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Abstract. Multiagent systems have had a powerful impact on the real world.
Many of the systems it studies (air traffic, satellite coordination, rover explo-
ration) are inherently multi-objective, but they are often treated as single-objective
problems within the research. A very important concept within multiagent sys-
tems is that of credit assignment: clearly quantifying an individual agent’s impact
on the overall system performance. In this work we extend the concept of credit
assignment into multi-objective problems, broadening the traditional multiagent
learning framework to account for multiple objectives. We show in two domains
that by leveraging established credit assignment principles in a multi-objective
setting, we can improve performance by (i) increasing learning speed by up to
10x (ii) reducing sensitivity to unmodeled disturbances by up to 98.4% and (iii)
producing solutions that dominate all solutions discovered by a traditional team-
based credit assignment schema. Our results suggest that in a multiagent multi-
objective problem, proper credit assignment is as important to performance as the
choice of multi-objective algorithm.

1 Introduction

Cooperative multiagent systems focuses on producing a set of autonomous agents to
achieve a system-level goal [12]. Multiagent frameworks have been used to study com-
plex, real-world systems like air traffic [10], teams of satellites [3], and extra-planetary
rover exploration [1]. In each case, the goal is to optimize a single, well-defined objec-
tive function.

But, in many of these cases, the problems lend themselves more naturally to mul-
tiple objectives: for example, air travel should be as safe and as expedient as possi-
ble. Satellites may need to make observations for multiple separate institutions. Extra-
planetary rovers should acquire multiple different types of scientific data. However,
most research in multiagent systems does not take a multi-objective viewpoint: they
typically seek to find a single usable solution, without considering the tradeoffs be-
tween potential alternatives that would increase one objective’s value at the cost of an-
other. These tradeoff solutions, which form the Pareto front, are a key solution concept
in multi-objective problems.

Developing successful agent policies in multiagent systems can be challenging. One
successful approach is to use adaptive agents with tools like reinforcement learning.
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Each agent seeks to maximize its own reward; with a properly designed reward signal,
the whole system will attain desirable behaviors. This is the science of credit assign-
ment: determining the contribution each agent had to the system as a whole. Clearly
quantifying this contribution on a per-agent level is essential to multiagent learning.
This is an issue that has not been studied within the context of multiple objectives. In
this work we address the challenges that arise when multiagent systems are combined
with multi-objective problems.

The primary contribution of this work is to develop the concept of credit assign-
ment for multi-objective problems. This broadens the traditional multiagent learning
framework to account for the multiple objectives present in many real world problems.
This improves system-level performance by (i) increasing learning speed by up to 10x
(ii) reducing sensitivity to unmodeled disturbances by up to 98.4% and (iii) produc-
ing solutions that dominate all solutions discovered by a traditional team-based credit
assignment schema.

The remainder of this work is organized as follows: Section 2 describes the nec-
essary background. Section 3 describes a stateless coordination domain, the multi-
objective bar problem (MOBP), and presents the results in this domain. Section 4 de-
scribes a stateful, time-extended coordination domain, the collective transport domain
(CTD), and presents the results in this domain. Finally, Sec. 5 draws the conclusion to
this work and identifies future directions for this line of research.

2 Background

We limit the scope of this work to consider reinforcement learners using difference
rewards as a feedback signal with “a priori” scalarization of objectives. This allows us
to examine the performance of multi-objective difference rewards in two scenarios in
which they have been shown to out-perform a global “team” reward in a single-objective
case. “A posteriori” methods, such as multi-objective evolutionary algorithms, though
more generally successful, are explicitly out of the scope of this work.

2.1 Multi-objective problems

In a multi-objective problem, there is typically not one “best” solution, but instead an
array of optimal tradeoffs that are incomparable. For example, a man with 1 kilogram
of bread and 1 kilogram of wine might be just as happy as a man with 0.9 kilograms of
bread and 1.2 kilograms of wine. The two are incomparable [6]. However, both of these
solutions are strictly better than a man with no bread and no wine, which is dominated
by both of the others.

Non-dominated set (NDS) The NDS is the set of discovered feasible solutions that are
not dominated by any other solution. The process for calculating the NDS is illustrated
in Figure 1. Any optimizer or search will develop a set of non-dominated solutions; the
globally best-possible NDS is known as the Pareto front, and the goal of any multi-
objective approach is to develop an NDS that is a close approximation to the Pareto
front.



Multi-Objective Difference Rewards 3

O
bj

ec
tiv

e 
2!

Objective 1!

p*!

Fig. 1. Domination. The point p∗ is a point in the NDS, and all points which score worse on
all objectives than (below and to the left of) p∗ are dominated by p∗. The three grey points not
dominated by p∗ are dominated by other (black) points in the NDS.

Scalarization of objectives Within the class of a priori methods for multi-objective
problems, there are many different ways to scalarize the objectives into a single reward
signal. In this work we examine two: a linear combination and a hypervolume calcula-
tion. In each case we normalize the objectives to the range [0:1] before combining them
in one of two ways:

R+ =
∑
c∈C

wcf
norm
c

∣∣∣∣∣ Rλ =
∏
c∈C

f norm
c (1)

where R+ is the linear combination reward delivered to the reinforcement learner, Rλ
is the hypervolume reward delivered to the reinforcement learner, C is the set of all
criteria or objectives, and f norm

c is the normalized score on objective c. In each case we
give all agents either R+ or Rλ, but never any combination of the two. The form which
f norm
c takes varies depending on the credit assignment schema used, which is discussed

in the following section. Other types of scalarizations do exist, like an exponentially
weighted set of objectives or distance from a target point, but we limit the scope of this
work to consider only these two.

2.2 Reinforcement learning

In this work we use a team of independent reinforcement learners (Action-value learn-
ers for the MOBP and Q-learners for the CTD [5, 9]), with the standard notation of a
learning rate α, a discount factor γ, and a reward R.

2.3 Multiagent Credit Assignment Structures

In a multiagent system, it is important to reward an agent based on its contribution to
the system. This is difficult due to the other agents acting in the environment, obscuring
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the agent’s individual contribution to system performance. We consider three popular
credit assignment structures for addressing these concerns.

A local reward (Li) is the reward based on the part of the system that an agent i
can directly observe. Using this reward signal often encourages “selfish” behavior, in
which the agent may act at cross-purposes with other agents while blindly increasing
its own reward, causing poor system performance.

The global reward (G) is the system performance used as a learning signal. This
encourages the agent to act in the system’s interest, but includes a large amount of noise
from other agents acting simultaneously. An agent’s own contribution to the global
reward may be dwarfed by the contribution of hundreds of other agents, resulting in a
low “signal to noise ratio” [11].

The Difference reward (Di) is a shaped reward signal that helps an agent learn the
consequences of its actions on the system objective by removing a large amount of the
noise created by the actions of other agents active in the system [11]. It is defined as

Di(z) = G(z)−G(z−i) (2)

whereG(z) is the global system performance for the system considering the joint state-
action z, and G(z−i) is G(z) for a theoretical system without the contribution of agent
i. Any action taken to increase Di simultaneously increases G, while agent i’s impact
on its own reward is much higher than its relative impact on G [11].

3 Multiobjective bar problem (MOBP)

The first domain we consider in this work is an extension of the El Farol Bar Problem
originally introduced by Arthur [2]. In this extension, a group of agents A are each
assigned a static type m or f and must independently choose to attend one of several
bars. There are multiple objectives: first, the agents wish to attend a bar that is not too
crowded, and not too empty. Second, the agents wish to attend a bar with an even mixing
of agents of type m and f .

The first “capacity” objective for each bar is modeled as a smooth curve that takes
on a value of 0 with no agents attending, near 0 with many agents attending, and a
maximum at the ideal capacity ψ. This models the enjoyment of the agents (of quantity
xb) attending bar b. The second “mixture” objective for each bar is maximized when
Mb = Fb, where these are the number of agents of type m and f attending bar b,
regardless of the number of agents at the bar. Formally:

Lcapb = xb · e
−xb
ψ

∣∣∣∣ Lmixb =
min(Mb, Fb)

(Mb + Fb)W
(3)

where W is the number of bars available for the agents to choose from. Lmixb evaluates
to 0 if the agents are all of the same type, and 0.5/W if there is an equal mixture
of types. The number of bars, W , is a constant (and therefore does not change the
reinforcement learning process), and serves to limit Gmix to values in the range [0:0.5]
for easier interpretation of results.
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The global rewards for each of these objectives are simply the sum of the local
rewards across all bars:

Gcap =
∑
b∈B

Lcapb

∣∣∣∣ Gmix =
∑
b∈B

Lmixb (4)

And the Difference rewards for each are calculated by Equation 2 as the global reward
minus the global reward in a fictional world had agent i never attended any of the bars:

Dcapi = xa · e
−xa
ψ − (xa − 1) · e

−(xa−1)
ψ (5)

Dmixi =


min(Ma,Fa)
(Ma+Fa)W

min(Ma,Fa)
(Ma+Fa)W

−

−

min((Ma−1),Fa)
(Ma+Fa−1)W : i ∈ m

min(Ma,(Fa−1))
(Ma+Fa−1)W : i ∈ f

(6)

where xa is the attendance in the bar attended by agent i, andMa and Fa are the number
of agents of types m or f respectively that attended the same bar as agent i. Dmixi
depends on the type of the agent; the second term represents the system with agent i
removed from bar b.

Procedure The procedure for running the MOBP is simple. Each agent simultaneously
selects a bar to attend based on no sensory information. The local rewards Lcapb and
Lmixb are calculated for each bar b. Then the global rewards Gcap and Gmix are calcu-
lated. Finally,Dcapi andDmixi are calculated for each agent i. Once these are calculated,
the selected reward type (local, global, or difference) is normalized and put through
Equation 1 depending on the desired scalarization. The result is then provided to the
agent as the reward R, calculated with a value of γ = 0, because the problem is only a
single step.

Tradeoffs and independence of objectives We take measures to prevent a trivial solution
for either objective, or a single dominating solution:

– Gcap: There are many more agents (100) than capacity across all bars (a capacity of
5 for 7 bars).

– Gmix: Agent types are 70% type m, 30% type f .
– Tradeoff : Lcapi is maximized at 5 agents; Lmixi is maximized only when an even

number of agents attend a bar.
– Tradeoff : A maximum Gmix case involves many bars with one agent of each type

and the rest attending a single bar, which conflicts with Gcap.

We calculate the coefficient of determination (R2) value for the correlation between
the two objectives across 106 random Monte Carlo trials using a linear, exponential, and
polynomial fit. The maximum value was the linear fit at 0.0034, which reinforces that
the objectives are distinct, though they are coupled through the actions of the agents.
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Fig. 2. Performance on Gcap (left) and Gmix (right), for agents trained on the linear scalarization
(+,top) and hypervolume calculation (λ,bottom) of the three reward structures (D,G,L) and the
random baseline (rand). Each of these objectives is to be maximized.

3.1 MOBP results

To exhibit the benefits of Difference rewards in multi-objective problems, we examine
4 types of results:

– Average system performance on both system objectives (Figure 2)
– Dominance and NDS (Figure 3)
– Impact of training time (Figure 3)
– Robustness to disturbances (Figure 4)

Simulation information We execute 30 statistical runs of the MOBP for seven inde-
pendent experiments: training all agents on each structure-scalarization combination in
turn (D+, Dλ, G+, Gλ, L+, Lλ), and on a random policy (rand).

Each agent selects an action using an ε-greedy mechanism, with an initial ε = 0.05
for local and difference rewards, and ε = 0.1 for global rewards1 (both multiplied by a
factor of 0.999 every episode to reduce exploration), with a learning rate α = 0.10.

We performed a full sweep through wc values, but due to the large effect each agent
has on the overall system performance near the Pareto front, we found that an even
weight, combined with the natural exploration, resulted in a spread of solutions discov-
ered along the Pareto front.

In Fig. 2, a 100-episode moving average (across 30 statistical runs) of system per-
formance was used. Error bars report the error in the mean, calculated as σ√

N
, where N

1 These values were chosen through a parameter sweep to create the best performance for each
reward, though the results are not very sensitive to ε or α values.
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Fig. 3. The set of non-dominated episodes created over the entire training process through using
hypervolume (λ) or a linear combination (+); dotted lines show the NDS after 1500 learning
episodes; solid lines, the NDS after 15,000 episodes. Agents trained on D(+) peak in performance
before 1500 episodes, so both D(+) NDSs are identical.

is the number of statistical trials. We identify the NDS for each structure-scalarization
combination (e.g. “Hypervolume of Global Reward”, Gλ), across all 30 statistical runs,
and aggregate these into a single non-dominated set, for clarity [4].

3.2 Average performance on system objectives

It is informative to look at the performance of the system on each objective individu-
ally (Figure 2), as this performance drives the behavior of the non-dominated set. For
both the linear combination and hypervolume scalarization, the local reward (L+,Lλ)
performs poorly; the agents work at cross-purposes, undermining each other’s efforts
by all trying to attend low-attendance days. This leads to low performance, and will
never lead to good system behavior, even with an extreme amount of training time. The
global reward (G+,Gλ) does learn, slowly. For the hypervolume scalarization, Dλ in-
creases system performance at a slightly higher rate than Gλ. The linear combination
of difference rewards, D+, performs at a very high level very quickly, and reaches near
its final performance after only 1500 episodes.

3.3 Non-dominated sets (NDS) and training time

In addition to performing well on the individual objectives, solutions produced by D+
or Dλ produce superior NDS compared to the global and local rewards with the same
scalarization. The NDS are shown in Figure 3. In fact, every solution produced by the
local or global rewards is dominated by a solution produced by the difference reward.

The dotted lines in Figure 3 represent the NDS produced in the first 1500 episodes
(10% of the training). In all cases the NDS improve between 1500 and 15000 episodes,
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Fig. 4. The NDS produced in the 5000 training episodes after the conversion of 20% of agents to
“selfish” behavior. Compare with solid lines in Figure 3: D+ and Dλ recover well; G+ and Gλ
suffer a disastrous drop in performance.

except D+, which has already produced its best episodes (dominating all other credit
assignment/scalarization combinations). Solutions produced by Dλ dominate the solu-
tions produced by other methods in the same time, except D+.

3.4 Robustness to disturbances

To model outside disturbances, after 15000 episodes 14 agents of type m and 6 of type
f “fail”. They have their Q-table reset to zero values and continue learning using the
local reward policy regardless of the learning signal they were using previously (acting
selfishly). The remaining 80 agents continue learning using the same signal they were
using previously. Additional exploration was found to be necessary in this case, so we
reset ε to initial values. All agents continue the learning process as before.

Figure 4 shows that D+ maintains its dominant NDS. G+ and Gλ are affected catas-
trophically by the selfish agents, while D+ loses 98.4% less dominated hypervolume.
Dλ only loses performance on Gmix.

4 Collective transport domain

We additionally performed experiments in a collective transport domain, modeled af-
ter [7], in which a team of small robots must cooperate to transport an item (which we
also refer to as a body or load) across a surface in much the same way that ants transport
objects.

We formulate this as a time-extended, stateful reinforcement learning problem in
which the robot agents try to (i) collectively transport the object as quickly as possible
to the goal, while (ii) expending minimum effort.



Multi-Objective Difference Rewards 9

Each robot is given discretized state information about the load’s position and ve-
locity, and is allowed to take one of nine actions, applying a force to the load in a
cardinal direction (N,S,E,W), an intermediate direction (NE,SE,SW,NW), or no force.
The robots are assumed to be attached to the object, and receive discretized state infor-
mation based on the object’s current location and speed.

The body’s acceleration (acc), velocity (vel), position (pos) at time t are found with
particle kinetics:

acc(t) =
∑
i∈A

[Fx(i)̂i] +
∑
i∈A

[Fy(i)ĵ]− Ff f̂ (7)

vel(t) = vel(t− 1) + acc(t) · tstep (8)

pos(t) = pos(t− 1) + vel(t) · tstep (9)

where A is the set of all agents, Fx(i) is the force applied by agent i in the î direction,
Fy(i) is the force applied by agent i in the ĵ direction, and Ff is the force of friction,
which acts in the f̂ direction, which points opposite the direction of motion of the body.
We omit mass from this calculation of Newton’s second law because we assume the
mass of the body and transporting robots to be 1 unit total. In this context a local reward
loses some meaning as all agents are collectively acting to move the same object, so we
only look at global and difference reward in this case.

The first objective (proximity) is to move the load close to the goal as quickly as
possible. This takes the form:

Gprox(t) = −Tdist(t) (10)

Dproxi(t) = −Tdist(t) + Tdist−i(t) (11)

where Tdist() is a function that returns the body’s Euclidian distance from the target
at time t, and Tdist−i() returns the distance from the target if agent i took no action
during timestep t.

The second objective is to minimize the effort exerted by the team to move the load
to the desired target location:

Geffort(t) =
∑
i∈A

[1− Ei,t] (12)

Defforti(t) = 1− Ei,t (13)

where Ei,t is 1 if the agent applied a force to the object at time t, and 0 if the agent did
not apply a force.

We perform a Q-update at every time step. To visualize the performance, we aggre-
gate these into one point for each time the load reaches the goal state. For the purpose
of learning, however, we use the distance to the goal state after each time step, as this
provides a smoother gradient for learning [5]. The process for conducting this experi-
ment is described in Algorithm 1. For each credit assignment schema and scalarization
combination, step 19 would use the proper evaluation (one of Li, G, orDi), and use the
desired scalarization from Equation 1.

In this domain the two objectives are in conflict with one another: minimizing the
time to deliver the load will maximize the effort required, and minimizing effort will
lead to a longer time.
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4.1 CTD results

In the collective transport domain, we examine two types of results:

– Dominance and NDS (Figure 5, Left)
– Impact of training time (Figure 5, Right)

Simulation Information We perform 4 different trials following Algorithm 1; one each
for G+, Gλ, D+, and Dλ. For each, we conduct 30 statistical runs of 5000 time steps
for teams of 50 agents attempting to transport a load across a surface with maximum
static force of friction Ff = 8 units and kinetic force of friction of Ff = 2 units.
The body’s starting state is initialized as (x, y) = (1, 1), with the goal as a square at
{xmin, xmax, ymin, ymax} = {900, 1000, 900, 1000}. The boundaries are a larger square
at {xmin, xmax, ymin, ymax} = {0, 1000, 0, 1000}. Though the calculations of the body’s
velocity and position are continuous, we us an approximation via tile coding [9] and
discretize into 10 states each for (xvel, yvel, xpos, ypos) creating 10,000 states. In this

Algorithm 1 Collective Transport Domain using Difference Reward of
Dominated Hypervolume (Dλ)
1: initialize Q-values to zero: Q(s, a) = 0 ∀ s, a
2: initialize body position to starting location
3: initialize velocity and acceleration to 0.
4: for timestep = 1→ max timesteps do
5: for i = 1→ total agents do
6: choose an action to take with ε-greedy action selection:
{none,N,NE,E,SE,S,SW,W,NW}

7: add force contribution to body (Fx(i),Fy(i))
8: end for
9: evaluate body acceleration (Equation 7)

10: evaluate body velocity (Equation 8)
11: evaluate body position (Equation 9)
12: if body position is out of bounds then
13: set body position to nearest in-bounds position
14: set body velocity to 0
15: end if
16: evaluate global reward (Equations 10, 12)
17: for i = 1→ total agents do
18: evaluate difference rewards (Equations 11, 13)
19: evaluate R← Rλ (Equation 1)
20: update Q(s, a) values
21: end for
22: if body is in goal state then
23: set body to starting location
24: set velocity and acceleration to 0.
25: end if
26: reduce ε
27: end for



Multi-Objective Difference Rewards 11

16 18 20 22 24 26 28
200

250

300

350

Timesteps To Goal

To
ta

l R
ob

ot
 E

ffo
rt

D(λ)

G(+)

G(λ)

D(+)

minimize

m
in

im
iz

e

Fig. 5. (Left) Collective Transport Domain results. D(λ) creates solutions that dominate all other
methods (solutions below and to the left are superior in this domain). D+ outperforms G+, and
creates an overlapping Pareto front with G(λ). (Right) Dotted lines denote early system perfor-
mance after 500 time steps. The denoted highlighted area is the range of the figure on the left.

domain, we find the best performance when we vary the weights for the objectives as a
function of learning step, starting by with a value of {wprox, weffort} = {1, 0} changing
linearly to {0, 1} at the final learning step. This produces policies which do find the goal
state, and learn to reduce effort over time. This produces better initial performance and
a spread of solutions along the NDS. Initial weights favoring the effort objective led to
policies of inaction, never reaching the goal.

4.2 Dominance and NDS

Figure 5 shows the final NDS for each method. The teams of agents trained on the
scalarizations of the difference reward (D+, Dλ) outperform their global counterparts
in the final produced NDS. In this domain, however, the hypervolume calculations (λ)
perform better than the linear combinations (+). We find nearly equivalent performance
between Gλ and D+, suggesting that using the proper multi-objective scalarization is
as important as proper multiagent credit assignment. The Dλ result shows that these
benefits can be symbiotic.

4.3 Impact of training time

We also identify the NDS produced by each solution after 10% of the training time in
Figure 5. Again, the difference reward using the preferable scalarization attains perfor-
mance close to its final performance very quickly, while the global methods are not as
near their final performance values. Dλ dominates all solutions formed by other scalar-
izations.

Additionally, in this domain we noticed that the performance of the global reward
signals was sensitive to the learning parameters, while the difference reward signals
were robust to these changes. In additional trials we found the agents trained with the
difference reward to be robust to noisy actuators, noisy sensors, failing agents, and
unmodeled disturbances (externally applied forces) as well.
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5 Conclusion

Multiagent systems are a powerful concept for dealing with complex systems. Many
multiagent systems are intrinsically multi-objective, but this has received scant atten-
tion. In this work we explicitly addressed one of the key concerns in multiagent systems
— credit assignment — under the conditions of a multi-objective problem. We found
that credit assignment is important under multi-objective conditions: our results show
(i) a 10x increase in learning speed, (ii) a 98.4% increase in robustness to unmodeled
disturbances, and (iii) the production of solutions which dominate all solutions found
by a traditional global reward. These results show that proper credit assignment is of
paramount importance in a multiagent multi-objective system. However, the choice of
multi-objective algorithm is still extremely important. Difference rewards boosted per-
formance in both domains, for both scalarizations. The gains from credit assignment
through difference rewards were independent of the scalarization used and the domain.

Difference rewards are not limited to reinforcement learning or a priori methods,
however. Future work on this topic includes an examination of the effects that credit
assignment can have on multiagent implementations of well-established a posteriori
multi-objective evolutionary algorithms.
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