
IJRECE VOL. 8 ISSUE 3 JULY.-SEPT. 2020 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 328 | P a g e

Neural Networks for Radar Data Processing
Varsha Nimbaragi1, Smitha Sasi2

1Dayananda Sagar College of Engineering, Bengaluru
2 Dayananda Sagar College of Engineering, Bengaluru

(varshanimbargi663@gmail.com)

Abstract— A work that radar Processor does is that it

collects that data and other parameters of the target and

processes that data and work on it. The prediction of that
target parameters is done by radar data processor. The

parameters that are predicted are position, velocity and

acceleration. Distance, pitch angle and azimuth angle is what

considered while predicting the position where as velocity and

acceleration are considered as motion parameters. The data

that is collected by data processor finds it difficult sometimes

because the data is complicated. The data that consist of high

maneuvering conditions or the data with missing

measurements adds the complication. These types of

complications can be removed by neural networks. Especially

the networks like Long Short-Term memory networks which

are also called as Recurrent Neural networks are able to solve
the problems. These kinds of networks can be used in the

applications like time series forecasting which are able to

work with so many numbers of input variables. The objective

of this paper is to use the technique of neural networks like

Long Short-Term Memory Recurrent Neural Networks to help

the radar data processor to deal with the complications and in

generation on scenarios and tracking.

Keywords— Long Short-Term Memory; Recurrent Neural

Networks; Benchmark Scenarios.

I. INTRODUCTION

Nowadays Artificial intelligence is used everywhere from the

high end technologies like self driving cars to the low end

technologies. It is considered to have many numbers of

applications and advancement in the technology has made it to

adapt in so many number of applications. Machine Learning

and Deep Learning which are part of Artificial Intelligence are

having many applications. They consist of many algorithms

which are able to solve many of the complication problems.
Deep learning is the one that works with neurons and hidden

layers which is exactly structured as that of human brain. As

human brain consist of dendrites and neurons in the same way

artificial neural network is constructed with neurons and the

layers that is connecting them together to perform specific

operations.

 In Radar recently the advancement can be seen where

Artificial Intelligence can be adapted. There are many kinds of

neural networks which can be adapted in Radar technologies.

In this paper the use of Neural Networks like LSTM-RNN can

be seen where they are used in radar data processing to
remove the complications. The other neural networks fail to

solve problem with many input variables and in time

forecasting problems. Recurrent Neural Networks are the

networks which stores the information in them.[1] The

problem that is faced by Recurrent Neural networks can be
solved by the Long Short-Term Memory networks. Long

Short-Term Memory networks store the information that is

lastly learned for longer period of time. Training of the model

using LSTM networks is easy. More about deep learning

models are studied in [2] to [10].

 The 6 benchmark trajectories are discussed in this

paper which uses the LSTM models in radar trackers.[11]

 The explanation of how to implement the deep

learning model can be found in this paper which generates the

scenarios with many different maneuvering conditions which

consist of the data like position, acceleration and velocity.
These scenarios that are generated are found to be helpful in

the radar processor. This model is also used to compare the

results that are generated with the Kalman filter output. The

main application can be found is it helps in coasting whenever

the data is not available. These models can be implemented by

using Deep learning libraries like TensorFlow and Keras and

Python programming is used for implementing.

The LSTM-RNN network can be found in the below
diagram. The networks have the loops in them and which
stores past information in them. The past information is fed
back or fed to the other neural networks. In Long Short-term
memory neural networks, the short amount of information can
be stored for longer amount of time.

II. IMPLEMENTATION

The methodology adopted for achieving the goal is described

below.

A. Training Data Generation

A comprehensive set of scenario data of depicting various
target maneuvering conditions such as constant velocity,
constant acceleration, level turn, climb, turn with acceleration,
turn with climb and turn with climb & acceleration has to be
generated first. This will be performed though the
implementation of motion models in MATLAB. This data is
used to develop the LSTM-RNN model. The training dataset
represent a target trajectory, which consists of the target’s
position, velocity & acceleration components and time.

The following hyper parameters are to be considered

during the implementation:

 No. of Epochs

IJRECE VOL. 8 ISSUE 3 JULY.-SEPT. 2020 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 329 | P a g e

 No. of LSTM Layers

 No. of Neurons per hidden layer

 LSTM memory length

 Batch size

 Learning Rate

 Optimization Algorithm

 Loss function

 Dropout (Yes or No)

 The approach followed for developing the LSTM

model is described in this section. Python based deep learning

library named keras is used for the LSTM implementation. As
Keras cannot be used as a standalone framework for the

implementation, TensorFlow is used as the backend.

 The Integrated Development Environment (IDE)

used for the implementation is the Spyder IDE. Spyder is a

useful integrated development package that can be used in

Python software creation process.

 A snippet of the training dataset is shown in figure 1.

Here, column 1 contains time in seconds, columns 2 to 4

represents targets x, y, z coordinates in km, columns 5 to 7
represents the velocity components in m/s and columns 8 to 10

represents the acceleration components in m/s2.

Fig.1. Dataset

B. Load Dataset

 The first step is to define the number of features in

the dataset, number of values to be memorized (represented by

the variable 'lookback') by the LSTM and the percentage of

data to be used for training. The lookback is set as 500 and

70% of the data is used for training and the rest for testing.

 And next step is to load the dataset into memory. The
data file is loaded into memory using the Pandas read_csv()

function. Here, the next step is to prepare the dataset for the

LSTM. This involves framing the dataset as a supervised

learning problem and normalizing the input variables. All the

features are normalized using a min-max scalar to fit into the

range [0, 1], and then the dataset is transformed into a

supervised learning problem.

C. Define and Train the Model

 In this section, fit an LSTM on the multivariate input

data. First, split the prepared dataset into train and test sets,

then splits the train and test sets into input and output

variables. Finally, the inputs (X) are reshaped into the 3D

format expected by LSTMs, namely [no. of samples,

lookback, no. of features].

 Now LSTM model can be defined and fit it for the
training data. The model definition varies as the no. of layers
and the no. of neurons per layer are hyper parameters.
Different values have to be tried to fine-tune these parameters
to arrive at the optimum number of layers and number of
neurons. A 3-hidden layer LSTM model with 150 neurons in
the first hidden layer, 150 neurons in the second hidden layer
and 100 neurons in the last layer is considered here. The
output layer has 9 neurons representing the 9 features in the
scenario. Mean Absolute Error (MAE) loss function with the
efficient “RMSprop” version of stochastic gradient descent is
used in this implementation.

III. EVALUATION

A. Training

The model is then trained for 40 epochs with a batch size of

32. During this training, 30% of the training data is used for

validation. Callbacks are used to get a view on internal states

and statistics of the model during training. Callback is a set of

functions to be applied at given steps of the training

procedure.

 A trained model will be used without having to retain it on

pick-up training where it is left off in case the training process
was interrupted. The tf.keras.callbacks.ModelCheckpoint call

back allows to repeatedly saving the model both during and

also the end of the training. The model is saved only if there’s

an improvement within the validation accuracy.

 An LSTM-RNN model, which can accept past states of

targets and predict their future states, is created. Different

models including variants of LSTM-RNN will be developed

so that the optimal model can be chosen for the final

implementation.

B. Evaluate Model

 After the model is fit, the entire test dataset can be

forecasted. The trained network model is loaded first and the

test dataset is given as an input to this model to forecast the

rest of the scenario. The forecasted output is then scaled back

to original scale and saved. With forecasts and actual values in

their original scale, accuracy and error score for the model can

be calculated. The loss and accuracy are then plotted.

Epoch 00039: val_acc did not improve from 0.99716
Epoch 40/40

IJRECE VOL. 8 ISSUE 3 JULY.-SEPT. 2020 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 330 | P a g e

12320/12320 [==============================] -
1815s 147ms/step - loss: 3.9384e-05 - acc: 0.9960
- val_loss: 1.3530e-05 - val_acc: 0.9977

Epoch 00040: val_acc improved from 0.99716 to
0.99773, saving model to
Scenario_Predictions_Scaled_Circular_3Features_150
0U_100LB_Noisy.hdf5 dict_keys (['val_loss',
'val_acc', 'loss', 'acc'])

Plots showing the model accuracy & model loss during

training & validation are shown below. Once the training

phase was completed, the trained LSTM model with best
validation accuracy got saved in to a hierarchical data format

(.hd5).

Fig.2 Accuracy

Fig.3 Loss Plot

The performances of the LSTM model were compared against

that of a 3-model Kalman Filter based IMM tracker. The

prediction output for the last 30% of the unused training data

is shown in below figures.

IV. RESULTS

Blaire, et. al, had introduced 6 benchmarking trajectories in

their paper. These benchmarking problems are now widely

used for benchmarking Radar Trackers.

Fig.4. IMM Vs Measured Vs LSTM

Few outputs for LSTM and IMM are shown with benchmark

scenarios.

Fig.5 Comparison of LSTM Results with IMM Results & True

Scenario for Benchmark 2

IJRECE VOL. 8 ISSUE 3 JULY.-SEPT. 2020 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 331 | P a g e

Fig. 6.Comparison of LSTM Results with IMM Results & True

Scenario for Benchmark 3 (x-coordinate)

Fig. 7. Comparison of LSTM Results with IMM Results &

True Scenario for Benchmark 4 (y-coordinate)

Fig. 8. Comparison of LSTM Results with IMM Results &

True Scenario for Benchmark 4 (z-coord)
When compared with all 6 cases it can be seen that LSTM

model provides good results that helps in tracking.

V. CONCLUSION

 The objective of this work is to explore the feasibility

of using deep learning in Radar tracking. The results obtained

with the benchmark trajectories are very much promising and

are as good as the results of a 3-model IMM Kalman tracker.
As no trace of any previous work could be found in the

literature, I can proudly say that this is very first study on the

usage of AI techniques in radar target tracking. The results can

further be improved by adding velocity components,

acceleration components and target heading as training inputs.

But this will add more complexity to the LSTM model.

References

[1] Christopher Olah, Understanding LSTM Networks,

https://colah.github.io/posts/2015-08-Understanding-LSTMs/,
August 27, 2015.

[2] Bakker, Indra den, Python Deep Learning Cookbook, Packt
Publishing Ltd, 2017.

[3] Francois chollet, Deep Learning With Python, Manning

Publications, 2018.
[4] Ian Good fellow, Yoshua Bengio, Aaron Courville, Deep

Learning, The MIT Press Cambridge, Massachusetts
London, England, 2016.

[5] J.Patterson,A.Gibson, Deep Learning: A Practitioner’s
Approach, O’Reilly Media, 2017.

IJRECE VOL. 8 ISSUE 3 JULY.-SEPT. 2020 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 332 | P a g e

[6] Le Lu, Yefeng Zheng, Gustavo Carneiro, Lin Yang, Deep
Learning and Convolutional Neural Networks for Medical
Image Computing, Springer International Publishing
Switzerland, 2017.

[7] Nick McClure, TensorFlow Machine Learning Cookbook,

Packt Publishing, 2017.
[8] Nikhil Buduma, Nicholas Locascio, Fundamentals of Deep

Learning, O’Reilly Media, 2017.

[9] Nishant Shukla, Kenneth Fricklas, Machine Learning With
TensorFlow, Manning Publications Co, 2017.

[10] Phil Kim, MATLAB Deep Learning: With Machine Learning,
Neural Networks and Artificial Intelligence, APRESS, 2017.

[11] W.D. Blair, G. A. Watson, T. Kirubarajan, Y. Bar-Shalom,
"Benchmark for Radar Allocation and Tracking in ECM."
Aerospace and Electronic Systems IEEE Trans on, vol. 34. no.
4. 1998.

[12] https://machinelearningmastery.com/time-series-prediction-
lstm-recurrent-neural-networks-python-keras

Mtech in Digital Communication and Networking

