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Abstract: With tremendous growth of internet based 

applications and data capturing techniques datasets with large 

dimensionality have become very common. Due to curse of 

dimensionality such high-dimensional datasets cannot be 

analyzed by traditional clustering methods. To overcome the 

curse, subspace clustering algorithms are proposed which 

identify clusters existing in subspaces of such datasets. 

However it has been observed that, these algorithms are highly 

sensitive to distance threshold parameter and improper tuning 

may result into false objects included in clusters, merging of 

many clusters into one or division of clusters into many parts. 

The paper proposes a novel technique to estimate distance 

threshold for subspace clustering automatically from input 

numerical data. The empirical results obtained on synthetic as 

well as real datasets highlight that the proposed method is 

highly effective in estimating the distance threshold for 

subspace clustering. 
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I.  INTRODUCTION 

Clustering also referred as segmentation is a data mining 

technique intended to classify entities into groups. It is 

unsupervised method meaning no training data is available to 

guide the clustering process. It has many applications in 

business intelligence, pattern recognition, web search etc. 

Today, datasets having tens/ hundreds of dimensions are very 

common due to advancements in data collection and storage 

technology. Such data is referred as high dimensional data [1]. 

A high dimensional data is inherently sparse. Hence clustering 

based on complete set of dimensions is not possible due to 

curse of dimensionality [2].  All objects are at equal distance 

from each other in a dataset having high dimensionality. 

Subspace clusters are the clusters existing in subsets of 

dimensions (termed as subspaces) of a high dimensional data. 

Subspace clustering methods are extensions to feature 

selection techniques which identify only relevant attributes 

based on some criterion. Subspace clustering algorithms first 

identify the possible subspaces i.e. subsets of attributes 

important for clustering. Then a clustering algorithm works on 

the identified subspaces to find clusters. Fig. 1 displays 4 

subspace clusters present in a dataset having 16 attributes and 

18 objects. 

 

Fig. 1 Four clusters identified in subspaces of sixteen attributes 

and eighteen objects 

Meaningful results can be obtained only if the density 

threshold and size of cells are properly tuned. Improper 

parameter values can result into many clusters being merged 

into one or single cluster partitioned into many clusters. In 

density based methods, a user specified value – the epsilon 

parameter specifies the radius of neighbourhood. All the 

objects which are within epsilon neighbourhood from an object 

are neighbours of that object. Another parameter minpts 

specifies the density threshold for identifying dense regions. A 

data item having dense neighbourhood is marked as core point. 

Dense regions are merged to form clusters. Thus the parameter 

– epsilon is very crucial in identifying dense regions. 

Advantage of density-based subspace clustering approach is it 

can identify arbitrary shaped clusters. This is one of the 

reasons for popularity of this approach for subspace clustering. 

The limitation of this approach is that it is not scalable due to 

excessive database scans. To speed up the subspace clustering 

process, several refinements to density-based techniques are 

proposed [3, 4, 5] which are highly scalable.  

II. RELATED WORK 

Subspace clustering is useful in business decision process, for 

product recommendations, social networking etc. Hence these 

algorithms have gained popularity in recent years. Search for 

subspaces can be done in bottom-up or top-down manner. 

Bottom up methods first identify lower dimensional subspace 

clusters and then merge them into higher dimensional clusters. 

Generally a pruning criterion is applied on lower dimensional 

subspace clusters to reduce computational complexity. 

CLIQUE is a grid based approach using bottom up strategy 

[6]. Each dimension is discretized into equal sized cells. The 

cells having strength of data points more than user specified 

unit selectivity threshold are marked dense. Adjacent dense 
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units are joined to form higher dimensional subspace clusters. 

The algorithm is sensitive to positioning of cells. MAFIA is an 

improvement over CLIQUE by using adaptive grids [7]. 

ENCLUS [8] uses entropy criterion to identify candidate 

subspaces and to prune uninteresting subspaces. The authors in 

[10] use Chernoff-Hoeffding and notion of support to propose 

SCHISM that mines maximal subspaces. The dataset is 

converted into a vertical representation and maximal 

interesting subspaces are mined by using backtracking based 

depth first search approach. SUBCLU [9] is based on greedy 

bottom-up approach and finds subspaces which have axis-

parallel orientation. As in DBSCAN, the process is controlled 

by two parameters - epsilon and minpts. Top-down approaches 

initially assume all points in one cluster and then remove 

irrelevant attributes iteratively to form low dimensional 

subspace clusters. FINDIT [12], PROCLUS [11], ORCLUS 

[13] are some of the top-down approaches.  

Subspace clustering algorithms are also categorized as 

Hard or Soft clustering methods. Hard subspace clustering 

methods assume equal weightage to each dimension in the 

clustering process. Soft subspace clustering methods 

generalize hard approach to avoid loss of information due to 

noisy attributes. Soft subspace clustering algorithms build a 

non-binary relationship between attributes and clusters, by 

deciding importance of each attribute in forming a subspace 

cluster. Thus each dimension is part of each subspace cluster 

but has different significance factor. Some prominent 

examples are FSC [14], FWKM [16], and Attribute Weighting 

Algorithm (AWA) [17].  The authors in [18] propose CKS-

EWFC-K and CKS-EWFC-F algorithms, which work by 

mapping feature space into the composite kernel space in order 

to cluster datasets having combinations of inner structures. 

Irrespective of the approach followed by subspace 

clustering algorithms to identify dense regions, these methods 

are affected by common problems induced due to parameter 

setting [15]. As in traditional clustering, the process of 

subspace clustering is usually directed by input parameters 

such as: density threshold, cell granularity, duplication factor, 

minimum cluster size etc. values of which are accepted from 

the user.  Many a times, the purpose and meaning of these 

parameters is non-obvious. The results are highly sensitive to 

the input parameters i.e. the quality of output and execution 

time is drastically affected by slight changes in the values. For 

example, in CLIQUE if the number of intervals is small, it 

results in increased cell width leading to inclusion of noise in 

the output and increased computational complexity. 

Conversely a larger interval causes lossy results. Optimal 

clustering results can be possible only after repeated trail runs 

every time with a new set of parameter values [21]. Table 1 

shows a comparative chart of input parameters accepted by 

some prominent subspace clustering algorithms. 

Clustering is generally a computation intensive task 

and on high dimensional data the complexity increases in three 

directions –in terms of count of embedded clusters, dimensions 

and objects. With improper parameter values, the task becomes 

practically infeasible in many cases. Subspace clustering 

directed by user specified parameter values dilutes the concept 

of unsupervised learning.  Hence it is desirable to have 

parameter-free or if not possible at least parameter-light 

subspace clustering solutions for high dimensional datasets. 

Such algorithms can be designed by utilizing the knowledge 

hidden in the data itself and by avoiding human intervention. 

III. PROPOSED METHOD 

Similarity reflects the strength of relationship 

amongst two data items. Thus measurement of distances is 

mandatory in the clustering process. In case of numerical 

attributes, similarity/distance measurement is generally done 

by applying a distance measure such as Minkowski, Euclidean, 

Manhattan distance on the attribute values.  Euclidean distance 

(straight line distance) is the most popular distance metric for 

numerical data. Let P= (p1, p2,…, pd) and Q= (q1,q2,…,qd)  be 

two data points described by d numeric attributes. The 

Euclidean distance between A and B is defined as  

Distance(P,Q) = 

√(𝑝1 −  𝑞1)2 +  (𝑝2 − 𝑞2)2 + ⋯ +  (𝑝𝑑 − 𝑞𝑑)2 

Manhattan (city block) distance is another well known 

measure which measures distance between two objects in 

terms of blocks e.g. 4 blocks over and 3 blocks down. It is 

defined as  

Distance(P, Q) = |p1-q1| + |p2-q2| + ….. + |pd-qd| 

A generalization of Manhattan and Euclidean distances is 

Minkowski distance defined as   

Distance(P, Q) = √(𝑝1- q
1
)

h
+ (𝑝2- 𝑞2)

h
+…+ (𝑝d- 𝑞d)

hℎ

 

Conventional distance based clustering algorithms calculate 

similarity between objects over all dimensions. In case of high 

dimensional data, the similarity between objects is calculated 

over identified subspace i.e. on subset of attributes. In order to 

make the subspace clustering process less dependent on user 

expertise, it is essential to determine the distance threshold 

value automatically from the data to be clustered. As an 

attempt in this direction, a novel method is proposed in this 

paper. The method is based on greedy paradigm to estimate the 

distance threshold from the input data. It uses a bottom-up 

approach similar to CLIQUE to find subspace clusters. As in 

CLIQUE, the proposed algorithm first identifies dense regions 

in each dimension based on the distance threshold value it has 

computed. Then it builds higher dimensional clusters by 

merging these 1-dimensional clusters. It operates with default 

values of parameters which specify how coarse or fine the 

resulting clusters should be.  
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The steps followed by the algorithm are explained in Algorithm 1 below. 

Table I Input parameters accepted by some prominent subspace clustering approaches 

Clustering Approach Input Parameters 

CLIQUE 
No. of Intervals and Unit Selectivity Threshold 

ENCLUS 
Entropy Threshold, Interest gain Threshold 

PROCLUS 
Average Dimensions count, Clusters Count  

MAFIA Cluster Dominance Factor 

DOC Size Of Grid, Density Threshold, Balance Factor Between Points and 

Dimensions 

DENCOS 
Equal Length Intervals, Unit Strength Factor, Maximum Subspace Cardinality 

DUSC 
Density Threshold    

DENCLU 
Density Threshold and Neighbourhood Radius 

OPTIGRID 
Density Threshold and Neighbourhood Radius 

SUBCLU 
Density Threshold and Neighbourhood Radius 

FIRES 
Density Threshold and Neighbourhood Radius 

DiSH 
Density Threshold and Neighbourhood Radius  

PreDeCon 
Density Threshold and Neighbourhood Radius, two Preference Parameters 

INSCY 
Neighbourhood Radius and Density Threshold, Redundancy Factor 

 

Pseudo 

code 

 

for i  = 1 to d 

Sort unique values in ith dimension in non-decreasing order to form 1-dimensional vector V. 

Avg[1: n-4] = 0 

Dist [1:d]= ∞ 
for j = 1 to ( n – 4 )  

sum_of_distance = 0 

for k = 1 to 4  
sum_of_distance = sum_of_distance + (v[j+k] - v[j+k-1] ) 

Avg[j]=sum_of_distance/4 

 
Least_avg_region=Find location of least element of vector Avg//Find the densest 5 elements  

               // group of objects 

Dist[i]=maximum of distance of consecutive elements in the group pointed by     
             Least_avg_region 

Round Dist[i] to nearest decimal value 

// Dist[i] is the distance threshold for dimension i 
 

Algorithm 1.  //Proposed Algorithm to find distance threshold separately for each dimension 

Input Data set of containing n objects each having d dimensions (attributes) 

Output Distance threshold vector Dist[] containing thresholds for each of d dimensions 
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Step I: Estimation of distance threshold separately for 

each attribute - In this step, objects in each attribute are 

arranged in non-decreasing order. Then a closely packed 5 

elements region in it is identified and in case of tie, it is 

resolved randomly. The window size is set to five elements 

because subspace clusters having less than five objects are 

assumed to be non-significant [19].  The maximum separation 

between two consecutive elements in the group is rounded to 

next decimal point and is recorded as the distance threshold 

for that dimension.  

Step II: Formation of 1-dimensional subspace clusters in 

each attribute - In this step, dense regions of objects in each 

dimension are found based on distance threshold value 

identified in Step I. Initially each object in the dimension is 

placed in a separate cluster. If the distance between any one 

object from a cluster and any one object in another cluster is 

within the distance threshold then the two clusters are merged. 

The process of merging two clusters is repeated until no new 

clusters can be formed. This step works in a way similar to 

single linkage clustering. The 1-dimensional clusters which 

are having density of objects less than 

object_density_threshold are marked non-significant and 

pruned from further processing. The default value of 

object_density_threshold is set to 5. 

Step III: Formation of higher dimensional subspace 

clusters - Higher dimensional clusters are formed by 

connecting 1-dimensional subspace clusters sharing the same 

objects. If an outlier object is by chance becomes part of a one 

dimensional cluster, it will be absent in clusters present in 

remaining dimensions and its support will be below 

attribute_support_threshold. Such objects get eliminated in 

this step. Value of k is different for every subspace cluster and 

if it is less than attribute_support_threshold, those clusters are 

pruned from further processing. The default value of 

attribute_support_threshold is set 5. 

Step IV: Removal of redundant clusters - A subspace 

cluster is dispensable if it is subset of a larger subspace 

cluster. In step III many redundant clusters may be formed. In 

Step IV, redundant clusters are removed by applying an 

algorithm proposed in [20].  

IV. EMPIRICAL EVALUATION 

The performance of the proposed method on synthetic and 

real numeric datasets is discussed in this section. Execution 

time and quality of output is compared with other well known 

subspace clustering algorithms.  

A. Experiment environment 

Experiments were performed on a computer having Intel(R) 

Pentium® P6200 CPU @ 2.13 GHz, 2.00 GB RAM, R 

version 3.4.3, Windows 7 OS. 

B. Evaluation measures 

Subspace clustering algorithms require evaluation measures 

different from conventional clustering algorithms. As 

mentioned in [21], if the input data has n objects and d 

dimensions then a subspace cluster is a collection of subset of 

sub-objects ijk, 1<= j <= n, 1 <= k <= d. Hence the proposed 

algorithm is evaluated in terms of object based measures - F-

measure, accuracy and object and subspace based measures - 

Relative Non Intersecting Area (RNIA) and Clustering Error 

(CE). The scalability of the algorithm is tested in terms of 

execution time. 

Precision: A high precision indicates that most of the sub-

objects in the output cluster are true sub-objects and there are 

very few false sub-objects. Optimal value of precision is 1.0.  

Precision = True Positives / (True Positives + False Positives) 

Recall: A high recall indicates that the identified clusters 

cover a large fraction of the true sub-objects. Optimal value of 

recall is 1.0.  

Recall = True Positives / (True Positives + False Negatives) 

F1-measure: F1-measure represents the balance between 

recall and precision, i.e. extent of conformity of output to the 

true clusters and to what extent the algorithm is able to 

exclude false results. Optimal value of F1-measure is 1.0. If 

the true result contains m subspace clusters, the F1 value is 

calculated obtained as follows: 

F1 = ∑ (
(2 ∗ Precision(i) ∗ Recall(i)) 

(Precision(i) + Recall(i))
)𝑚

𝑖=1  

 

Accuracy: Accuracy is the measure of the extent to which the 

algorithm is able to mark true sub-objects as part of output 

clusters and separate true outliers, out of all available sub-

objects. Optimal value of accuracy is 1.0. 

Accuracy = (True Positives + True Negatives) / (count of all 

sub-objects) 

RNIA: The subspace clustering quality is high if it covers all 

and only true sub-objects and does not include objects not 

supposed to be part of any subspace cluster. This aspect is 

measured by Relative nonintersecting area (RNIA) measure. 

Let U indicates count of objects in union of true and output 

clusters. Let I indicates count of objects common to true and 

output clusters. Then RNIA = (U - I)/U. Optimal value of 

RNIA is 0.0. 

CE:  RNIA measure does not reflect the case when a true 

cluster is partitioned into several small clusters in the output 

or several true clusters are merged to form an output cluster. 

CE measure reduces the clustering quality value in such cases. 

Here a mapping of true and output clusters is first generated.  

Let U indicates count of objects in union of true and output 

clusters. Let I’ indicates count of objects common to mapped 

and output clusters.  Then CE = (U – I’)/U. Optimal value of 

CE is 0.0. 
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C. Experimental Results 

1) Results on synthetic data 

For evaluation of the proposed method, a synthetic numerical, 

real valued data generator was implemented in R. The 

generator accepts description of the dataset from the user such 

as count of objects and dimensions, maximum and minimum 

values in all attributes, the count of embedded subspace 

clusters, count of objects and dimensions in each embedded 

subspace cluster, noise percentage and the standard deviation 

of values in subspace clusters. Advantage of using synthetic 

data for the experiments is that, true class of each sub-object 

is known to which the output can be compared. Using the data 

generator, five synthetic datasets with n=1000 objects were 

generated each having 5 subspace clusters containing 10 

objects and 10 attributes randomly embedded in the data. The 

dimensionality of the five datasets was 100, 200, 300, 400 and 

500 respectively. An implementation of CLIQUE, FIRES [3], 

P3C [22], PROCLUS [11] and SUBCLU is available in 

package ‘Subspace’ of R [21]. The parameter setting used 

during the experiments for FIRES, PROCLUS and SUBCLU 

was as provided in the package. The setting was changed for 

CLIQUE and P3C as shown in Table 2 for getting some 

output, as the default values could not produce any result. The 

proposed algorithm was executed with default values of 

object_density_threshold and attribute_support_threshold set 

to 5. A comparison of execution time and quality of the output 

of the proposed method with abovementioned subspace 

clustering algorithms is presented in Fig. 2.  

Result Analysis 

As shown in Fig. 2(a), the clustering error of the proposed 

method is 0.06 for synthetic dataset with 400 dimensions and 

100 objects and in rest of the cases it is 0 which is the 

optimum. Other algorithms show clustering error more than 

0.98. This is because the experiments were done with default 

values of parameter specified in the package ‘Subspace’. As 

highlighted in [21], getting values of optimal parameter 

setting requires repeated runs of these algorithms every time 

with a new set of values. Against to this, the proposed 

algorithm could get optimal results in single run, without 

accepting any input from the user.  In case of RNIA measure 

as shown in Fig. 2(b), the same observation holds true and 

RNIA value of the clustering produced by the algorithm is 

near optimal. Fig. 2(c) highlights that, F1 value of the 

proposed method is more than 0.96 for d=400 and in other 

cases it is 1 which is again the optimal value. CLIQUE could 

produce F1-value upto 0.3 and for rest of the algorithms it is 

less than 0.11. As shown in Fig. 2(d), accuracy of the 

proposed method is optimal i.e. 1.0 in all cases except for 

d=400 where it is 0.94. CLIQUE shows maximum accuracy 

as 0.59 on d=500 and FIRES shows 0.78 on d=300 which is 

better than remaining algorithms. Table 3 displays the time 

taken in seconds for the processing by each of the algorithms. 

As indicated in the table, the proposed method has the best 

execution time in the group for all cases. The results show 

that, the algorithm produces near optimal results on synthetic 

datasets. The proposed method is highly scalable and shows 

negligible increase in runtime with increased dimensionality. 

The optimal results are outcomes of accurate distance 

threshold estimation. 

2) Results on real data 

Real datasets available on UCI machine learning repository 

[23] were used for evaluating the performance of the 

proposed algorithm in comparison with other algorithms 

mentioned in Table 2. The parameter setting for all other 

algorithms is as specified in Table 2. Default values of 

object_density_threshold and attribute_support_threshold 

were set to 5. Table 4 gives the specification of the datasets 

used in the study. 

Result Analysis 

Fig. 3(a) shows the clustering error on various real datasets by 

each of the algorithms. The clustering error of the proposed 

method is the minimum compared with other algorithms. 

RNIA value of FIRES is found to be the least in the group 

followed by RNIA of the proposed algorithm. Accuracy of 

FIRES is found to be good, followed by the proposed method. 

F1 value of the proposed method is the highest in the group. 

Table 5 shows the comparison of processing time on real 

datasets. The table reflects that the proposed algorithm shows 

the least execution time in the group in most of cases.  

Table II Parameter setting for subspace clustering algorithms 

Algorithm Parameter Settings 

CLIQUE xi = 50, tau = 0.03 

FIRES base_dbscan_minpts = 4,base_dbscan_epsilon = 1, k = 1, minimumpercent = 25, minclu = 1, mu = 1, post_dbscan_epsilon = 1, split = 0.66, 

post_dbscan_minpts = 1 

P3C ChiSquareAlpha = 0.50, PoissonThreshold = 2 

PROCLUS k=12, d=2.5 

SUBCLU epsilon = 1, minSupport = 5 
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(a) 

 

(b) 

 

 

(c) 

 

 

(d) 

Fig. 2 Performance on synthetic data 

Table III. Execution Time in seconds on synthetic datasets 

having1000objects 

  Dim. 100 Dim. 200 Dim. 300 Dim. 400 

Dim. 

500 

Proposed 

Algorithm 0.57 1.37 1.76 2.79  3.46 

CLIQUE 0.58 1.65 7.49 14.07 25.15 

FIRES 40.34 246.33 520.78 1757.3 5262.71 

P3C 334.37 648.1 2502.03 2768.17 1888.22 

PROCLUS 24.23 25.18 54.48 244.5 123.56 

SUBCLU 4.74 37.05 62.8 156.86 74.18 

 

Table IV Description of real datasets 

Dataset 

Classes 

in the 

data 

Attributes 

in the data 

Instances 

in the data 

Iris 3 4 140 

Pima 2 8 768 

Ecoli 8 7 336 

Liver 2 6 345 

Glass 6 9 214 

Vowel 11 13 990 
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(a) 

 

(b) 

 

(c) 

 

 

 

(d) 

Fig. 3 Performance on real datasets 

Table V Execution Time on Real Datasets in Seconds 

  
Data 

Iris   

Data 

Pima 

Data 

Ecoli 

Data 

Glass 

Data 

Liver 

Data 

Vowel 

Proposed 

Algorithm 0.01 0.11 0.03 0.11 0.03 0.61 

CLIQUE 0.05 0.25 0.20 0.21 0.06 1.05 

FIRES 0.05 0.20 0.08 0.05 0.06 1.17 

P3C 0.03 1.06 0.14 0.18 0.07 43.89 

PROCLUS 0.05 0.16 0.10 0.05 0.06 0.47 

SUBCLU 0.01 0.11 0.03 0.04 0.05 0.25 

V. CONCLUSION 

The working of clustering algorithms is generally controlled 

by set of input parameters which act as threshold values to 

control unwanted results from the output. However, it has 

been observed that, improper tuning of parameters highly 

affect efficiency and quality of the clustering results. 

Parameter-based execution limits the ability of a clustering 

algorithm to reveal interesting and novel knowledge due to 

constraints put by the parameter values which are based on 

knowledge of the operator. A novel method to estimate an 

important input parameter- the distance threshold is proposed 

in this paper and it is subsequently used to find subspace 

clusters. Experimental evaluation on real and synthetic 

datasets show that the proposed method is able to estimate 

distance threshold accurately which results in high quality 

output in terms of accuracy and F1-measure. The method also 

proves its effectiveness in terms of subspace and object based 

evaluation measures - clustering error and RNIA. The 

algorithm shows linear execution time on real and synthetic 

datasets. Future direction in this field could be estimation of 

other important parameters such as density threshold.  
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