Math 2371 Calc III - Sample Test 3-2017 Version 2

1. Is the following vector field conservative?

$$
\vec{F}=<2 x y+3 z^{3}, x^{2}+1,9 x z^{2}>
$$

If so, determine the potential function f such that $\vec{F}=\vec{\nabla} f$ Use this to evaluate

$$
\int_{C}\left(2 x y+3 z^{3}\right) d x+\left(x^{2}+1\right) d y+9 x z^{2} d z
$$

where C is any curve joining $(0,0,0)$ and $(1,-1,1)$.
2. Evaluate the following line integral $\int_{c} x y d s$ where c is ccw direction around the circle $x^{2}+y^{2}=4$ from $(0,2)$ to $(-2,0)$.
3. Evaluate the following line integral $\int_{c} d x+(x+y) d y \quad$ where c is the curve $y=x^{2}$ from $(0,0)$ to $(1,1)$.
4. Green's Theorem is

$$
\int_{C} P d x+Q d y=\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A
$$

Verify Green's Theorem where $\vec{F}=<x^{2}+2 y, x^{2}>$ where R is the region bound by the curves $y=0, x=1$, and $y=x$ in Q1.
5. Evaluate $\iint_{S} z d S$ where S is the surface of the plane $2 x+2 y+z=2$ in Q1.
6. Find the flux $\iint_{S} \vec{F} \cdot \vec{n} d s$ through the surface of the plane $y+z=1$, for $0 \leq x \leq 1$ and $0 \leq y \leq 1$ if the vector field is given by $\vec{F}=\left\langle y, z, z^{2}\right\rangle$.

