Refrigerants: Past, Present and Future...

Presented to the St. Louis Chapter of AEE

Brian A. Fricke, Ph.D.

Group Leader, Building Equipment Research Oak Ridge National Laboratory

11 December 2018

ORNL is managed by UT-Battelle for the US Department of Energy

Synopsis

- Motivation
 - History of refrigerants
 - Regulations (Montreal Protocol, EPA SNAP)
- Existing refrigerants
- Alternative refrigerants
 - HFOs and blends, "natural" refrigerants
- Research
 - ORNL
 - AHRI/ASHRAE/DOE

Brief History of Refrigeration

- Early applications
 - Ice making, brewing, shipping, meat packing
- Common refrigerants in early refrigeration systems
 - Ether
 - Carbon dioxide (CO₂)
 - Ammonia (NH₃)
 - Sulfur dioxide (SO₂)
 - Methyl chloride (CH₃Cl)
 - Chosen for their availability, not necessarily for safety

Brief History of Refrigeration

- Thomas Midgley, Jr. (1889-1944)
 - Mechanical Engineer by training
 - Employed by General Motors
 - GM owned Frigidaire
 - 1920s-30s:
 - Beginning of refrigeration machinery operated in proximity to general public
 - Common refrigerants were toxic (sulfur dioxide, methyl chloride, ammonia)
 - A "safety refrigerant" was desired
 - Developed dichlorodifluoromethane (CCl₂F₂) "Freon" or R-12
 - Subsequently leading to a whole family of chlorofluorocarbon (CFC) and hydrochlorofluorocarbon (HCFC) refrigerants

Refrigerants and the Ozone

 Chlorine in upper atmosphere can break down atmospheric ozone

120%

100%

80%

60%

40%

20%

0% Jan-Jan.

> 1986 1988

Non-A6

Baseline

1926

- A single chlorine atom is able to react with 100,000 ozone molecules before it is removed from the catalytic cycle
- Significant source of chlorine:
 - CFCs and HCFCs
- Montreal Protocol (1987):
 - Phase-out of CFCs and HCFCs

HCFCs (Annex C/I) Production Reduction Schedule

Current Refrigerants

- In response to CFC and HCFC phase-out, refrigerant manufacturers developed chemicals with no Ozone Depleting Potential (ODP)
- Hydrofluorocarbons (HFCs)
 - Contains no chlorine
 - Poses no threat to ozone
 - ODP = 0
 - However, they are potent greenhouse gasses (as are CFCs and HCFCs)
 - Several thousand times more potent than CO₂

R-32

R-134a

R-125

Global Warming Potential (GWP)

- Global Warming Potential (GWP)
 - Represents how a given mass of a chemical contributes to global warming over a given time period compared to the same mass of carbon dioxide
 - Carbon dioxide's GWP is by definition equal to 1.0
 - GWP values for common HFC refrigerants used today:

Refrigerant	GWP
CO ₂	1
R-134a	1400
R-404A	3900
R-407A	2100
R-410A	2100

Kigali Amendment to Montreal Protocol

- Proposed HFC phase-out schedule
 - Reduce greenhouse gas emissions

EPA SNAP (Significant New Alternatives Policy)

- Identify acceptable substitutes for ozone-depleting and high global warming potential substances
 - <u>https://www.epa.gov/snap</u>
- Residential and Commercial Air Conditioning
 - R-134a and R-410A are viable options
 - Potential future options?
- Commercial Refrigeration
 - Targeted bans on high-GWP refrigerants
 - Example: R-404A and R-507 are unacceptable in new supermarket systems effective 1 January 2017
 - Potential future options?

EPA SNAP Ruling and Court Cases

- EPA Rule 20: Protection of Stratospheric Ozone: Change of Listing Status for Certain Substitutes under the SNAP Program
- Two refrigerant manufacturers sued EPA
 - Contend that EPA overstepped its authority
 - HFCs do not contain chlorine and are not ozone depleting
 - Federal Circuit Court ruled against the EPA
- Other refrigerant manufacturers and organizations sought to appeal the decision
 - Appeal was lost
 - Recently, US Supreme Court announced it will not review the case

Next Generation Refrigerants

- Hydrofluoro-olefins (HFOs)
 - Fluorinated propene isomers
 - R-1234yf ($CF_3CF = CH_2$)
 - R-1234ze(E) (CF₃CH = CHF)
 - GWP < 4
 - Mildly flammable
- "Natural" Refrigerants
 - What's old is new again?
 - CO₂, hydrocarbons, ammonia
 - Very low global warming potential
 - Toxicity, flammability, efficiency?

Refrigerant Cost

- Retail price of HFO-1234yf is about 10 times more than current price of bulk HFC-134a
 - R-134a: ~\$5/lb
 - R-410A: ~\$6/lb
 - R-404A: ~\$7/lb
 - R-1234yf: ~\$67/lb
 - Price of HFO blends will be high
 - Long term price (in about 10 years) is likely to be 2-3x current R-134a cost (Sherry et al. 2017)
- Hydrocarbon refrigerants
 - Propane and Isobutane: ~\$6 to \$8 per pound

Today	Future			
Refrigerant	Alternative	GWP	Safety Classification	
	R-444B	295	A2L	
R-22	R-449A	1282	A1	
GWP=1760	R-454A	238	A2L	
A1	R-454C	146	A2L	
	R-457A	139	A2L	
	R-450A	547	A1	
	R-451A	133	A2L	
R-134a	R-451B	146	A2L	
GWP=1924	R-513A	573	A1	
A1	R-515A	403	A1	
	R-1234yf	1	A2L	
	R-1234ze(E)	1	A2L	
	R-32	677	A2L	
	R-446A	461	A2L	
R-410A	R-447A	572	A2L	
GWP=1924 A1	R-447B	714	A2L	
	R-452B	676	A2L	
	R-454B	467	A2L	
	R-459A	461	A2L	

Today	Future			
Refrigerant	Alternative	GWP	Safety Classification	
	R-444B	295	A2L	
	R-449A	1282	A1	
K-22 (GWP=1760)	R-454A	238	A2L	
	R-454C	146	A2L	
	R-457A	139	A2L	
	R-450A	547	A1	
	R-451A	133	A2L	
R-134a (GWP=1924)	R-451B	146	A2L	
	R-513A	573	A1	
	R-515A	403	A1	
	R-1234yf	1	A2L	
	R-1234ze′		A2L	
	R-32 Few nor	Few non-flammable options		
	R-446A Gono	Conorolly higher CM/D		
R-410A (GWP=1924)	R-447A Gene		A2L	
	R-447B Acceptable in all equipment		ment A2L	
	R-452B		A2L	
	R-454B	467	A2L	
	R-459A	461	A2L	

Today	Future					
Refrigerant	Alternative		GWP	Safety Classification		ation
	R-444B		295		A2L	
	R-449A		1282		A1	
R-22 (GWP=1760)	R-454A		238		A2L	
	R-454C		146		A2L	
	R-457A		139		A2L	
	R-450A		547		A1	
	R-451A		133		A2L	
	R-451B		146		A2L	
R-134a (GWP=1924)	R-513A	Numerous mildly flammable		A1		
(GWP=1924)	R-515A	options			A1	
	R-1234yf	Generally lower GWP			A2L	
	R-1234ze				A2L	
	R-32	Limited	to smaller syst	ems?	A2L	
	R-446A		401		A2L	
	R-447A		572		A2L	
R-410A (GWP=1924)	R-447B		714		A2L	
	R-452B		676		A2L	
	R-454B		467		A2L	
	R-459A		461		A2L	

- Hydrocarbon Options
 - Higher flammability
 - Suitable for small equipment

Refrigerant	GWP	Safety Classification
R-290 (propane)	3	A3
R-600a (isobutane)	3	A3
R-441A	3	A3

Evaluation of Alternative Refrigerants in Mini-Split and Rooftop AC Units

- Mini Split
 - Capacity: 1.5 tons
 - Refrigerant: R-410A
 - EER: 12.0

- Rooftop AC
 - Capacity: 11 tons
 - Refrigerant: R-410A
 - EER: 10.7

Mini-Split Evaluation: Alternatives for R-410A

• AHRI Conditions: 95°F outdoor, 80°F indoor

Rooftop AC Evaluation: Alternatives for R-410A

• AHRI Conditions: 95°F outdoor, 80°F indoor

Today	Future			
Refrigerant	Alternative	GWP	Toxicity	Flammability
	R-448A (N40)	1273	А	1
R-404A	R-449A (XP40)	1282	А	1
(GWP=3943) A1	R-449B	1296	А	1
	R-452A (XP44)	1945	А	1
	R-452C	2019	А	1
R-134A (GWP=1300) A1	R-450A (N13)	547	А	1
	R-513A (XP10)	573	А	1
	R-451A	133	А	2L
	R-451B	146	А	2L

Today	Future			
Refrigerant	Alternative	Alternative GWP		
	R-448A (N40)	1273	А	1
	R-449A (XP40)	1282	А	1
R-404A (GWP=3943)	R-449B	1296	А	1
(6WI = 3343)	R-452A (XP44)	1945	А	1
	R-452C	2019	А	1
R-134A (GWP=1300)	R-450A (N13)	547	А	1
	R-513A (XP10)	573	А	1
	R-451A	133	А	2L
R-451B		toxic	А	2L
	Nonflan	Nonflammable Moderate GWP		
	Moderat			
	Long-term	solution ?		

Today	Future			
Refrigerant	Alternative	GWP	Toxicity	Flammability
	R-448A (N40)	1273	А	1
	R-449A (XP40)	Non-toxic	А	1
R-404A (GWP=3943)	R-449B		A	1
	R-452A (XP44)	lildly flammabl	e _A	1
	R-452C	Lower GWP	А	1
	R-450A (N13)	Safaty?	А	1
R-134A (GWP=1300)	R-513A (XP10)	Safety !	А	1
	R-451A	133	А	2L
	R-451B	146	А	2L

- "Natural" refrigerant options
 - Flammability, toxicity, efficiency?

Refrigerant	GWP	Toxicity	Flammability
Propane (R-290)	3	А	3
Isobutane (R-600a)	3	А	3
Ammonia (R-717)	0	В	2L
CO ₂ (R-744)	1	А	1

Evaluation of Alternative Refrigerants for Commercial Refrigeration

- HFC System
 - LT Capacity: 5 tons
 - MT Capacity: 15 tons
 - Refrigerant: R-404A

- Transcritical CO₂
 - LT Capacity: 2.5 tons
 - MT Capacity: 9.6 tons
 - Refrigerant: R-744

Commercial Refrigeration Evaluation: Alternatives for R-404A

• R-404A vs. R-448A:

Commercial Refrigeration Evaluation: Alternatives for R-404A

• R-404A vs. R-448A:

Commercial Refrigeration Evaluation: Transcritical CO₂ Booster System

• Comparison of R-404A and CO₂ Systems:

Commercial Refrigeration Evaluation: Transcritical CO₂ Booster System

• Comparison of R-404A and CO₂ Systems:

Refrigerant Research

- Efficiency of equipment with new refrigerant options
 - Research results to inform system design
- Flammability concerns
 - Likelihood and severity of ignition event
 - Byproducts of combustion
 - Hydrogen fluoride or carbonyl fluoride
 - Both extremely toxic
 - Research results to inform codes and standards

Coordinated Research Efforts: Flammable Refrigerants

- Air Conditioning, Heating & Refrigeration Institute (AHRI)
 - \$1.0M
- American Society of Heating, Refrigerating & Air-Conditioning Engineers (ASHRAE)
 - \$1.3M
- U.S. Department of Energy (USDOE)
 - \$3.0M
- California Air Resources Board (CARB)
 - \$0.3M

ASHRAE-Funded Research

- 1806-RP: Flammable Refrigerants Post-ignition
 Simulations and Risk Assessment Update
- 1807-RP: Guidelines for Flammable Refrigerant Handling, Transporting, Storing and Equipment Servicing, Installation and Dismantling
- 1808-RP: Servicing and Installing Equipment Using Flammable Refrigerants: Assessment of Field-made Mechanical Joints
- These projects are on-going, with results anticipated to be released by early to mid 2019.

1806-RP Flammable Refrigerants Post-ignition Simulations and Risk Assessment Update

Background

- AHRI has sponsored several Risk Assessments to quantify the PROBABILITY of an ignition event occurring.
- Need to understand the SEVERITY of the event to fully understand the risk of using flammable refrigerants.
- Experimental/empirical work on SEVERITY was recently undertaken in AHRTI 9007.

Such experimental work is very expensive and time-consuming.

Objective

- Develop further understanding of the SEVERITY of flammable refrigerant events through computer-based simulations using computational fluid dynamics (CFD).
- Update the Risk Assessments with this new information.

1807-RP

Guidelines for Flammable Refrigerant Handling, Transporting, Storing and Equipment Servicing, Installation and Dismantling

Background

- Lack of information on issues associated with handling Class A2L, A2, and A3 refrigerants.
- Several countries outside the U.S. are adopting the use of flammable refrigerants.
 - Their specific requirements for safe handling and use are unknown to the U.S. industry.

 Such information can be valuable in establishing standards and guidelines for use in the U.S.

Objective

- Characterize current international and domestic best practices for safe use of flammable refrigerants.
- Leverage this information to recommend guidelines for safe use of flammable refrigerants.
- Recommend appropriate testing to validate these guidelines.

1808-RP

Servicing and Installing Equipment using Flammable Refrigerants: Assessment of Field-made Mechanical Joints

Background

- Need to assess the robustness of field-made joints used to connect refrigerant piping and system components.
- Are they suitable for use with flammable refrigerants?

Objective

1-1/8 in. press 3/4 in. compression 50x of each fitting type-size tested (300 total) + 25x brazed joints as a baseline 3/8 in. press 3/8 in. compression 3/8 in. flare

3/4 in. flare

- Characterize and quantify the leak-tightness of various types of fieldmade joints.
- Account for mechanical and human factors.
 - Effect on consistency of leak-tightness
- Identify types of field-made joints that are suitable for use with flammable refrigerants.
 - Incorporate into ASHRAE Standards 15 and 15.2, as well as other relevant codes and standards.

Summary of Refrigerant Research

- Many proposed HFO refrigerant blends perform similarly to current HFC refrigerants:
 - Comparable efficiency
 - Slightly lower capacity
- Many proposed HFO refrigerant blends show good performance at high ambient conditions
 - Slightly higher efficiency
 - Comparable or slightly higher capacity
- Flammability of many alternative refrigerants is an issue
 - Maximum safe refrigerant charge
 - Safe equipment design
 - Safe handling, servicing and transportation practices

Discussion

Brian Fricke frickeba@ornl.gov

Visit our website: www.ornl.gov/buildings

Follow us on Twitter: @ORNLbuildings