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Abstract: The paper reports an analysis of the effect of spatial plasma nonuniformity on absolute parametric 

instability (API) of electrostatic waves in a magnetized plane waveguides subjected to an intense high frequency 

(HF) electric field. It is shown that allowance for the spatial nonuniformity leads to 1) localization of unstable waves 

in a finite region of a plasma volume, 2) increases in the threshold value of the pump wave amplitude above which 

parametric amplification occurs and 3) decreases in the value of the growth rate of unstable waves. 

[Kharkwal G, Mehrotra P, Rawat YS. Taxonomic Diversity of Understorey Vegetation in Kumaun Himalayan 

Forests. Biomedicine and Nursing 2015;1(3): 88-93]. ISSN 2379-8211 (print); ISSN 2379-8203 (online); 
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1. Introduction 

The parametric interaction of an external HF 

electric field with an electrostatic surface wave in 

anisotropic nonuniform plasma has been previously 

investigated using a special method based on the 

separation of variables (Demchenko and Omelchenko, 

1976). The method makes it possible to separate the 

problem into two parts. The “dynamical” (temporal) 

part describes the parametric excitation of waves and 

corresponding equations within the renormalization of 

natural (eigen) frequencies coincides with equations 

for parametrically unstable waves in uniform plasma 

(Aliev and Silin, (1965) and Silin, (1965)). Natural 

frequencies of surface waves and spatial distribution 

of the self-consistent electric field amplitude are 

determined from the solution of a boundary-value 

problem (“spatial” part) taking into account specific 

spatial distribution of plasma density. The proposed 

approach (“separation method”) is significantly 

simpler than the method previously used in the theory 

of parametric resonance in a nonuniform plasma (e.g., 

ref. Kaw, Kruer, Liu and Nishikawa, (1976) and 

references therein). Therefore, it is of special interest 

to apply the separation method to solve different 

problems involving parametric excitation of 

electrostatic waves in bounded nonuniform plasma. 

It is known that (e.g. Perkins and Flick, (1971)) 

the spatial nonuniformity of plasma density may lead 

to localization of a parametrically unstable in a finite 

region of a plasma volume. This suggests that 

instability has assumed an absolute character. From an 

experimental point of view, it is quite important to 

know whether a given parametric instability is 

absolute or convective. This is so essential because 

the nature of instability determines the mechanism of 

their saturation. The convective instability reaches 

saturation at a comparatively low level, due to 

convection of energy of the unstable waves away from 

the resonance region. The absolute instability 

saturates at a higher level of energy under the action 

of various nonlinear effects. From this point of view, 

an absolute parametric instability (API) play a crucial 

role in the process of the energy transfer from the 

electromagnetic radiation to the plasma and may have 

important consequences for experiments on RF 

plasma heating in tokamaks and for laser fusion 

(Rosenbluth, (1972), Piliya, (1973), Pesme, Javal and 

Pellat, (1973), Silin and Starodub, (1974), White, 

Kaw, Pesme, Rosenbluth, Javal, Huff and Varma, 

(1974), and Mourou, Tajima and Bulonov, (2006)). 

In ref. (Demchenko and Omelchenko, 1976) the 

problem of parametric excitation of natural modes of 

semi-infinite plasma (surface waves) was analyzed as 

an initial value problem. In other words, surface 

waves are excited due to an initial perturbation at the 

boundary and a dispersion equation determines the 

complex frequency   as a function of the real wave 

number k . It is of practical interest to use the 

separation method described in (Demchenko and 

Omelchenko, 1976) for the solution of an eigen-values 

problems when the wave number k  is found as a 

function of the real frequency . This means that one 

has to treat a forced oscillations excited in a plasma by 
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an external source (generator) with a fixed frequency 

g
 (for more details see e.g., Demchenko and Zayed, 

1972), where the initial value problem for the problem 

of surface wave transformation at the plasma 

resonance in a transition layer). 

Demchenko et al. (1998) have reported an 

analysis of the effect of spatial plasma nonuniformity 

on parametric instability of electrostatic waves in a 

magnetized cylindrical waveguides subjected to an 

intense HF electric field. 

A method is expounded in this paper which 

permits reducing the problem of absolute parametric 

instability excited by a monochromatic pumping field 

of arbitrary amplitude in nonuniform magneto active 

plasma to the problem of parametric excitation of 

spatial oscillations in uniform isotropic plasma. 

Below, we will discuss the parametric excitation of 

low-frequency waves whose dispersion is completely 

determined by a high-frequency field, in a strong 

magnetic field i.e., here, we shall apply the method of 

ref. (Demchenko and Omelchenko, 1976) to 

investigate the API in a D1  nonuniform plasma 

waveguide subjected to an intense HF electric field as 

an eigen-value problem. 

Using the separation method, we investigate the 

API in bounded nonuniform relativistic plasma under 

the effect of pump field and static magnetic field. The 

pump field 
)(sin 00 tEEP 




 and the static 

magnetic field 0B


 are both directed along the 
z axis. Assuming the intensity of the magnetic field 

to be strong enough 
 


 Pc 

, the motion of 

plasma particles are considered to be confined along 

z axis only. We are going to study API in D1  

nonuniform bounded plasma. 

 

2. Separation method in the problem of API in 

a D1  nonuniform bounded plasma 
Let us suppose that plane waveguide is filled by 

nonuniform plasma 
),);((

00
iexnn   . A 

uniform strong static magnetic field 
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 PcB 



 and a HF electric field 

)(sin 00 tEEP 



 are directed along the z  axis. 

We choose the electric field of an ordinary wave as an 

HF pump field. The equilibrium particles velocity 
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 is determined by the following 

expression: 
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Representing the perturbations of velocity 
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, density and electrical potential   
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The initial system of equations consists of the 

two fluid equations in combination of the Poisson 

equation: 
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Where, n
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 are the density and velocity of 

particles of species  , and   is the potential self-

consistent electric field.  
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It means that particles are "frozen" and could not 

move across the magnetic field
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From linearized equation (2) we find 
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The continuity equation (3) reduces to  
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Where;
)(ˆ

0

2

2 xnkL 
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The Poisson's equation takes the form 
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Where; 

22
/1),( ppx

eP 
 and 

p
is the 

separation constant. Set of equations (9) describe 

"temporal" (dynamical) part of the problem. 

Comparing the derived equations with the system 

describing volumetric oscillations in a uniform plasma     

(Pesme, Javal and Pellat, (1973), Silin and Starodub, 

(1974)), we find that the presence of plasma 

nonuniformity results in a renormalization of the 

natural plasma frequencies 
2222

)/(, pmmp iePP ie
 

. This fact enables 

us to use the method developed in (Silin, 1965) to 

solve the system of equations with periodical 

coefficients (9). Equation (10) corresponds to the 

"spatial" (stationary) part of the problem. If the profile 

of plasma density and boundary conditions are 

specified, solution of equation (10) gives us the 

needed value of constant
p

. The distinguishing 

feature of the equation (10) is that the amplitude of 

HF electric field is not part of it. 

 

3. Solution of the spatial equation (10) 

We will consider API in nonuniform plasma in 

which the density distribution is determined by the 

relation 
)/1(

22

0 Lxnn 
[14] where L  is the 

characteristic scale of nonuniformity. In this case 

equation (10) takes the form 
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Equation (10) yields 

  02

2

2

2

2





xBA

x                           (12) 

Where;

2

0

2

022

22

0

2 4
1,, 0

pm

ne

Lp

k
BkA

e

P 



 

. 

The solution of equation (12), which describes trapped 

oscillations, is possible for 0A )0( 0 
 in the 
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x
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. Then equation (12), 

takes the form 
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We obtain the equation 
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                                (15) 

for the function
)(

. The solutions of this equation 

are Hermite polynomials (Richards, 2009): 
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satisfying the localizability condition (the width of the 

region of localizability of the oscillations is assumed 

to be significantly less than the width of the plasma 

layer) only for integral positive values of the number 
n  (including zero). This fact permits considering 

equation (14) as an analog of the quantization rule, 

which serves to determine the possible values of the 

quantity
p

. Thus, the solution of equation (13) takes 

the form 

)(
2/

2

2



nn Hec



                                     (17) 

From equation (14), we get 
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Thus from equation (18), we get 
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At 0
, PpL 

 (plasma waves in uniform 

plasma). Equation (18), takes the form 
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This equation is the same one in a uniform 

plasma case (Demchenko and Omelchenko, 1976); 

i.e., the nonuniform plasma has no effect on the space 

part of the problem. 

 

 

4. Solution of the "Temporal" (Time-Dependent) 

equations 

Following the procedure, developed in (Aliev 

and Silin, (1965) and Silin, (1965)), from equations 

(9) we can derive dispersion equation of low-

frequency oscillations 
))/(( pmm ie

. 

Under the parametric resonance condition 
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integer), we get 
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where: 
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2

0  npn , and we suppose here 

that the resonance "mismatch" n  satisfies the 

inequalities 
1)/(  nie mm

. From equation 

(21) we find the frequencies of parametrically excited 

plasma oscillations 
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where: 
)(aJ n  is the Bessel function. Expression (22) 

yields an unstable solution in two cases: 

 

 

a) Periodic instability 
)0(  n  

 

In this case
0Im   per , i.e., small 

perturbations in plasma grow exponentially in time, if 

the following condition is satisfied 
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The growth rate of instability is determined by the 

expression 
2/1

2/1

3

2
)(32

1
4 


































i

e

n

nn

per
m

maJ
p

 (24) 

The maximum value of the growth rate per
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Substituting (25) into (24) we find 
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b) A periodic instability 
)0(  n  

 

In this case expressions (22) describe the growth 

of oscillations when the minus sign is taken. We have 

then the following expression for the growth rate 
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is attained under the condition 
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The main feature of equations (24) – (26) is in the 

existence of a separation constant 
p

 which enables 

us to account for the plasma nonuniformity. 

 

At 1  expressions (26) and (28) 

become 
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Where 

U

per

max
 and 

U

aper

max
 are the values of the 

growth rates of periodical and a periodical API at 

vanishing density gradients. 

 

From equation (24) we conclude that, the 

threshold value of the HF field amplitude in case of 

periodic instability is determined by the relation 

1
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At small amplitudes of the pumping 

wave
1,1  na

, from equation (31) we get 
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It follows from expressions (30) and (32) that 

nonuniformity of the plasma density results in a 

decrease of the growth rate of absolutely unstable 

oscillations and an increase in the threshold value of 

the pump wave amplitude in comparison with the case 

of a uniform plasma waveguide. 

It should be noted that our approach is 

significantly simpler than the method ordinarily 

employed in theory of a parametric excitation of 

waves in nonuniform plasma. Therefore, it is of 

practical interest to apply the method to solve 

different problems in parametric resonance in 

nonuniform plasma taking into account finite plasma 

temperature and nonuniformities of the HF electric 

field and static magnetic field. 

 

 

5. Results and Conclusions 

We study in this paper the effect of D1  

plasma nonuniformity on absolute parametric 

instability (API) of electrostatic waves in magnetized 

pump plasma is in plane geometry by using the 

separation method, 

It follows from equations (20), (26), (28), (31) 

and (32) that taking account of nonuniformity of 

plasma density results in decrease of the maximum 

values of the oscillation build up increments and an 

increase in the threshold value of the electric field 

amplitude of the pumping wave in comparison with 

the case of uniform plasma. These results are 

consistent with the results of Refs. Perkins and Flick, 

(1971) and Demchenko et al (1976). 

Equation (20) is the same equation in uniform 

plasma case Perkins and Flick, (1971) and 

Demchenko et al (1976); i.e., the nonuniformity 

plasma has no effect on the space part of the problem. 

The main feature of equation (9) enables us to account 

for the plasma nonuniformity. 

From expressions (26) and (29), we conclude 

that the growth rate of periodic API decreases in 

nonuniform plasma more than in uniform plasma 

which is considered by .Demchenko et al (1976). 

It should be noted that our approached is 

significantly simpler than the method ordinary 

employed in theory of a parametric excitation of 

waves in nonuniform plasma. Therefore it is of 

practical interest to apply the method to solve 

different problems in parametric resonance in 

nonuniform plasma taking into account relativistic 

electron plasma and nonuniformities of the HF 

electric field and static magnetic field. 
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