Math 2371 Calc III - Sample Test 3 - 2017 Version 2

1. Is the following vector field conservative?

$$\vec{F} = <2xy + 3z^3, x^2 + 1, 9xz^2 > .$$

If so, determine the potential function *f* such that $\vec{F} = \vec{\nabla} f$ Use this to evaluate

$$\int_{C} (2xy + 3z^3) \, dx + (x^2 + 1) \, dy + 9xz^2 \, dz$$

where *C* is any curve joining (0, 0, 0) and (1, -1, 1).

2. Evaluate the following line integral $\int_{c} x y \, ds$ where *c* is ccw direction around the circle $x^2 + y^2 = 4$ from (0, 2) to (-2, 0).

3. Evaluate the following line integral $\int_{c} dx + (x + y) dy$ where *c* is the curve $y = x^{2}$ from (0,0) to (1,1).

4. Green's Theorem is

$$\int_{C} P \, dx + Q \, dy = \iint_{R} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dA.$$

Verify Green's Theorem where $\vec{F} = \langle x^2 + 2y, x^2 \rangle$ where *R* is the region bound by the curves y = 0, x = 1, and y = x in *Q*1.

5. Evaluate $\iint_{S} z \, dS$ where *S* is the surface of the plane 2x + 2y + z = 2 in Q1. 6. Find the flux $\iint_{S} \vec{F} \cdot \vec{n} ds$ through the surface of the plane y + z = 1, for $0 \le x \le 1$ and $0 \le y \le 1$ if the vector field is given by $\vec{F} = \langle y, z, z^2 \rangle$.