
Elo Ratings for Structural Credit Assignment in Multiagent Systems

Logan Yliniemi and Kagan Tumer
Oregon State University

Corvallis, OR, USA
logan.yliniemi@engr.orst.edu, kagan.tumer@oregonstate.edu

Abstract
In this paper we investigate the applications of Elo ratings
(originally designed for 2-player chess) to a heterogeneous
nonlinear multiagent system to determine an agent’s over-
all impact on its team’s performance. Measuring this impact
has been attempted in many different ways, including reward
shaping; the generation of heirarchies, holarchies, and teams;
mechanism design; and the creation of subgoals. We show
that in a multiagent system, an Elo rating will accurately re-
flect an agent’s ability to contribute positively to a team’s suc-
cess with no need for any other feedback than a repeated bi-
nary win/loss signal. The Elo rating not only measures “per-
sonal” success, but simultaneously success in assisting other
agents to perform favorably.

Introduction
A key problem in the field of multiagent systems is that of
credit assignment; that is, given a team of agents and their
performance, which of the agents were responsible for the
team’s success (Agogino and Tumer 2004)? Perhaps each
agent contributed equally, but it is possible that one agent
contributed significantly more than another. Calculating this
contribution and rating agent successes is pursued in many
works, and necessary for many techniques (Panait, Sullivan,
and Luke 2006; Barto and Mahadevan 2003; Devlin and Ku-
denko 2011; Parkes and Duong 2007).

In professional chess, a simple calculation introduced by
Arpad Elo was adopted in 1960 that calculated the skill of a
player based on their wins and losses, and the calculated skill
of their opponents (Elo 1978). Chess, however, is a compet-
itive two-agent system where each agent’s performance is
based solely on its skill. In a multiagent setting with static
teams, it is a simple extension of the same math: the static
team can be treated as a single unit, and the team as a whole
deserves all credit for the win or loss.

In a situation where teams are no longer static, but must
be reorganized, created, or adjusted in an ad-hoc manner
to achieve a preset task, the credit assignment problem be-
comes key. In such a case, determining how an agent’s rating
is based on its own skill and how it is based on the team’s
skill is the critical credit assignment problem in multiagent
systems. In a team with 5 agents, it might seem as though
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the teammates would hold≈80% control over an agent’s Elo
rating, invalidating the use of an Elo rating system.

In this work we show that even when participating
with constantly-changing teammates, a pure Elo calcula-
tion works surprisingly well in correlating actual agent skill
(known, in this case) to Elo rating, and is not overly sensi-
tive to any tuning parameters explored. This sets the stage
for future work which could use an Elo rating as a fitness
calculation for many different learning or search algorithms.

Background & Experimental Setup
This section includes background on Elo ratings, and our
Gaussian Draw Domain (GDD), in which two teams of five
randomly-selected agents compete in a win-loss match.

This domain was selected for initial exploration because
it is extremely quick to execute, but still offers some inter-
esting non-linear relationships between agents.

Elo Calculation
The Elo system assumes each player has a skill that is drawn
from a random distribution (sometimes a player will have a
“good” game, sometimes a player will have a “bad” game);
the Elo Rating attempts to find the center of that distribution
and converge to that value.

We use a simple Elo Rating calculation after each match.
In a game between two playersA andB with current ratings
of RA and RB respectively, the probability that player A
will win is (Glickman and Jones 1999):

EA =
1

1 + α−(RA−RB)/β
(1)

Where α = 10 and β = 400 are standard values. Af-
ter receiving a win-loss result, the rating for each player is
changed by:

Rplayer ← Rplayer +K(S − Eplayer) (2)
where K is a pre-set factor with a given reduction schedule,
S is the outcome (1 for victory, 0 for defeat), and Eplayer is
the expected probability of victory for that player.

We chose the arbitrary initial K value of 55, and reduce it
by 1 for every match an agent participates in, until it reaches
a value of 25. Extreme K values do affect the speed of con-
vergence, but as long as K is reduced, the Elo rating will
converge in the single agent case. We found that in a multi-
agent implementaiton, this convergence still occurs.



Agent Parameters and Team Organization
Once created, all 13 parameters used to describe an agent are
held constant through all simulations. These parameters are:
5 skill mean and 5 skill variation values (one of each for each
heterogeneous role in the GDD, used in Equations 3 and 5);
a “persuasiveness” and a “stubbornness” rating, which af-
fect the team’s self-organization; and a vector that describes
which subteam the agent contributes to when holding role
5 (see Match Dynamics). Each agent has full knowledge
of their mean skill levels, and can state their preference for
each role, but has no knowledge of other agents’ skill levels.

Each match is formed by randomly selecting 10 agents
within a specified Elo rating of each other for competition.
These 10 agents are randomly split into two teams of 5,
which we term “Red” and “Blue” teams. Each team then
self-organizes such that each agent fills one of 5 heteroge-
neous roles. An agent always attempts to acquire their best-
performing role, but in the case of multiple agents desiring
the same role, their persuasiveness and stubbornness ratings
are used to attempt to assign the role. In cases where the
agents cannot agree, the role is randomly assigned.

Match Dynamics
We use a 2-phase simulation which models a system in
which a team of robots search for an injured hiker. In the first
phase, the team must work in sub teams to find the hiker:

Tsubteam =
∑

role∈subteam

Nor(µrole, σrole) (3)

In our 5-role GDD, three subteams are created: (roles 1
and 2) (role 3) and (role 4). Role 5 may contribute in full to
one subteam, or may spread its contribution across multiple
subteams (this choice is held constant on a per-agent basis).
An “advantage” is carried forward to the second phase for
the team that found the hiker more quickly (as this is a de-
sirable behavior):

δsubteam = φ · (Tsubteam,Blue − Tsubteam,Red)2 (4)

where φ is a parameter held constant (φ = 0.2) through
all trials. In phase 2, the entire team works as a whole to
evacuate the injured hiker:

Tteam =
∑

subteams

I · δsubteam +
∑
roles

Nor(µrole, σrole) (5)

Where I is an indicator function which takes a value of 1 if
the subteam won in phase 1, and 0 if the subteam lost. The
team with the higher T value wins.

Results
Using this GDD, we carried out a series of large-scale ex-
periments. We used 10,000 agents over 1 million matches:
9900 random agents as well as 100 specially designed agents
to test hypotheses. To apply the Elo system, in a multiagent
team, we aggregate the individual agent Elo ratings on each
team by taking the mean Elo rating of all members. From
the ending Elo distribution, we performed a Principle Com-
ponent Analysis (PCA) on the agent parameters and attained
Elo ratings. We discovered many interesting phenomena.
Here, we discuss three:
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Figure 1: Elo rating vs. mean skill across all roles. The
ellipsis presented are the equiprobable curves within which
68% of the population (inner) and 95% of the population
(outer) reside. The positive slope of their major axis shows
a strong positive correlation between Elo rating and mean
skill.

1. High Elo ratings identify agents with strong mean skills
across all roles.

2. Agents which are highly skilled in one role and unwilling
to cede that role gain high Elo ratings. Agents which are
evenly skilled across many roles and willing to take on
any role gain high Elo ratings.

3. An agent whose Elo is artificially perturbed (lowered or
raised) will re-converge to the same Elo.

Item (1) demonstrates that because Elo correlates with
mean skill (shown in Figure 1): better performing agents on
an individual level tend to earn a higher Elo rating. Item (2)
demonstrates that it is not only the individual performance
of the agent that affects their Elo rating, but also their co-
operation with teammates: the credit or blame for the wins
and losses that the agent participated in are embodied within
their Elo rating. Item (3) demonstrates that the Elo ratings
are not fragile to perturbances.

Conclusion and Future Work
In this work we show that an Elo calculation initially in-
tended for 2-player chess shows a number of properties that
are desirable in multiagent systems to address the structural
credit assignment problem: Elo positively correlates with
agent skill, and positively correlates with performing actions
that are beneficial to the the team’s performance as a whole,
while remaining robust to disturbances.

Selecting the the five agents that attained the highest Elo
does not form the optimal hiker rescue team out of the
10,000 agents, but it does select a high-performing team.
In domains that the optimal is not known or attainable, Elo
could be a good way to select desirable agents. This allows
us to use a search technique, like an evolutionary algorithm,
with Elo as a fitness calculation. Additionally, tracking sep-
arate Elo ratings for performance on each role could lead to
interesting comparisons with a single aggregate rating.
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