CAP 4630
Artificial Intelligence

Instructor: Sam Ganzfried
sganzfri@cis.fiu.edu



nttp://www.ultimateaiclass.com/

nttps://moodle.cis.fiu.edu/

HW1 out 9/5 today, due today

— Remember that you have up to 4 late days to use throughout
the semester.

HW?2 out this week, due 10/17

Midterm on 10/19
— Review during half of class on 10/17



http://www.ultimateaiclass.com/
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Adversarial search

https://www.youtube.com/watch?v=tI|IJMES8-au8

https://www.youtube.com/watch?time continue=8&v=

PDTxIANYXs

https.//www.youtube.com/watch?v=N8bgz]ZvSmc

http://www.cs.cmu.edu/~mmv/papers/07aaai-colin.pdf

— “Timed” zero-sum games, Markov decision processes


https://www.youtube.com/watch?v=tIIJME8-au8
https://www.youtube.com/watch?time_continue=8&v=pDTjxlANyxs
https://www.youtube.com/watch?v=N8bqzjZvSmc
http://www.cs.cmu.edu/~mmv/papers/07aaai-colin.pdf

Adversarial search

« This 8x8 variant of draughts (checkers) was weakly solved on
April 29, 2007 by the team of Jonathan Schaeffer, known for
Chinook, the "World Man-Machine Checkers Champion." From
the standard starting position, both players can guarantee a draw
with perfect play. Checkers is the largest game that has been
solved to date, with a search space of 5x102°, The number of
calculations involved was 10%*, which were done over a period
of 18 years. The process involved from 200 desktop computers
at its peak down to around 50.



Weakly vs. strongly solved

« Weak: Provide an algorithm that secures a win for one player,
or a draw for either, against any possible moves by the
opponent, from the beginning of the game. That Is, produce at
least one complete ideal game (all moves start to end) with proof
that each move Is optimal for the player making it. It does not
necessarily mean a computer program using the solution will
play optimally against an imperfect opponent. For example, the
checkers program Chinook will never turn a drawn position into
a losing position (since the weak solution of checkers proves
that it is a draw), but it might possibly turn a winning position
Into a drawn position because Chinook does not expect the
opponent to play a move that will not win but could possibly
lose, and so it does not analyze such moves completely.



Weakly vs. strongly solved

« Strong: Provide an algorithm that can produce perfect
moves from any position, even If mistakes have
already been made on one or both sides.

» Ultra-weak: Prove whether the first player will win,
lose or draw from the initial position, given perfect
play on both sides. This can be a non-constructive
proof (possibly involving a strategy-stealing argument)
that need not actually determine any moves of the
perfect play.



Connect Four

 Solved first by James D. Allen (Oct 1, 1988), and
Independently by Victor Allis (Oct 16, 1988). First
player can force a win. Strongly solved by John
Tromp's 8-ply database (Feb 4, 1995). Weakly solved
for all boardsizes where width+height is at most 15 (as
well as 8%8 in late 2015) (Feb 18, 2006).

 The artificial intelligence algorithms able to strongly
solve Connect Four are minimax or negamax, with
optimizations that include alpha-beta pruning, move
ordering, and transposition tables.



Connect Four

» The solved conclusion for Connect Four is first player
win. With perfect play, the first player can force a win,
on or before the 41st move (ply) by starting in the
middle column. The game is a theoretical draw when
the first player starts in the columns adjacent to the
center. For the edges of the game board, column 1 and
2 on left (or column 7 and 6 on right), the exact move-
value score for first player start is loss on the 40th
move, and loss on the 42nd move, respectively. In
other words, by starting with the four outer columns,
the first player allows the second player to force a win.
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2-player limit Hold’em poker Is
solved (Science 2015)

Heads-up Limit Hold’em Poker 1s Solved

Michael Bow]ing,]* Neil Burch,! Michael Johanson,! Oskari Tammelin?
'Department of Computing Science, University of Alberta,

Edmonton, Alberta, TOG2ES, Canada
?Unaffiliated, http://jeskola.net

*To whom correspondence should be addressed; E-mail: bowling @cs.ualberta.ca

Poker is a family of games that exhibit imperfect information, where players
do not have full knowledge of past events. Whereas many perfect informa-
tion games have been solved (e.g., Connect Four and checkers), no nontrivial
imperfect information game played competitively by humans has previously
been solved. Here, we announce that heads-up limit Texas hold’em is now es-
sentially weakly solved. Furthermore, this computation formally proves the
common wisdom that the dealer in the game holds a substantial advantage.
This result was enabled by a new algorithm, CFR™, which is capable of solv-
ing extensive-form games orders of magnitude larger than previously possible.




Heads-up Limit Hold ‘em Poker iIs Solved

 Play against Cepheus here http://poker-
play.srv.ualberta.ca/

12


http://poker-play.srv.ualberta.ca/

Poker

« Abstract: Poker is a family of games that exhibit imperfect
Information, where players do not have full knowledge of past
events. Whereas many perfect-information games have been
solved (e.g., Connect Four and checkers), no nontrivial
Imperfect-information game played competitively by humans
has previously been solved. Here, we announce that heads-up
limit Texas hold’em is now essentially weakly solved.
Furthermore, this computation formally proves the common
wisdom that the dealer in the game holds a substantial
advantage. This result was enabled by a new algorithm, CFR",
which is capable of solving extensive-form games orders of
magnitude larger than previously possible.
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Adversarial search

« We first consider games with two players, whom we
call MAX and MIN. MAX moves first, and then they
take turns moving until the game Is over. At the end of
the game, points are awarded to the winning player,
and penalties given to the loser. A game can be
formally defined as a kind of search problem with the
following elements:

14



Search problem definition

States

Initial state
Actions
Transition model
Goal test

Path cost
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Definition for 8-queens problem

States: Any arrangement of 0 to 8 queens on the
board Is a state.

Initial state: No queens on the board.
Actions: Add a queen to any empty square.

Transition model: Returns the board with a
queen added to the specified square

Goal test: 8 queens are on the board, none
attacked

Path cost: (Not applicable)
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Game definition

Sy: the initial state, which specifies how the game starts
PLAYER(s): defines which player has the move In a state
ACTIONS(s): Returns the set of legal moves In a state

RESULT(s,a): The transition model, which defines the result of
a move.

TERMINAL-TEST(s): A terminal test, which is true when the
game Is over and false otherwise. States where the game has
ended are called terminal states.

UTILITY(s,p): A utility function (also called an objective
function or payoff function), defines the final numeric value for a
game that ends in terminal state s for a player p. In chess, the
outcome Is a win, loss, or draw, with values +1, 0, or ¥2. Some
games have a wider variety of possible outcomes; the payoffs in
backgammon range from 0 to +192. 17



Zero-sum games

A zero-sum game Is (confusingly) defined as
one where the total payoff to all players is the
same for every Instance of the game.

IS chess zero-sum?
Checkers?
Poker?

18



Zero-sum games

» Chess Is zero-sum because every game has payoff of
either 0 +1, 1+0, or %2 + %

o “Constant-sum” would have been a better term, but
zero-sum Is traditional and makes sense If you imagine
that each player is charged an entry fee of Y.

19



Game tree

 The initial state, ACTIONS function, and RESULT function
define the game tree for the game—a tree where the nodes are
game states and the edges are moves. The figure shows part of
the game tree for tic-tac-toe. From the initial state, MAX has
nine possible moves. Play alternates between MAX’s placing an
X and MIN’s placing an O until we reach leaf nodes
corresponding to terminal states such that one player has three In
a row or all the squares are filled. The number on each leaf node
Indicates the utility value of the terminal state from the point of
view of MAX; high values are assumed to be good for MAX
and bad for MIN (which is how the players get their names).

20



Game trees

MAX (x)

MIN (o)

MAX (x)

MIN (o)

ms,x A (partial) game tree for the game of tic-tac-toe. The | P n
state, and MAX moves first, placing an X I an empty square, We show par
alternating moves by MIN (0) and MAX (X), until we event

an be assigned utilities according 10 the rules of the game,

'J.l”} reach terminat




Game trees

 For tic-tac-toe the game tree Is relatively small—fewer
than 9! = 362,880 terminal nodes. But for chess there
are over 10”40 nodes, so the game tree is best thought
of as a theoretical construct that we cannot realize In
the physical world. But regardless of the game tree, it
1s MAX’s job to search for a good move. We use the
term search tree for a tree that Is superimposed on the
full game tree, and examines enough nodes to allow a
player to determine what move to make.

22



Optimal decisions In games

 In a normal search problem, the optimal solution would
be a sequence of actions leading to a goal state—a
terminal state that is a win. In adversarial search, MIN
has something to say about it. MAX therefore must
find a contingent strategy, which specifies MAX’s
move 1n the 1nitial state, then MAX’s moves 1n the
states resulting from every possible response by MIN,
then MAX’s moves 1n the states resulting by every
possible response by MIN to those moves, and so on.
Roughly speaking, an optimal strategy leads to
outcomes at least as good as any other strategy when

one Is playing an infallible opponent. o



Game tree
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Optimal decisions In games

« Even a simple game like tic-tac-toe Is too complex for
us to draw the entire game tree on one page, so we will
instead examine a “trivial” game. The possible moves
for MAX at the root node are labeled al, a2, and a3.
The possible replies to al for MIN are b1, b2, b3, and
so on. This particular game ends after one move each
by MAX and MIN. (We say that this tree Is one move
deep, consisting of two half-moves, each of which is
called a ply.) The utilities of the terminal states in this
game range from 2 to 14.

25



Optimal decisions In games

« Given a game tree, the optimal strategy can be determined from
the minimax value of each node, which we write as
MINIMAX(n). The minimax value of a node is the utility (for
MAX) of being In the corresponding state, assuming that both
players play optimally from there to the end of the game.
Obviously, the minimax value of a terminal state is just its
utility. Furthermore, given a choice, MAX prefers to move to a
state of maximum value, whereas MIN prefers a state of
minimum value. So we have:

MINIMAXI(S)

j UTILITY (& il‘TERMINAL-TEST(S)

1 MAX g€ Actions MINIMAX(RESULT(s, a)) if PLAYER(s) = MAX
min MINIMAX ( RI{SL'LT(.&:._(}.')) if PLAYER(S) — MIN
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Optimal decisions In games

 Let us apply these definitions to the game tree
considered above. The terminal nodes on the bottom
level get their utility values from the game’s UTILITY
function. The first MIN node, labeled B, has three
successor states with values 3, 12, and 8, so Its
minimax value is 3. Similarly, the other two MIN
nodes have minimax value 2. The root node is a MAX
node; Its successor states have minimax values 3, 2,
and 2; so It has a minimax value of 3. We can also
Identify the minimax decision at the root: action al is
the optimal choice for MAX because it leads to the
state with the highest minimax value.

27



Optimal decisions In games

 This definition of optimal play for MAX assumes that
MIN also plays optimally—It maximizes the worst-
case outcome for MAX. What if MIN does not play
optimally? Then it is easy to show (homework
exercise) that MAX will do even better. Other
strategies against suboptimal opponents may do better
than the minimax strategy, but these strategies
necessarily do worse against optimal opponents.

28



The minimax algorithm

* The minimax algorithm computes the minimax decision from
the current state. It uses a simple recursive computation of the
minimax values of each successor state, directly implementing
the defining equations. The recursion proceeds all the way down
to the leaves of the tree, and then the minimax values are
backed up through the tree as the recursion unwinds. For
example, In the figure the algorithm first recurses down to the
three bottom-left nodes and uses the UTILITY function on them
to discover that their values are 3, 12, and 8, respectively. Then
It takes the minimum of these values, 3, and returns it as the
backed-up value of node B. A similar process gives the backed-
up values of 2 for C and 2 for D. Finally, we take the maximum
of 3, 2, and 2 to get the backed-up value of 3 for the root node.

29



Minimax algorithm
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Minimax algorithm

» Does the minimax algorithm resemble any
algorithms we have seen previously?

 How does 1t rate on the “big 47
— Recall that game-tree search is still a form of search.
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Minimax algorithm

» The minimax algorithm performs a complete depth-
first exploration of the game tree. If the maximum
depth of the tree Is m and there are b legal moves at
each point, then the time complexity of the minimax
algorithm 1s O(b™). The space complexity is O(bm) for
an algorithm that generates all actions at once, or O(m)
for an algorithm that generates actions one at a time.
For real games, of course, the time cost Is totally
Impractical, but this algorithm serves as the basis for
the mathematical analysis of games and for more
practical algorithms.

32



Game-tree search pruning

» The problem with minimax search is that the number of game
states It has to examine Is exponential in the depth of the tree.
Unfortunately, we can’t eliminate the exponent, but it turns out
that we can effectively cut it in half. The trick is that it is
possible to compute the correct minimax decision without
looking at every node in the game tree. That Is, we can borrow
the idea of pruning from the search section (recall that A*
pruned the subtree following below Timisoara) to eliminate
large parts of the tree from consideration. The particular
technigue we consider is alpha-beta pruning. When applied to
a standard minimax tree, it returns the same move as minimax
would, but prunes away branches that cannot possibly influence
the final decision.
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Alpha-beta pruning

« Consider again the two-play game tree. Let’s go
through the calculation of the optimal decision once
more, this time paying careful attention to what we
know at each point in the process. The steps are
explained in the figure on the next page. The outcome
IS that we can identify the minimax decision without
ever evaluating two of the leaf nodes.
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Alpha-beta pruning
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Alpha-beta pruning

« Another way to look at this is as a simplification of the formula
for MINIMAX. Let the two unevaluated successors of node C in
the figure have values x and y. Then the value of the root node Is
given by:

MIMIMAX(root)

= max(min(3,12,8),min(2,Xx,y),min(14,5,2)
= max(3,min(2,x,y),2)

= max(3,z,2) where z = min(2,X,y) <= 2

= 3.

 In other words, the value of the root and hence the minimax
decision are independent of the values of the pruned leaves X
and .

37



Alpha-beta pruning

 Alpha-beta pruning can be applied to trees of any depth,
and it I1s often possible to prune entire subtrees rather
than just leaves. The general principle is this: consider a
node n somewhere In the tree (see next figure) such that
Player has a choice of moving to that node. If Player
has a better choice m either at the parent node of n or at
any choice point further up, then n will never be
reached In actual play. So once we have found out
enough about n (by examining some of its descendants)
to reach this conclusion, we can prune it.

38



General alpha-beta pruning

Opponent

Player

Opponent

The general case for alpha—beta pruning. If m is better than n for Player,

Figure 5.6
i1l never get to n in play.
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Alpha-beta search

« Remember that minimax search Is depth-first, so at any
one time we just have to consider the nodes along a
single path in the tree. Alpha-beta pruning gets its
name from the following two parameters that describe
bounds on the backed-up values that appear anywhere
along the path:

— o = the value of the best (i.e., highest-value) choice we have
found so far at any choice point along the path for MAX.

— [ = the value of the best (i.e., lowest-value) choice we have
found so far at any choice point along the path for MIN.

40



Alpha-beta search algorithm

 Alpha-beta search updates the values of o and B as it
goes along and prunes the remaining branches at a
node (i.e., terminates the recursive call) as soon as the
values of the current node Is known to be worse than
the current o or B value for MAX or MIN, respectively.
The complete algorithm iIs given on the next slide. We
can trace Its behavior when applied to the example.
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Alpha-beta search algorithm

: ) returns an action
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Move ordering

» The effectiveness of alpha-beta pruning is highly
dependent on the order in which the states are examined.
For example, in the figure we could not prune any
successors of D at all because the worst successors
(from the point of view of MIN) were generated first. If
the third successor of D had been generated first, we
would have been able to prune the other two. This
suggests that it might be worthwhile to try to examine
first the successors that are likely to be best.
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Alpha-beta move ordering

« |If this can be done, then it turns out that alpha-beta needs to
examine only O(b”(m/2)) nodes to pick the best move, instead
of O(bm) for minimax. This means that the effective branching
factor becomes sqrt(b) instead of b — for chess, about 6 instead
of 35. Put another way, alpha-beta can solve a tree roughly twice
as deep as minimax in the same amount of time. If successors
are examined in random order rather than best-first, the total
number of nodes examined will be roughly O(b”(3m/4)) for
moderate b. For chess, a fairly simple ordering function (such as
trying captures first, then threats, then forward moves, and then
backward moves) gets to within about a factor of 2 of the best-
case O(b”(m/2)) result.
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Alpha-beta move ordering

« Adding dynamic move-ordering schemes, such as trying the
moves that were found to be best in the past, brings us quite
close to the theoretical limit. The past could be the previous
move—often the same threats remain— or it could come from
previous exploration of the current move. One way to gain
Information from the current move is with iterative deepening
search. First, search 1 ply deep and record the best path of
moves. Then search 1 ply deeper, but use the recorded path to
Inform move ordering. As we saw In the search module,
Iterative deepening on an exponential game three adds only a
constant fraction to the total search time, which can be more
than made up from better move ordering. The best moves are
often called killer moves and to try them first is called the killer
move heuristic. 45



Alpha-beta move ordering

 In the search module, we noted that repeated states in the search
tree can cause an exponential increase in search cost. In many
games, repeated states occur frequently because of
transpositions—different permutations of the move sequence
that end up In the same position. For example, if White has one
move, al, that can be answered by Black with b1 and an
unrelated move a2 on the other side of the board that can be
answered by b2, then the sequences [al,b1,a2,b2] and
[a2,b2,a1,b1] both end up in the same position. It is worthwhile
to store the evaluation of the resulting position in a hash table
the first time it 1s encountered so that we don’t have to
recompute it on subsequent occurrences. The hash table of
previously seen positions Is called a transposition table; it is

analogous to the explored list in GRAPH-SEARCH. .



Transposition table

 Using a transposition table can have a dramatic effect,
sometimes as much as doubling the reachable search
depth in chess. On the other hand, if we are evaluating
a million nodes per second, at some point it Is not
practical to keep all of them in the transposition table.
Various strategies have been used to choose which
nodes to keep and which to discard.
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Evaluation function

« The minimax algorithm generates the entire game search space,
whereas the alpha-beta algorithm allows us to prune large parts
of it. However, alpha-beta still has to search all the way to
terminal states for at least a portion of the search space. This
depth is usually not practical, because moves must be made in a
reasonable amount of time—typically a few minutes at most.
Claude Shannon’s paper Programming a Computer for Playing
Chess (1950) proposed instead that programs should cut off the
search earlier and apply a heuristic evaluation function to states
In the search, effectively turning nonterminal nodes into
terminal leaves.

48



Evaluation function

* |n other words, the suggestion is to alter minimax or
alpha-beta in two ways:

— Replace the utility function by a heuristic evaluation function
EVAL, which estimates the position’s utility

— Replace the terminal test by a cutoff test that decides when
to apply EVAL.

 This gives the following for heuristic minimax for state
s and maximum depth d:

H-MINIMAX(s,d) =
EVAL(s) if CUTO}
S MaXoe A ctions(s) H-MINIMAX(RESULT(s,a),d + 1) if PLAY!
NG e A chions(s) H-MINIMAX(RESULT (s,a),d + 1) if PLAY

49



Adversarial search summary

A game can be defined by the initial state, legal actions at each
state, the result of each action, a terminal test, and a utility
function that applies to terminal states.

In two-player zero-sum games with perfect information, the
minimax algorithm can select optimal moves by a depth-first
enumeration of the game tree.

The alpha-beta search algorithm computes the same optimal
move as minimax, but achieves much greater efficiency by
eliminating subtrees that are provably irrelevant.

Usually it is not feasible to consider the whole game tree (even
with alpha-beta), so we need to cut the search off at some point
and apply a heuristic evaluation function that estimates the

utility of a state.
50



Adversarial search extensions

Many game programs precompute tables of best opening and
endgame moves so they can look up a move rather than search.

Games of chance can be handled by an extension to the minimax
algorithm that evaluates a chance node by taking the average
utility of all children, weighted by the probability of each child.

Optimal play in games of imperfect information, such as
Kriegspiel and bridge, requires reasoning about the current and
future belief states of each player. A simple approximation can
be obtained by averaging the value of an action over each
possible configuration of missing information.

Programs have bested even champion human players at games
such as chess, checkers, and Othello. Humans retain the edge in
several games of imperfect information, such as poker, bridge,
and Kriegspiel, and in games with very large branching factors
and little good heuristic knowledge, such as Go (outdate@l.



Constraint satisfaction

* In the first portion of the search module, we explored the idea
that problems can be solved by searching in a space of states.
These states can be evaluated by domain-specific heuristics and
tested to see whether they are goal states. From the point of view
of the search algorithm, however, each state Is atomic, or
divisible—a black box with no internal structure.

« \We now describe a way to solve a wide variety of problems
more efficiently. We use a factored representation for each
state: a set of variables, each of which has a value. A problem is
solved when each variable has a value that satisfies all the
constraints on the variable. A problem describe this way Is
called a constraint satisfaction problem, or CSP.
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Constraint satisfaction
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Constraint satisfaction problems

A constraint satisfaction problem consists of three
components, X, D, and C:
— X Is a set of variables, {X,,...,X,}.
— D Is a set of domains, {D,,...,D,}, one for each variable.

— C Is a set of constraints that specify allowable combinations
of values.
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Example problem: Map coloring

Suppose that, having tired of Romania, we are looking at a map
of Australia showing each of its states and territories. We are

given the task of coloring each region either red, green, or blue
In such a way that no neighboring regions have the same color.

To formulate this as a CSP, we define the variables to be the
regions: X = {WA, NT, Q, NSW, V, SA, T}

The domain of each variable is the set D, = {red, green, blue}.

The constraints require neighboring regions to have distinct
colors. Since there are nine places where regions border, there
are nine constraints: C = {SAI=WA, SAI=NT,SA!=Q, etc.}

SA!=WA is shortcut for ((SA,WA),SAI=WA), where SAI=WA
can be fully enumerated in turn as {(red,green),(red,blue),...}
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Example problem: Map coloring

» There are many possible solutions to this problem,
such as ...
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Example problem: Map coloring

» There are many possible solutions to this problem, such as ...
{WA=red, NT=green, Q=red, NSW=green, VV=red, SA=blue, T=red}

It can be helpful to visualize a CSP as a constraint graph. The
nodes of the graph correspond to variables of the problem, and a
link connects any two variables that participate in a constraint.

of



Constraint satisfaction problem

 Each domain D, consists of a set of allowable values, {v,,...,v,}
for variable X;. Each constraint consists of a pair (scope, rel),
where scope Is a tuple of variables that participate in the
constraint and rel is a relation that defines the values that those
variables can take on. A relation can be represented as an
explicit list of all tuples of values that satisfy the constraint, or
as an abstract relation that supports two operations: testing if a
tuple I1s a member of the relation and enumerating the members
of the relation. For example, if X1 and X2 both have the domain
{A,B}, then the constraint saying the two variables must have
different values can be written as ((X1,X2),[(A,B),(B,A)]) or as
((X1,X2),X1 1= X2).
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CSP

« To solve a CSP, we need to define a state space and the
notion of a solution. Each state in a CSP Is defined by
an assignment of values to some or all of the variables,
{X1=v1,X2=v2,...} An assignment that does not
violate any constraints is called a consistent or legal
assignment. A complete assignment is one in which
every variable is assigned, and a solution to a CSP is a
consistent, complete assignment. A partial
assignment is one that assigns values to only some of
the variables.
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Why formulate a problem as a CSP?

« One reason is that the CSPs yield a natural representation for a
wide variety of problems; if you already have a CSP-solving
system, it Is often easier to solve a problem using it than to
design a custom solution using another search technique. In
addition, CSP solvers can be faster than state-space searchers
because the CSP solver can quickly eliminate large swatches of
the search space. For example, once we have chosen {SA=blue}
In the Australia problem, we can conclude that none of the five
neighboring variables can take on the value blue. Without taking
advantage of constraint propagation, a search procedure would
have to consider 3°5=243 assignments for the five neighboring
variables; with constraint propagation we never have to consider
blue as a value, so we have only 2"5=32 assignments to look at,
a reduction of 87%. 50



Why formulate a problem as a CSP?

 In regular state-space search we can only ask: is this specific
state a goal? No? What about this one? With CSPs, once we find
out that a partial assignment Is not a solution, we can
Immediately discard further refinements of the partial
assignment. Furthermore, we can see why the assignment is not
a solution—we see which variables violate a constraint—so we
can focus attention on the variables that matter. As a result,
many problems that are intractable for regular state-space search
can be solved quickly when formulated as a CSP.
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Example problem: Job-shop scheduling

» Factories have the problem of scheduling a day’s worth of jobs,
subject to various constraints. In practice, many of these
problems are solved with CSP techniques. Consider the problem
of scheduling the assembly of a car. The whole job is composed
of tasks, and we can model each task as a variable, where the
value of each variable Is the time that the task starts, expressed
as an integer number of minutes. Constraints can assert that one
task must occur before another—for example, a wheel must be
Installed before the hubcap iIs put on—and that only so many
tasks can go on at once. Constraints can also specify that a task
takes a certain amount of time to complete.
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» We consider a small part of the car assembly,
consisting of 15 tasks: install axles (front and
back), affix all four wheels (right and left, front
and back), tighten nuts for each wheel, affix
hubcaps, and inspect the final assembly. We can
represent the tasks with 15 variables:
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« X ={AxleF, AxleB, WheelRF,...,NutsRF,...,
CapRF,...,Inspect}

* The value of each variable iIs the time that the task
starts. Next we represent precedence constraints
between individual tasks. Whenever a task T1 must
occur before task T2, and task T1 takes duration d1 to
complete, we add an arithmetic constraint of the
form. ..
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T1+dl<=T2

In our example, the axles have to be in place
before the wheels are put on, and it takes 10
minutes to install an axle, so we write:

AXxleF + 10 <= WheelRF;
AxleF + 10 <= WheelLF;
AxleB + 10 <= WheelRB:
AxleB + 10 <= WheelLB.
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» Next we say that, for each wheel, we must affix
the wheel (which takes 1 minute), then tighten
the nuts (2 minutes), and finally attach the
hubcab (1 minute, but not represented yet):
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neelRF + 1 <= NutsRF;
neelLF + 1 <= NutsLF;
neelRB + 1 <= NutsRB;
neelLB + 1 <= NutsLB;
NutsRF + 2 <= CapRF;
NutsLF + 2 <= CapLF;
NutsRB + 2 <= CapRB,;
NutsLB + 2 <= CapLB.

=S ===
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« Suppose we have four workers to install wheels, but they have
to share one tool that helps put the axle in place. We need a
disjunctive constraint to say that AxleF and AxleB must not
overlap in time; either one comes first or the other does:

. (AxleF + 10 <= AxleB) OR (AxleB + 10 <= AxleF)

« This looks like amore complicated constraint, combining
arithmetic and logic. But it still reduces to a set of pairs of
values that AxleF and AxleB can take on.
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« \We also need to assert that the inspection comes last
and takes 3 minutes. For every variable except Inspect
we add a constraint of the form X + dX <= Inspect.

 Finally, suppose there iIs a requirement to get the whole
assembly done in 30 minutes. We can achieve that by
limiting the domain of all variables: D1 = {1,2,3,...,27}
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 This particular problem is trivial to solve, but CSPs
have been applied to job-shop scheduling problems
like this with thousands of variables. In some cases,
there are complicated constraints that are difficult to
specify in the CSP formalism, and more advanced
planning techniques are used, which will discuss in the
Planning Module of the course.
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CSP applications

« Examples of simple problems that can be modeled as a
constraint satisfaction problem include:
— Eight queens puzzle
— Map coloring problem
— Sudoku, Crosswords, Futoshiki, Kakuro (Cross Sums), Numbrix, Hidato
and many other logic puzzles
» These are often provided with tutorials of ASP, Boolean SAT
and SMT solvers. In the general case, constraint problems can
be much harder, and may not be expressible in some of these
simpler systems.

« "Real life" examples include automated planning and resource
allocation. An example for puzzle solution is using a constraint
model as a Sudoku solving algorithm.
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Variations on the CSP formalism

e Standard variant: discrete, finite domains
— E.g., map coloring and job-shop coloring

— The 8-queens problem can also be viewed as a finite-domain
CSP, where the variables Q1-Q8 are the positions of each
queen in columns 1-8 and each variable has the domain
Di={1,...,8}

 Discrete domain can be infinite, such as the set of
Integers or strings
— Can no longer enumerate all combinations of values.

— Instead use constraint language that can understand
constraints such as T1 + d1 <= T2 directly, without

enumerating the set of pairs of allowable values for (T1,T2)
73



Variations on the CSP formulation

 Special solution algorithms (which we will see shortly)
exist for linear constraints on integer variables—that
IS, constraints such as the one just given, in which each
variable appears only in linear form. It can be shown
that no algorithm exists for solving general nonlinear
constraints on integer variables.
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Variations on the CSP formulation

 Constraint satisfaction problems with continuous domains are
common in the real world and are widely studied in the field of
operations research. For example, the scheduling of experiments
on the Hubble Space Telescope requires very precise timing of
observations; the start and finish of each observation and
maneuver are continuous-valued variables that must obey a
variety of astronomical, precedence, and power constraints. The
best-known category of continuous-domain CSPs is that of
linear programming problems, where constraints must be
linear equalities or inequalities. Linear programming problems
can be solved in time polynomial in the number of variables.
Problems with different types of constraints and objective
functions have also been studied—aquadratic programming,

second-order conic programming, and so on. 75



CSP variations

« The simplest type of constraint is a unary constraint, which
restricts the value of a single variable. For example, in the map-
coloring problem it could be the case that South Australians
won’t tolerate the color green; we can express that with the
unary constraint <(SA), SA !'= green>

« A binary constraint relates two variables. For example, SA !=
NSW is a binary constraint. A binary CSP Is one with only
binary constraints; it can be represented as a constraint graph

« \We can also describe higher-order constraints, such as asserting
that the value of Y Is between X and Z, with the ternary
constraint Between(X,Y,Z)
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CSP variations

A constraint involving an arbitrary number of variables is called
a global constraint (The name is traditional but confusing
because it need not involve all the variables in a problem). One
of the most common global constraints is Alldiff, which says that
all of the variables involved in the constraint must have different
values. In Sudoku problems, all variables in a row or column
must satisfy an Alldiff constraint. Another example is provided
by cryptarithmetic puzzles. Each letter represents a different
digit. For the example problem this would be represented as the
global constraint Alldiff(F,T,U,W,R,0).
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Cryptarithmetic problem

(a)

Figure 6.2 (a) A cryptarithmetic problem. Each letter stands for a distinct digit; the aim is
to find a substitution of digits for letters such that the resulting sum is arit :m)!iczlﬂ_\' correct,
with the added restriction that no leading zeroes are allowed. (b) The constraint hypergraph
for the cryptarithmetic problem, showing the Alldif] \l""j"~‘~-‘l (square box at the top) as
well as the column addition constraints (four square boxes in the middle). The variables C1,
O, and C5 represent the carry digits for the three columns.




Cryptarithmetic problem

« The addition constraints on the four columns of the puzzle can
be written as the following n-ary constraints:
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Cryptarithmetic problem

« The addition constraints on the four columns of the puzzle can
be written as the following n-ary constraints:
- 0+0=R+10*C10
- C10+W+W=U+10*C100
— C100+T+T=0+10*C1000
— C1000=F

« Where C10, C100, and C1000 are auxiliary variables
representing the digit carried over into the tens, hundreds, or
thousands column. These constraints can be represented in a
constraint hypergraph. A hypergraph consists of ordinary
nodes (the circles in the figure) and hypernodes (the squares)
which represent n-ary constraints.
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CSP variations

 Alternatively, homework exercise asks you to prove every
finite-domain constraint can be reduced to a set of binary
constraints if enough auxiliary variables are introduced, so we
could transform any CSP into one with only binary constraints;
this makes the algorithms simpler.

» There are however two reasons why we might prefer a global
constraint such as Alldiff rather than a set of binary constraints.
First, it Is easier and less error-prone to write the problem
description using Alldiff. Second, it is possible to design special-
purpose inference algorithms for global constraints that are not
available for a set of more primitive constraints, which we will
describe.
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CSP variations

The constraints we have described so far have all been absolute
constraints, violation of which rules out a potential solution.
Many real-world CSPs include preference constraints
Indicating which solutions are preferred. For example, in a
university class-scheduling problem there are absolute constraints
that no professor can teach two classes at the same time. But we
also may allow preference constraints: Prof. R might prefer
teaching in the morning, whereas Prof. N prefers teaching in the
afternoon. A schedule that has Prof. R teaching at 2 p.m. would
still be an allowable solution (unless Prof. R happens to be the
department chair) but would not be an optimal one.
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CSP variations

 Preference constraints can often be encoded as costs on
Individual variable assignments—for example,
assigning an afternoon slot for Prof. R costs 2 points
against the overall objective function, whereas a
morning slot costs 1. With this formulation, CSPs with
preferences can be solved with optimization search
methods, either path-based or local. We call such a
problem a constraint optimization problem, or COP.
Linear/integer/nonlinear programming problems do
this kind of optimization.
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Inference In CSPs

* In regular state-space search, an algorithm can only do
one thing: search. In CSPs there iIs a choice: an
algorithm can search (choose a new variable
assignment from several possibilities) or do a specific
type of inference called constraint propagation:
using the constraints to reduce the number of legal
values for a variable, which In turn can reduce the legal
values for another variable, and so on. Constraint
propagation may be intertwined with search, or it may
be done as a preprocessing step, before search starts.
Sometimes this preprocessing can solve the whole

problem, so no search is required at all. =



CSP Inference

* The key idea Is local consistency. If we treat
each variable as a node In a graph (like for the
Australia constraint graph) and each binary
constraint as an arc (edge), then the process of
enforcing local consistency In each part of the
graph causes inconsistent values to be
eliminated throughout the graph. There are
several different types of local consistency:
node consistency, arc consistency, path

consistency, k-consistency.
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Arc consistency

« A variable in a CSP is arc-consistent if every value in its
domain satisfies the variable’s binary constraints. For formally,
Xl Is arc-consistent with respect to another variable Xj if for
every value in the current domain Di there is some value in the
domain Dj that satisfies the binary constraint on the arc (Xi,X)).
A network Is arc-consistent if every variable Is arc-consistent
with every other variable.

» For example, consider the constraint Y = X2 where the domain
of both X and Y is the set of digits. We can write this explicitly
as ...
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Arc consistency

« A variable in a CSP is arc-consistent if every value in its
domain satisfies the variable’s binary constraints. For formally,
Xl Is arc-consistent with respect to another variable Xj if for
every value in the current domain Di there is some value in the
domain Dj that satisfies the binary constraint on the arc (Xi,X)).
A network Is arc-consistent if every variable Is arc-consistent
with every other variable.

» For example, consider the constraint Y = X2 where the domain
of both X and Y is the set of digits. We can write this explicitly
as ... <(X,Y),{(0,0),(1,1),(2,4),(3,9)}>. To make X arc-
consistent with respect to Y, we reduce X’s domain to {0,1,2,3}.
If we also make Y arc-consistent with respect to X, then Y’s
domain becomes {0,1,4,9} and the whole CSP Is arc-consistent.
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Arc consistency

« How about for the Australia map-coloring problem?
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Arc consistency

 On the other hand, arc consistency can do nothing for the
Australia map-coloring problem. Consider the following
Inequality constraint on (SA,WA):.
— {(red,green),(red,blue),(green,red),(green,blue),(blue,red),(blue,green) }
« No matter what value you choose for SA (or for WA), there Is a
value value for the other variable. So applying arc consistency
has no effect on the domains of either variable.
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Arc consistency

« The most popular algorithm for arc consistency is called AC-3.
To make every variable arc-consistent, the AC-3 algorithm
maintains a queue of arcs to consider (Actually the order of
consideration Is not important, so the data structure is really a
set, but tradition calls it a queue). Initially the queue contains all
the arcs in the CSP. (Each binary constraint becomes two arcs,
one In each direction.) AC-3 then pops off an arbitrary arc
(X1,X]) from the queue and makes Xi arc-consistent with respect
to X]. If this leaves Di unchanged, the algorithm just moves to
the next arc. But If this revises Di (makes the domain smaller),
then we add to the queue all arcs (Xk,Xi) where Xk Is a
neighbor of Xi. We need to do that because the change in Di
might enable further reductions in the domains of DK, even if we

have previously considered XKk. 01



Arc consistency

 |f Di Is revised down to nothing, then we know the
whole CSP has no consistent solution, and AC-3 can
Immediately return failure. Otherwise, we keep
checking, trying to remove values from the domains of
variables until no more arcs are in the queue. At that
point, we are left with a CSP that Is equivalent to the
original CSP—they both have the same solutions—but
the arc-consistent CSP will in most cases be faster to
search because its variables have smaller domains.

92



Arc consistency

function AC-3( ¢sp) returns false if an inconsistency is found and true otherwise
inputs: ¢sp, a binary CSP with components (X. D. (!
local variables: gueue. a queue of arcs, initially all the arcs in csp

while queue is not empty do
(Xi, X;) = REMOVE-FIRST(quene)
if REVISE(esp, Xy, X)) then
if size of D; = 0 then return fa/se
for each Xy in X NEIGHBORS - { X', } do add (X;.. .
return {rue

| =

function REVISE( csp, X, X;) returns true iff we revise the do
revised — false
for each z in D; do
if no value y in D; allows (z.y) to satisfy the constraint |
delete = from D,
revised «— true
return revised

» .

F igure 63  The arc-consistency algorithm AC-3. After apply

IS arc-consistent, or some variable has an empty domain. indicatine
§01vcd. The name “AC-3" was used by the algorithm’s inventor (M}
It's the third version developed in the paper.
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Wumpus world
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Wumpus world
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Optimization

* An Integer programming problem is a mathematical
optimization or feasibility program in which some or
all of the variables are restricted to be integers. In
many settings the term refers to integer linear
programming (ILP), in which the objective function
and the constraints (other than the integer constraints)
are linear.

* Integer programming Is NP-hard. A special case, 0-1
Integer linear programming, in which unknowns are
binary, and only the restrictions must be satisfied, IS
one of Karp's 21 NP-complete problems.

— By contrast, polynomial-time algorithms exist for linear
programming, which we will see next. 97



Integer linear programs

Canonical and standard form for ILPs |[edit |

maximize cTx

subject to

and

maximize cTx

subject to Ax+s=hb,
s >0,

e

and xed”,

where ¢, b are vectors and A is a matrix. Note that similar to linear programs, ILPs not in standard form can be converted to standard form by eliminating

inequalities by introducing slack variables (8} and replacing variables that are not sign-constrained with the difference of two sign-constrained variables
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ILP example

Example [edi]
The !;]T'Eph on the ri!; shows the fD”U".-'L"iﬂ!;] pT'UmETT'I.

max y

The feasible integer points are shown in red, and the red dashed lines indicate their convex hull,
ich is the smallest polyhedron that contains all of these points. The blue lines together with the

coordinate axes define the polyhedron of the LP relaxation. ich is given by the inequalities

tted line as far

points (1, 2) and (2, 2) which both have an objective value of 2. The unique optimum of the

LPopt

1

relaxation is (1.8, 2.8) with objective value of 2.8. Note that if the solution of the relaxation is IP polytope with LP relax:

rounded to the nearest integers, it is not feasible for the ILP

Ix+ 2y =12
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|LP applications

Applications [edi]
There are two main reasons for using integer variables when modeling problems as a linear program:

1. The integer variables represent quantities that can only be integer. For example, it is not possible to build 3.7 cars.
2. The integer variables represent decisions and so should only take on the value 0 or 1.

These considerations occur frequently in practice and so integer linear programming can be used in many applications areas, some of which are briefly
described below.

Production planning | edit]

Mixed integer programming has many applications in industrial production, including job-shop modelling. One important example happens In agricultural
production planning involves determining production yield for several crops that can share resources (e.g. Land, labor, capital, seeds, fertilizer, etc.). A possibl
objective is to maximize the total production, without exceeding the available resources. In some cases, this can be expressed in terms of a linear program, but
variables must be constrained to be integer.

Scheduling [ edit]

These problems involve service and vehicle scheduling in transportation networks. For example, a problem may involve assigning buses or subways to
individual routes so that a timetable can be met, and also to equip them with drivers. Here binary decision variables indicate whether a bus or subway is
assigned to a route and whether a driver is assigned to a particular train or subway.

Telecommunications networks | edit]

The goal of these problems is to design a network of lines to install so that a predefined set of communication requirements are met and the total cost of the
network is minimal (4 This requires optimizing both the topology of the network along with the setting the capacities of the various lines. In many cases, the
capacities are constrained to be integer quantities. Usually there are, depending on the technology used, additional restrictions that can be modeled as a lineg
inequalities with integer or binary variables.

Cellular networks [ edit |

The task of frequency planning in GSM mobile networks involves distributing available frequencies across the antennas so that users can be served and
interference is minimized between the antennas_ ¥l This problem can be formulated as an integer linear program in which binary variables indicate whether a
frequency is assigned to an antenna.




NP-hardness of ILP

Proof of NP-hardness [edit]

The following is a reduction from minimum vert over to integer programming that will serve as the proof of NP-hardness.

Let G = [1"', E] be an undirected graph. Define a linear program as follows:

min }_-L Yy

Yuv € E
YoeV
YeeV
jram is a subset of vertices. The first constraint implies that at le
one end point of every edge is included in this subset. Therefore, the solution describes a vertex cover. Additionally given some vertex cover C, y,, can be set
to 1 forany v € C' and to 0 for any v ¢ C thus giving us a feasible solution to the integer program. Thus we can conclude that if we minimize the sum of Yy We
have also found the minimum vertex cover [
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Homework for next class

» Chapters 2-3 from Jensen textbook.
« HW1: out 9/5 due today
« HW?2: out this week due 10/17
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