .001 .399 0 NaN 0 NaN
14 15+ .074 .693 0 NaN 0 NaN
15 16+ .451 .596 0 NaN .001 NaN
16 17+ .918 .745 .002 NaN .136 NaN
17 18+ .998 .925 .021 NaN .632 NaN
18 19+ .999 .920 .139 NaN .970 NaN
19 20+ 1 .972 .445 .430 .996 NaN
20 21+ 1 .998 .762 .377 .999 NaN
21 22+ 1 .998 .967 .497 1 NaN
22 23+ 1 .999 .998 .576 1 NaN
23 24+ 1 1 .999 .590 1 NaN
24 25+ 1 1 1 .725 1 NaN
25 26+ 1 1 1 .697 1 .499
26 27+ 1 1 1 .701 1 .580
27 28+ 1 1 1 .636 1 .690
28 29+ 1 1 1 .858 1 .701
29 30+ 1 1 1 .944 1 .888
30 31+ 1 1 1 .952 1 .973
31 32+ 1 1 1 .996 1 .991
32 33+ .991 .996 1 .994 1 .997
33 34+ .996 .997 1 1 1 .999
34 35+ – – 1 1 1 1
35 36+ – – 1 1 1 1
36 37+ – – 1 1 1 1
37 38+ – – 1 1 1 1
38 39+ – – 1 1 1 1
39 40+ – – 1 1 1 1
40 41+ – – 1 1 1 1
41 42+ – – 1 1 1 1
42 43+ – – 1 1 1 1
43 44+ – – 1 1 1 1
44 45+ – – 1 1 1 1
45 46+ – – 1 1 1 1
46 47+ – – 1 1 1 1
47 48+ – – .999 .998 1 1
48 49+ – – .993 .992 1 1
49 50+ – – – – .998 .998
50 51+ – – – – .919 .911

Under the conditions laid out in Proposition 1 of the paper, the rank of the covariance of Xs reveals the number
of amenity factors driving sorting. See Online Appendix A3 for details. Each element in the table reports a
p-value from a test based on Kleibergen and Paap (2006) of the null that the rank of the covariance matrix of
school-averages of observable student characteristics Xs is equal to value associated with the row label, against
the alternative hypothesis that the rank exceeds this value. “Het. Only” refers to the heteroskedasticity-robust (but
unclustered) version of the test. “Cluster” refers to the more general test that is robust to arbitrary correlation in
sampling error within clusters. We cluster at the school level. Each test is implemented via the STATA ranktest.ado
code provided by Kleibergen and Paap (2006).
‘–’ indicates that the entry corresponds to a case in which the hypothesized rank associated with the row is as large
as or larger than the size of the covariance matrix whose rank is being tested (which corresponds to the number of
variables in Xs for the dataset associated with the chosen column), thus obviating the need for a rank test.
‘NaN’ indicates that the entry corresponds to a case in which the Kleibergen-Paap rank test returned an error due
to a non-positive definite covariance matrix.
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Table A8: Monte Carlo Simulation Results: Cases in which the Spanning Condition
in Proposition 1 is Satisfied (ΘΘΘU = RΘΘΘ For Some R)

Row # Stu. # Sch. # Con. # Ob. # Un. # Am. ρΘΘΘ
Var(XU

s BU)
Var(Y )

Adj-R-Sq Resid Adj-R-Sq Resid
(All) (All) (10/20/40) (10/20/40)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

(1) 1000 50 50 10 10 5 0.25 .122 0.9979 .0003
.869 .016
.926 .009
.959 .005

(2) 500 50 50 10 10 5 0.25 .123 0.9961 .0005
.869 .016
.926 .009
.960 .005

(3) 2000 50 50 10 10 5 0.25 .122 0.9989 .0001
.869 .016
.925 .009
.959 .005

(4) 1000 100 50 10 10 5 0.25 .122 0.9979 .0002
.868 .017
.924 .009
.959 .006

(5) 1000 50 10 10 10 5 0.25 .100 0.9976 .0001
.835 .016
.908 .009
.950 .005

(6) 1000 50 50 20 20 5 0.25 .122 0.9993 .0002
.897 .014
.944 .007
.971 .003

(7) 1000 50 50 10 10 10 0.25 .136 0.9933 .0009
.872 .018
.923 .010
.952 .006

(8) 1000 50 50 20 20 10 0.25 .135 0.9988 .0002
.909 .014
.951 .007
.973 .003

(9) 1000 50 50 10 10 5 0 .048 0.9941 .0003
.649 .016
.779 .010
.867 .006

# Stu.: Number of students per school

# Sch.: Total number of schools

# Con.: Number of schools in each family’s consideration set

# Ob: Number of observable student characteristics

# Un: Number of unobservable student characteristics

# Am.: Number of latent amenity factors valued by families

ρΘΘΘ: Correlation in Θlk taste parameters across student characteristics for a given amenity and across amenities for a
given student characteristic
Var(XU

s β U)
Var(Yi)

: Fraction of variance in the student-level outcome accounted for by between-school variation in the re-
gression index of unobserved student characteristics

Adj-R-sq (All): Fraction of between-school variance in unobservable student characteristics XU
s β U explained by the

control function Xs (sample averages of both Xs and XU
s are computed using all students)

Resid (All): Fraction of outcome variance accounted for by the residual component of the between-school variation
in the regression index of unobserved student characteristics that cannot be predicted based on the vector of observed
school-averages Xs, [(1−Ad j−R2)Var(XU

s β U)]/Var(Yi) (sample averages of both Xs and XU
s are computed using

all students)
Adj-R-sq (10/20/40): Fraction of between-school variance in unobservable student characteristics XU

s β U explained
by the control function Xs (sample school averages of Xs are constructed using 10/20/40 students, while school
averages of XU

s are estimated using all students.)
Resid (10/20/40): Fraction of outcome variance accounted for by the part of the between-school variation in the
regression index of unobserved student characteristics that cannot be predicted based on the vector of observed
school-averages Xs (sample averages of Xs are computed using 10/20/40 students, while school averages of XU

s are
computed using all students.) 98



Table A9: Monte Carlo Simulation Results: Sensitivity of Control Function Performance to the
Spanning Condition in Proposition 1

Row
X/XU Corr. WTP for A1-A4 WTP for A5 Assu. (A5) ΘΘΘ

U = RAΘΘΘ? ΘΘΘ
U = RBΠΠΠ

XU X
ΘΘΘ

U ? Var(XU
s BU)

Var(Y )
Adj-R-Sq Resid Adj-R-Sq Resid

Structure Depends On Depends On Satisfied (All) (All) (10/20/40) (10/20/40)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

(1)
Corr = .25 for each All elements All elements

Yes Yes Yes .122 0.998 .0003
.869 .016

pair of (obs. of Xi and XU
i of Xi and XU

i .926 .009
or unobs.) char. .959 .005

(2)
Elements of XU All elements All elements

Yes No Yes .101 0.965 .0035
.492 .052

independent of of Xi and XU
i of Xi and XU

i .607 .040
elements of X .717 .029

(3)
Corr = .25 for each All elements All elements

Yes Yes No .049 0.967 .0015
.622 .019

pair of (obs. of Xi of XU
i .720 .014

or unobs.) char. .795 .010

(4)
Elements of XU All elements All elements

No No No .069 0.148 .0591
.114 .062

independent of of Xi of XU
i .128 .060

elements of X .139 .059

(5)
Elements of XU All elements All elements

No No No .098 0.524 .0465
.325 .065

independent of of Xi and XU
i of XU

i .374 .062
elements of X .421 .057

(6)
Elements of XU All elements

XU
i,10 only No No No .109 0.948 .0051

.589 .045
independent of of Xi and XU

i .682 .035
elements of X .760 .026

(7)
Elements of XU All obs. and

XU
i,10 only No No No .095 0.952 .0050

.580 .040
independent of unobs. char. .677 .030
elements of X except XU

i,10 .756 .023

(8)
Corr = .25 for each All elements

XU
i,10 only No No No .117 0.997 .0003

.906 .013
pair of obs. or unobs. char. of Xi and XU

i .947 .006
except XU

i,10 (independent) .971 .004

(9)
Corr = .25 for each All obs. and

XU
i,10 only No No No .131 0.997 .0003

.893 .013
pair of obs. or unobs. char. unobs. char. .942 .006
except XU

i,10 (independent) except XU
i,10 .969 .004

All specifications share the following parameter values: # Stu. = 1000, # Sch. = 50, # Con. = 50, # Ob = 10, # Un = 10, # Am. = 5, ρΘΘΘ = 0.25 (See
Online Appendix Table A8 for definitions of parameters).
The column labeled “X/XU Corr. Structure” describes the correlation structure among and between the elements of the vectors of observed and
unobserved individual characteristics Xi and XU

i .
The columns labeled “WTP for A1-A4 Depends On” and “WTP for A5 Depends On” specifies which elements of the observable (Xi) and unobserv-
able (XU

i ) characteristics predict willingness-to-pay for amenity factors 1-4 and amenity factor 5, respectively.
The columns labeled “Assu. A5 Satisfied”, “ΘΘΘ

U = RAΘΘΘ?”, and “ΘΘΘ
U = RBΠΠΠ

XU X
ΘΘΘ

U ?” specify whether the taste matrix ΘΘΘ
U can be written as

ΘΘΘ
U = RΘ̃ΘΘ (i.e. Assumption A5 is satisfied), ΘΘΘ

U = RAΘΘΘ, and ΘΘΘ
U = RBΠΠΠ

XU X
ΘΘΘ

U , for some matrix (matrices) R, RA, and RB, respectively. The
condition ΘΘΘ

U = RΘ̃ΘΘ for some matrix R (Assumption A5) is a necessary condition for Proposition 1 to hold, while the conditions ΘΘΘ
U = RAΘΘΘ and

ΘΘΘ
U = RBΠΠΠ

XU X
ΘΘΘ

U for some matrices RA and RB are each sufficient conditions for A5 to hold. See Section 3.2.2 for further discussion of these
conditions.
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Table A10: Bias from Observing Subsamples of Students from Each School: Comparing Results
from the Full North Carolina Sample to Results from Subsamples Mirroring the Sampling

Schemes of NLS72, NELS88, and ELS2002 - Baseline Specification

Panel A: Fractions of Total Outcome Variance

Row Full NC Sample NLS72 NELSg8 ELS2002

Within School:
Total 0.913 0.916 0.917 0.916

Var(Yis−Ys)

Observable Student-Level (Within): 0.123 0.119 0.119 0.118
Var((Xsi−Xs)B)

Unobservable Student-Level (Within) 0.790 0.797 0.798 0.798
Var(vsi− vs)

Between School:
Total 0.087 0.084 0.083 0.084
Var(Ys)

Observable Student-Level: 0.018 0.016 0.016 0.016
Var(XsB)

Student-Level/ 0.017 0.019 0.018 0.018School-Level Covariance
2∗Cov(XsB,XsG1 +Z2sG2)

School-Avg. Student-Level/ -0.016 -0.007 -0.008 -0.008School Char. Covariance
2∗Cov(XsG1,Z2sG2)

School-Avg. Student-Level 0.017 0.009 0.010 0.010
Var(XsG1)

School Char. 0.018 0.013 0.013 0.014
Var(Z2sG2)

Unobservable School-Level 0.033 0.033 0.032 0.033
Var(vs)

Panel B: 10th to 90th Quantile Shifts in School Quality

Row Full NC Sample NLS72 NELSg8 ELS2002

LB no unobs 0.104 0.088 0.089 0.091
Var(Z2sG2)

LB w/unobs 0.178 0.167 0.167 0.169
Var(Z2sG2 + vs)

The column “Full NC Sample” reports variance decompositions based on the full North Carolina sample. They are the same as the
estimates reported for NC sample in Online Appendix Table A20.
The other columns report estimates based on draws of samples of students from the North Carolina schools to match the distributions
of sample sizes per school from the NLS72, NELS88 grade 8, NELS88 grade 10, or ELS2002 samples (respectively).
To remove the chatter produced by a single draw from these sampling schemes, we report averages of estimates for each of 100
samples drawn from each sampling scheme. 100



Table A11: Bias from Observing Subsamples of Students from Each School: Comparing Results
from the Full North Carolina Sample to Results from Subsamples Mirroring the Sampling

Schemes of NLS72, NELS88, and ELS2002 - Full Specification

Panel A: Fractions of Total Outcome Variance

Row Full NC Sample NLS72 NELSg8 ELS2002

Within School:
Total 0.913 0.919 0.919 0.918

Var(Yis−Ys)

Observable Student-Level (Within): 0.229 0.231 0.232 0.230
Var((Xsi−Xs)B)

Unobservable Student-Level (Within) 0.684 0.688 0.687 0.688
Var(vsi− vs)

Between School:
Total 0.087 0.081 0.081 0.082
Var(Ys)

Observable Student-Level: 0.033 0.032 0.032 0.033
Var(XsB)

Student-Level/ 0.012 0.014 0.012 0.012School-Level Covariance
2∗Cov(XsB,XsG1 +Z2sG2)

School-Avg. Student-Level/ -0.007 -0.006 -0.006 -0.006School Char. Covariance
2∗Cov(XsG1,Z2sG2)

School-Avg. Student-Level 0.011 0.008 0.008 0.008
Var(XsG1)

School Char. 0.010 0.010 0.009 0.010
Var(Z2sG2)

Unobservable School-Level 0.027 0.023 0.024 0.025
Var(vs)

Panel B: 10th to 90th Quantile Shifts in School Quality

Row Full NC Sample NLS72 NELSg8 ELS2002

LB no unobs 0.079 0.076 0.075 0.078
Var(Z2sG2)

LB w/unobs 0.153 0.142 0.144 0.146
Var(Z2sG2 + vs)

The column “Full NC Sample” reports variance decompositions based on the full North Carolina sample. They are the same as the
estimates reported for NC sample in Online Appendix Table A20.
The other columns report estimates based on draws of samples of students from the North Carolina schools to match the distributions
of sample sizes per school from the NLS72, NELS88 grade 8, NELS88 grade 10, or ELS2002 samples (respectively).
To remove the chatter produced by a single draw from these sampling schemes, we report averages of estimates for each of 100
samples drawn from each sampling scheme. 101



Table A12: Summary Statistics for Student Characteristics in NLS72

Variable % Imputed Mean Std. Dev.

Student Demographics

1(Female) 0.00 .505 .500
1(Black) 0.00 .088 .283
1(Hispanic) 0.00 .034 .181
1(Asian) 0.00 .010 .101

Student Ability

Std. Math Score 0.00 .007 .997
Std. Reading Score 0.00 .005 .989

Student Behavior

[None]

Family Background Characteristics

SES Index 0.00 -.028 1.01
Number of Siblings 2.90 2.81 2.04
1(Both Parents Present) 43.17 .754 .360
1(Mother, Male Guardian) 43.17 .020 .117
1(Mother Only Present) 43.17 .123 .272
1(Father Only Present) 43.17 .040 .162
Father’s Years of Educ. 0.74 12.53 2.47
Mother’s Years of Educ. 0.00 12.28 2.05
1(Mother’s Ed. Missing) 0.00 .003 .057
Log(Family Income) 19.98 10.89 .661
1(Eng. Spoken at Home) 0.46 .920 .271
1(Home Environ. Index) 3.33 .112 1.25
1(No Religion) 0.00 .052 .222
1(Eastern Religion) 0.00 .041 .199
1(Jewish) 0.00 .023 .151
1(Catholic) 0.00 .313 .464
1(Oth. Christian Relig.) 0.00 .181 .385
1(Fath. Occ.: Service) 22.21 .106 .276
1(Fath. Occ.: Security/Military) 22.21 .050 .195
1(Fath. Occ.: Farmer/Laborer) 22.21 .309 .415
1(Fath. Occ.: Craftsman/Technician) 22.21 .214 .362
1(Fath. Occ.: Manager) 22.21 .126 .306
1(Fath. Occ.: Owner) 22.21 .067 .227
1(Fath. Occ.: Professional) 22.21 .125 .313
1(Moth. Occ.: Sales) 18.42 .035 .171
1(Moth. Occ.: Service) 18.42 .060 .216
1(Moth. Occ.: Clerical) 18.42 .147 .328
1(Moth. Occ.: Professional) 18.42 .088 .267
1(Moth. Occ.: Other) 18.42 .095 .267

Parental Beliefs/Desires

[None]

Outcomes

1(Enrolled at a 4-Yr. Coll.) 0.00 .267 .442
Years of Postsec. Education 0.00 1.62 1.72
Log Wage (1979) 0.00 2.78 .451
Log Wage (1986) 0.00 2.98 .479
Log Wage (Pooled) 0.00 2.88 .475
The summary statistics reported above incorporate sample weights. See Appendix A12 for further details about
these weights.
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Table A13: Summary Statistics for School Characteristics in NLS72

Variable % Imputed Mean Std. Dev.

School Characteristics (Treated as elements of Xs)*

% Minority Students 1.87 .146 .228

School Characteristics (Treated as elements of Z2s)*

1(Catholic School) 3.52 .074 .259
1(Private School) 3.52 .004 .060
% of Teachers with Masters’ Deg. 1.03 .412 .210
Teacher Turnover Rate 0.27 .082 .087
Total School Enrollment 0.86 1362 864
Student-to-Teacher Ratio 1.51 20.30 4.35
% of Minority Teachers 2.61 .070 .137
1(Tracking System Exists) 17.80 .761 .385
Age of School Building 1.32 20.83 16.84

Neighborhood Characteristics

Distance to 4-Year College 4.61 18.70 24.99
Distance to Community College 4.64 18.12 25.02
1(South Region) 0.00 .282 .450
1(Midwest Region) 0.00 .296 .457
1(West Region) 0.00 .167 .373
1(Small Town) 0.00 .294 .456
1(Medium-Sized City) 0.00 .087 .282
1(Suburb of Medium-Sized City) 0.00 .054 .225
1(Large City) 0.00 .096 .295
1(Suburb of Large City) 0.00 .113 .316
1(Huge City) 0.00 .074 .262
1(Suburb of Huge City) 0.00 .087 .281

*School characteristics treated as elements of Xs are included to reduce measurement error in school sample
averages of student characteristics. They do not contribute to the estimated lower bound on contributions of
schools/neighborhoods.

The summary statistics reported above incorporate sample weights. See Appendix A12 for further details about
these weights.
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Table A14: Summary Statistics for Student Characteristics in NELS88

Variable % Imputed Mean Std. Dev.

Student Demographics

1(Female) 0.00 .503 .500
1(Black) 0.00 .127 .333
1(Hispanic) 0.00 .099 .299
1(Asian) 0.00 .033 .179
1(Immigrant) 6.80 .048 .205

Student Ability

Std. Math Score (8th grd.) 0.00 .060 1.01
Std. Reading Score (8th grd.) 0.00 .061 1.00

Student Behavior

Parent checks HW 0.36 .448 .496
# Weekly HW Hours 5.71 5.85 4.93
# Weekly Reading Hours 4.28 2.21 2.58
# Weekly TV Hours 14.15 22.09 10.20
1(Often Missing Pencil) 4.20 .221 .406
1(Fought at School) 1.45 .226 .415

Family Background Characteristics

SES Index 0.00 .034 1.01
Number of Siblings 0.46 2.31 1.58
1(Both Parents Present) 0.84 .648 .476
1(Mother, Male Guardian) 0.00 .115 .319
1(Mother Only Present) 0.00 .149 .357
1(Father Only Present) 0.00 .053 .225
Father’s Years of Educ. 6.38 13.24 2.92
Mother’s Years of Educ. 0.00 12.91 2.32
1(Mother’s Ed. Missing) 0.00 .024 .152
Log(Family Income) 9.67 10.87 .910
1(Eng. Spoken at Home) 0.87 .902 .295
1(Moth. Is Immigrant) 7.66 .113 .306
1(Fath. Is Immigrant) 8.62 .106 .296
1(Parents Married) 7.70 .776 .403
1(No Religion) 0.00 .023 .148
1(Eastern Religion) 0.00 .039 .193
1(Jewish) 0.00 .019 .138
1(Catholic) 0.00 .286 .452
1(Oth. Christian Relig.) 0.00 .072 .258
1(Home Environ. Index) 6.49 -.010 1.41
1(Fath. Occ.: Service) 24.39 .109 .267
1(Fath. Occ.: Security/Military) 24.39 .047 .183
1(Fath. Occ.: Farmer/Laborer) 24.39 .286 .403
1(Fath. Occ.: Craftsman/Technician) 24.39 .201 .344
1(Fath. Occ.: Dentist/Lawyer/Etc.) 24.39 .040 .207
1(Fath. Occ.: Accountant/Nurse/Etc.) 24.39 .093 .287
1(Fath. Occ.: Manager) 24.39 .120 .313
1(Fath. Occ.: Owner) 24.39 .076 .237
1(Moth. Occ.: Sales) 11.23 .055 .218
1(Moth. Occ.: Service) 11.23 .132 .320
1(Moth. Occ.: Clerical) 11.23 .231 .405
1(Moth. Occ.: Teacher) 11.23 .075 .258
1(Moth. Occ.: Accountant/Nurse/Etc.) 11.23 .090 .278
1(Moth. Occ.: Other) 11.23 .256 .410
Parental Sch. Engage. Index 10.79 -.079 1.46

Parental Beliefs/Desires

Moth. Desired Educ. for Child 12.63 16.20 1.94
Fath. Desired Educ. for Child 16.09 16.13 1.94

Outcomes

1(High School Graduate) 0.00 .827 .379
1(Enrolled at a 4-Yr. Coll.) 0.00 .310 .463
The summary statistics reported above incorporate sample weights. See Appendix A12 for further details about
these weights.
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Table A15: Summary Statistics for School Characteristics in NELS88

Variable % Imputed Mean Std. Dev.

School Characteristics (Treated as elements of Xs)*

% Minority Students 1.51 .232 .300
% Limited English Proficient 1.31 .071 .090
% Receiving Free/Reduced Price Lunch 1.49 .243 .234
% in Special Ed. 1.31 .068 .058
% in Remedial Reading 1.19 .104 .127
% in Remedial Math 1.19 .081 .112

Admin’s Perceived Sch. Problems Index 1.16 3.07 .671

School Characteristics (Treated as elements of Z2s)*

1(Catholic School) 0.00 .076 .267
1(Private School) 0.00 .038 .190
% of Teachers with Masters’ Deg. 3.75 .473 .246
Total School Enrollment 1.05 675.2 368.7
Student-to-Teacher Ratio 1.05 17.87 4.82
% of Minority Teachers 2.92 .118 .192
Log(Minimum Teacher Salary) 2.51 9.76 .188
1(Collectively Bargained Contracts) 1.49 .590 .491
1(Gifted Program Exists) 1.05 .693 .461
Admin.’s Reported Security. Policies Index (1) 1.36 .219 1.05
Admin.’s Reported Security. Policies Index (2) 1.36 -.046 1.03

Neighborhood Characteristics

1(Urban Neighborhood) 0.00 .248 .432
1(Suburban Neighborhood) 0.00 .437 .496
1(South Region) 0.00 .358 .479
1(Midwest Region) 0.00 .260 .439
1(West Region) 0.00 .189 .391

*School characteristics treated as elements of Xs are included to reduce measurement error in school sample
averages of student characteristics. They do not contribute to the estimated lower bound on contributions of
schools/neighborhoods.

The summary statistics reported above incorporate sample weights. See Appendix A12 for further details about
these weights.
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Table A16: Summary Statistics for Student Characteristics in ELS2002

Variable % Imputed Mean Std. Dev.

Student Demographics

1(Female) 0.00 .506 .500
1(Black) 0.00 .137 .344
1(Hispanic) 0.00 .152 .359
1(Asian) 0.00 .037 .189
1(Immigrant) 10.78 .082 .256

Student Ability

Std. Math Score 0.00 .038 1.01
Std. Reading Score 0.00 .036 1.01

Student Behavior

Parent checks HW 14.43 .345 .440
# Weekly HW Hours 3.72 10.49 8.80
# Weekly Reading Hours 4.06 2.81 4.10
# Weekly Computer Hours 3.92 2.19 1.69
# Weekly TV Hours 4.01 23.21 11.98
1(Often Missing Pencil) 1.71 .172 .374
1(Fought at School) 0.85 .137 .342

Family Background Characteristics

SES Index 0.00 .014 .997
Number of Siblings 17.22 2.34 1.39
1(Both Parents Present) 10.44 .571 .471
1(Mother, Male Guardian) 10.44 .131 .320
1(Mother Only Present) 10.44 .185 .367
1(Father Only Present) 10.44 .071 .235
Father’s Years of Educ. 9.24 13.61 2.53
Mother’s Years of Educ. 0.00 13.47 2.26
1(Mother’s Ed. Missing) 0.00 .034 .182
Avg. Grandparents’ Educ. 23.77 12.15 1.64
Log(Family Income) 21.01 10.87 .894
1(Eng. Spoken at Home) 13.32 .895 .286
1(Moth. Is Immigrant) 11.38 .176 .363
1(Fath. Is Immigrant) 12.33 .176 .363
1(Parents Married) 10.85 .723 .423
1(No Religion) 18.55 .033 .161
1(Eastern Religion) 18.55 .064 .215
1(Jewish) 18.55 .011 .091
1(Catholic) 18.55 .334 .437
1(Oth. Christian Relig.) 18.55 .199 .363
1(Home Environ. Index) 13.35 -.095 1.38
1(Fath. Occ.: Service) 30.74 .116 .259
1(Fath. Occ.: Security/Military) 30.74 .050 .177
1(Fath. Occ.: Farmer/Laborer) 30.74 .285 .377
1(Fath. Occ.: Craftsman/Technician) 30.74 .202 .328
1(Fath. Occ.: Dentist/Lawyer/Etc.) 30.74 .038 .197
1(Fath. Occ.: Accountant/Nurse/Etc.) 30.74 .103 .289
1(Fath. Occ.: Manager) 30.74 .149 .306
1(Fath. Occ.: Owner) 30.74 .051 .192
1(Fath. Occ.: Other) 30.74 .004 .047
1(Moth. Occ.: Sales) 21.10 .047 .187
1(Moth. Occ.: Service) 21.10 .158 .318
1(Moth. Occ.: Clerical) 21.10 .181 .342
1(Moth. Occ.: Teacher) 21.10 .070 .239
1(Moth. Occ.: Accountant etc.) 21.10 .148 .333
1(Moth. Occ.: Other) 21.10 .248 .378
Parental Sch. Engage. Index 20.71 -.141 1.34

Parental Beliefs/Desires

Moth. Desired Educ. for Child 15.90 16.55 2.21
Fath. Desired Educ. for Child 23.04 16.48 2.20

Outcomes

1(High School Graduate) 0.00 .897 .305
1(Enrolled at a 4-Yr. Coll.) 0.00 .365 .481
The summary statistics reported above incorporate sample weights. See Appendix A12 for further details about
these weights.
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Table A17: Summary Statistics for School Characteristics in ELS2002

Variable % Imputed Mean Std. Dev.

School Characteristics (Treated as elements of Xs)*

% Minority Students 1.53 .338 .303
% Limited English Proficient 4.71 .047 .085
% Receiving Free/Reduced Price Lunch 7.68 .255 .234
% in Special Ed. 5.98 .104 .074
% in Remedial Reading 17.81 .049 .073
% in Remedial Math 19.24 .065 .089
Admin’s Perceived Sch. Problems Index 15.74 3.46 .768

School Characteristics (Treated as elements of Z2s)*

1(Catholic School) 1.23 .044 .205
1(Private School) 1.84 .032 .175
% of Teachers with Masters’ Deg. 33.72 .450 .182
Teacher Turnover Rate 28.01 .056 .049
Total School Enrollment 0.34 1408 830
Student-to-Teacher Ratio 2.67 17.1 3.99
% of Minority Teachers 37.99 .137 .174
Log(Minimum Teacher Salary) 20.01 10.26 .155
% of Teachers with Certification 3.35 95.37 12.82
Teacher Evaluation Policy Index 14.42 -.141 .941
Teacher Incentive Pay Index (1) 13.25 .023 1.34
Teacher Incentive Pay Index (2) 13.25 -.086 1.06
Teaching Technology Index 16.29 .190 1.47
1(High Stakes Competency Exam) 0.00 .994 .077
Observed Sch. Cleanliness/Disorder Index (1) 29.85 .021 1.78
Observed Sch. Cleanliness/Disorder Index (2) 29.85 .030 1.18
Security Policy Implementation Index (1) 8.56 .073 1.34
Security Policy Implementation Index (2) 8.56 -.152 .934
Admin.’s Reported Security. Policies Index (1) 15.78 .157 1.48
Admin.’s Reported Security. Policies Index (2) 15.78 -.257 1.09
Admin.’s Impression of Fac. Quality Index (1) 19.31 .187 2.20
Admin.’s Impression of Fac. Quality Index (2) 19.31 .025 1.03

Neighborhood Characteristics

1(Rural within MSA) 0.24 .108 .310
1(Small Town) 0.24 .103 .304
1(Large Town) 0.24 .014 .118
1(Suburb of Medium City) 0.24 .091 .288
1(Suburb of Large City) 0.24 .286 .452
1(Medium City) 0.24 .163 .369
1(Large City) 0.24 .133 .340
1(South Region) 0.00 .345 .476
1(Midwest Region) 0.00 .252 .434
1(West Region) 0.00 .220 .414
Admin. Perception of N-Hood Crime 12.24 2.93 .595

*School characteristics treated as elements of Xs are included to reduce measurement error in school sample
averages of student characteristics. They do not contribute to the estimated lower bound on contributions of
schools/neighborhoods.
The summary statistics reported above incorporate sample weights. See Appendix A12 for further details about
these weights.
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Table A18: Summary Statistics for Student Characteristics in North Carolina Administrative Data

Variable % Imputed Mean Std. Dev.

Student Demographics

1(Female) 0.00 .505 .500
1(Black) 0.00 .276 .447
1(Hispanic) 0.00 .059 .236
1(Asian) 0.00 .023 .149

Student Ability

Std. Math Score (Grade 8) 13.0 .059 .990
Std. Reading Score (Grade 8) 13.0 .054 .979
Std. Math Score (Grade 7) 15.9 .061 .985
Std. Reading Score (Grade 7) 16.0 .057 .971
1(Gifted in Math) 15.8 .136 .343
1(Gifted in Reading) 15.8 .133 .339

Student Behavior

1(Daily HW Hours < 1) 17.3 .267 .442
1(Daily HW Hours >= 1 and < 3) 17.2 .463 .499
1(Daily HW Hours >= 3) 17.3 .239 .426
1(Ignore Homework) 17.3 .013 .114
1(Daily TV Hours < 1) 17.3 .226 .418
1(Daily TV Hours ≈ 2) 17.3 .270 .444
1(Daily TV Hours ≈ 3) 17.3 .222 .416
1(Daily TV Hours >= 4 and <= 5) 17.3 .160 .367
1(Daily TV Hours >= 6) 17.3 .091 .287
1(Daily Free Reading Hours <= 1/2) 17.2 .489 .500
1(Daily Free Reading Hours ≈ 1) 17.2 .215 .411
1(Daily Free Reading Hours > 1 and <= 2) 17.2 .110 .313
1(Daily Free Reading Hours >= 2) 17.2 .055 .227

Family Background Characteristics

1(Highest Parent Education = HS Graduate) 0.00 .221 .415
1(Highest Parent Education = Some College) 0.00 .131 .337
1(Highest Parent Education = Community College) 0.00 .163 .370
1(Highest Parent Education = 4-Yr College Graduate) 0.00 .223 .417
1(Highest Parent Education = Graduate School) 0.00 .104 .306
1(Free/Reduced Price Lunch Eligible) 0.00 .596 .491
1(Limited English Proficiency) 0.54 .027 .161
1(Ever Limited English Proficient) 0.00 .062 .242

Parental Beliefs/Desires

[None]

Outcomes

1(High School Graduate) 0.00 .760 .427
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Table A19: Summary Statistics for School Characteristics in North Carolina Administrative Data

Variable % Imputed Mean Std. Dev.

School Characteristics (Treated as elements of Z2s)

# of Books Per Student 0.41 10.85 6.74
1(Magnet School) 0.00 .064 .244
1(Charter School) 0.00 .007 .083
% of Teachers with Advanced Degrees 0.79 .249 .079
% of Classrooms Taught by “High Quality” Teachers 0.03 .956 .060
Teacher Turnover Rate 0.87 .214 .081
Total School Enrollment 0.03 1323 581
Student-to-Teacher Ratio 0.03 15.5 2.02

Neighborhood Characteristics

1(Remote Rural) 0.00 .028 .166
1(Distant Rural) 0.00 .160 .366
1(Fringe Rural) 0.00 .284 .451
1(Remote Town) 0.00 .006 .078
1(Distant Town) 0.00 .075 .263
1(Fringe Town) 0.00 .050 .218
1(Small Suburb) 0.00 .006 .076
1(Mid-Sized Suburb) 0.00 .049 .216
1(Large Suburb) 0.00 .096 .295
1(Small City) 0.00 .072 .259
1(Midsize City) 0.00 .086 .281
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Table A20: Decomposition of Variance in Latent Index Determining High School Graduation from
the NC, NELS88, and ELS2002 Datasets (Baseline and Full Specifications)

NC NELS88 gr8 ELS2002

Fraction of Variance Baseline Full Baseline Full Baseline Full

Within School:
Total 0.913 0.913 0.812 0.812 0.891 0.904
Var(Yi−Ys) (0.021) (0.014) (0.019) (0.019) (0.014) (0.015)

Observable Student-Level (Within): 0.123 0.229 0.145 0.201 0.125 0.213
Var((Xi−Xs)B) (0.004) (0.005) (0.013) (0.014) (0.012) (0.015)

Unobservable Student-Level (Within) 0.790 0.684 0.667 0.611 0.767 0.690
Var(vsi− vs) (0.018) (0.010) (0.020) (0.019) (0.016) (0.017)

Between School:
Total 0.087 0.087 0.188 0.188 0.109 0.097
Var(Ys) (0.021) (0.014) (0.019) (0.019) (0.014) (0.015)

Observable Student-Level: 0.018 0.033 0.057 0.069 0.031 0.054
Var(XsB) (0.001) (0.003) (0.012) (0.012) (0.005) (0.007)

Student-Level/
School-Level Covariance 0.017 0.012 0.042 0.035 0.029 0.010
2∗Cov(XsB,XsG1 +Z2sG2) (0.004) (0.005) (0.018) (0.019) (0.010) (0.013)

School-Avg. Student-Level/
School Char. Covariance -0.016 -0.007 0.016 0.015 0.007 0.006
2∗Cov(XsG1,Z2sG2) (0.011) (0.005) (0.007) (0.007) (0.011) (0.011)

School-Avg. Student-Level 0.017 0.011 0.025 0.024 0.010 0.006
Var(XsG1) (0.010) (0.005) (0.010) (0.007) (0.012) (0.011)

School Char. 0.018 0.010 0.011 0.006 0.012 0.009
Var(Z2sG2) (0.008) (0.004) (0.008) (0.007) (0.010) (0.009)

Unobservable School-Level 0.033 0.027 0.038 0.038 0.023 0.012
Var(vs) (0.013) (0.008) (0.008) (0.008) (0.002) (0.000)

The table reports fractions of the total variance of the latent index that determines high school gradua-
tion.
The rows labels indicate the variance component.
Bootstrap standard errors based on resampling at the school level are in parentheses.
Online Appendices A9 and A10 discuss estimation of model parameters and the variance decomposi-
tions.
The columns headed NC refers to a variance decomposition that uses the 9th grade school as the group
variable for schools in North Carolina.
NELS88 gr8 is based on the NELS88 sample and refers to a decomposition that uses the 8th grade
school as the group variable.
ELS2002 is based on the ELS2002 sample and refers to a decomposition that uses the 10th grade
school as the group variable.
For each data set the variables in the baseline model and the full model are specified in Table 1

110



Table A21: Decomposition of Variance in Latent Index Determining Enrollment in a Four-Year
College from the NLS72, NELS88, and ELS2002 Datasets (Baseline and Full Specifications)

NLS72 NELS88 gr8 ELS2002

Fraction of Variance Baseline Full Baseline Full Baseline Full

Within School:
Total 0.861 0.861 0.775 0.777 0.786 0.793
Var(Yis−Ys) (0.012) (0.012) (0.017) (0.017) (0.069) (0.066)

Observable Student-Level (Within): 0.170 0.354 0.170 0.261 0.180 0.327
Var((Xsi−Xs)B) (0.010) (0.012) (0.012) (0.013) (0.257) (0.201)

Unobservable Student-Level (Within) 0.691 0.507 0.606 0.517 0.606 0.466
Var(vsi− vs) (0.014) (0.013) (0.018) (0.016) (0.189) (0.137)

Between School:
Total 0.139 0.139 0.225 0.223 0.214 0.207
Var(Ys) (0.012) (0.012) (0.017) (0.017) (0.069) (0.066)

Observable Student-Level: 0.041 0.062 0.071 0.104 0.073 0.122
Var(XsB) (0.005) (0.006) (0.015) (0.015) (0.025) (0.040)

Student-Level/
School-Level Covariance 0.036 0.032 0.078 0.047 0.072 0.042

2∗Cov(XsB,XsG1 +Z2sG2) (0.007) (0.009) (0.014) (0.016) (0.024) (0.016)

School-Avg. Student-Level/
School Char. Covariance -0.003 -0.004 0.006 0.008 -0.001 -0.001

2∗Cov(XsG1,Z2sG2) (0.006) (0.005) (0.006) (0.005) (0.008) (0.006)

School-Avg. Student-Level 0.018 0.012 0.021 0.025 0.017 0.007
Var(XsG1) (0.006) (0.005) (0.006) (0.006) (0.011) (0.007)

School Char. 0.027 0.018 0.017 0.015 0.019 0.014
Var(Z2sG2) (0.006) (0.005) (0.006) (0.005) (0.010) (0.008)

Unobservable School-Level 0.021 0.020 0.032 0.024 0.033 0.023
Var(vs) (0.006) (0.006) (0.006) (0.005) (0.008) (0.005)

The table reports fractions of the total variance of the latent index that determines enrollment in a
4-year college two years after high school graduation.
The rows labels indicate the variance component.
Bootstrap standard errors based on resampling at the school level are in parentheses.
NLS72 refers to a variance decomposition that employs NLS72 data and uses the 12th grade school as
the group variable.
See the note to Online Appendix Table A20 for additional details.
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Table A22: Decomposition of Variance in Years of Post-Secondary Education and Adult Log
Wages using NLS72 (Baseline and Full Specifications)

Yrs. Postsec. Ed.
Perm. Wages Perm. Wages

No Post-sec Ed. w/ Post-sec Ed.

Fraction of Variance Baseline Full Baseline Full Baseline Full

Within School:
Total 0.899 0.901 0.831 0.826 0.844 0.839
Var(Yis−Ys) (0.008) (0.008) (0.021) (0.021) (0.024) (0.012)

Observable Student-Level (Within): 0.146 0.271 0.138 0.184 0.113 0.137
Var((Xsi−Xs)B) (0.006) (0.007) (0.012) (0.014) (0.012) (0.012)

Unobservable Student-Level (Within) 0.753 0.630 0.694 0.642 0.731 0.703
Var(vsi− vs) (0.009) (0.008) (0.023) (0.024) (0.026) (0.013)

Between School:
Total 0.101 0.099 0.169 0.174 0.156 0.161
Var(Ys) (0.008) (0.008) (0.021) (0.021) (0.024) (0.012)

Observable Student-Level: 0.038 0.056 0.044 0.056 0.029 0.036
Var(XsB) (0.003) (0.004) (0.006) (0.007) (0.005) (0.006)

Student-Level/
School-Level Covariance 0.036 0.027 0.031 0.029 0.020 0.021

2∗Cov(XsB,XsG1 +Z2sG2) (0.005) (0.006) (0.009) (0.010) (0.009) (0.009)

School-Avg. Student-Level/
School Char. Covariance 0.001 0.001 0.005 0.007 0.003 0.007

2∗Cov(XsG1,Z2sG2) (0.002) (0.002) (0.010) (0.009) (0.013) (0.011)

School-Avg. Student-Level 0.013 0.007 0.019 0.013 0.018 0.015
Var(XsG1) (0.004) (0.002) (0.011) (0.009) (0.013) (0.005)

School Char. 0.002 0.000 0.025 0.028 0.032 0.033
Var(Z2sG2) (0.002) (0.001) (0.010) (0.011) (0.012) (0.005)

Unobservable School-Level 0.011 0.009 0.045 0.042 0.053 0.048
Var(vs) (0.003) (0.002) (0.016) (0.015) (0.019) (0.006)

The table reports fractions of the total variance of years of postsecondary education, permanent wages
controlling for year of post secondary education, and permanent wages not controlling for years of
post secondary education.
Bootstrap standard errors based on re-sampling at the school level are in parentheses.
See the note to Online Appendix Table A20 for additional details.
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Table A23: Potential Bias from Violations of Assumption 6.2

Maximum Bias µ:Max. Bias µ:Zero Bias
ρ maxµ µ +2ρ

√
µ argmaxµ µ +2ρ

√
µ µ0(ρ)

-0.1 -0.01 0.01 0.04
-0.2 -0.04 0.04 0.16
-0.3 -0.09 0.09 0.36
-0.4 -0.16 0.16 0.64
-0.5 -0.25 0.25 1
-0.6 -0.36 0.36 1.45
-0.7 -0.49 0.49 1.96
-0.8 -0.64 0.64 2.56
-0.9 -0.81 0.81 3.23
-1 -1 1 4
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