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Abstract— A work that radar Processor does is that it 

collects that data and other parameters of the target and 

processes that data and work on it. The prediction of that 
target parameters is done by radar data processor. The 

parameters that are predicted are position, velocity and 

acceleration. Distance, pitch angle and azimuth angle is what 

considered while predicting the position where as velocity and 

acceleration are considered as motion parameters. The data 

that is collected by data processor finds it difficult sometimes 

because the data is complicated. The data that consist of high 

maneuvering conditions or the data with missing 

measurements adds the complication. These types of 

complications can be removed by neural networks. Especially 

the networks like Long Short-Term memory networks which 

are also called as Recurrent Neural networks are able to solve 
the problems. These kinds of networks can be used in the 

applications like time series forecasting which are able to 

work with so many numbers of input variables. The objective 

of this paper is to use the technique of neural networks like 

Long Short-Term Memory Recurrent Neural Networks to help 

the radar data processor to deal with the complications and in 

generation on scenarios and tracking. 

Keywords— Long Short-Term Memory; Recurrent Neural 

Networks; Benchmark Scenarios.  

I.  INTRODUCTION 

Nowadays Artificial intelligence is used everywhere from the 

high end technologies like self driving cars to the low end 

technologies. It is considered to have many numbers of 

applications and advancement in the technology has made it to 

adapt in so many number of applications. Machine Learning 

and Deep Learning which are part of Artificial Intelligence are 

having many applications. They consist of many algorithms 

which are able to solve many of the complication problems. 
Deep learning is the one that works with neurons and hidden 

layers which is exactly structured as that of human brain. As 

human brain consist of dendrites and neurons in the same way 

artificial neural network is constructed with neurons and the 

layers that is connecting them together to perform specific 

operations. 

 In Radar recently the advancement can be seen where 

Artificial Intelligence can be adapted. There are many kinds of 

neural networks which can be adapted in Radar technologies. 

In this paper the use of Neural Networks like LSTM-RNN can 

be seen where they are used in radar data processing to 
remove the complications. The other neural networks fail to 

solve problem with many input variables and in time 

forecasting problems. Recurrent Neural Networks are the 

networks which stores the information in them.[1] The 

problem that is faced by Recurrent Neural networks can be 
solved by the Long Short-Term Memory networks. Long 

Short-Term Memory networks store the information that is 

lastly learned for longer period of time. Training of the model 

using LSTM networks is easy. More about deep learning 

models are studied in [2] to [10]. 

 The 6 benchmark trajectories are discussed in this 

paper which uses the LSTM models in radar trackers.[11] 

 

 The explanation of how to implement the deep 

learning model can be found in this paper which generates the 

scenarios with many different maneuvering conditions which 

consist of the data like position, acceleration and velocity. 
These scenarios that are generated are found to be helpful in 

the radar processor. This model is also used to compare the 

results that are generated with the Kalman filter output. The 

main application can be found is it helps in coasting whenever 

the data is not available. These models can be implemented by 

using Deep learning libraries like TensorFlow and Keras and 

Python programming is used for implementing. 
 

The LSTM-RNN network can be found in the below 
diagram. The networks have the loops in them and which 
stores past information in them. The past information is fed 
back or fed to the other neural networks. In Long Short-term 
memory neural networks, the short amount of information can 
be stored for longer amount of time. 

II. IMPLEMENTATION 

The methodology adopted for achieving the goal is described 

below. 

A. Training Data Generation  

A comprehensive set of scenario data of depicting various 
target maneuvering conditions such as constant velocity, 
constant acceleration, level turn, climb, turn with acceleration, 
turn with climb and turn with climb & acceleration has to be 
generated first. This will be performed though the 
implementation of motion models in MATLAB. This data is 
used to develop the LSTM-RNN model. The training dataset 
represent a target trajectory, which consists of the target’s 
position, velocity & acceleration components and time. 

The following hyper parameters are to be considered 

during the implementation: 

 No. of Epochs 
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 No. of LSTM Layers 

 No. of Neurons per hidden layer 

 LSTM memory length 

 Batch size 

 Learning Rate 

 Optimization Algorithm 

 Loss function 

 Dropout (Yes or No) 

 The approach followed for developing the LSTM 

model is described in this section. Python based deep learning 

library named keras is used for the LSTM implementation. As 
Keras cannot be used as a standalone framework for the 

implementation, TensorFlow is used as the backend.  

 

 The Integrated Development Environment (IDE) 

used for the implementation is the Spyder IDE. Spyder is a 

useful integrated development package that can be used in 

Python software creation process. 

 

 A snippet of the training dataset is shown in figure 1. 

Here, column 1 contains time in seconds, columns 2 to 4 

represents targets x, y, z coordinates in km, columns 5 to 7 
represents the velocity components in m/s and columns 8 to 10 

represents the acceleration components in m/s2. 

 
Fig.1. Dataset 

 

B. Load Dataset 

 The first step is to define the number of features in 

the dataset, number of values to be memorized (represented by 

the variable 'lookback') by the LSTM and the percentage of 

data to be used for training. The lookback is set as 500 and 

70% of the data is used for training and the rest for testing.   

 

 And next step is to load the dataset into memory. The 
data file is loaded into memory using the Pandas read_csv() 

function. Here, the next step is to prepare the dataset for the 

LSTM. This involves framing the dataset as a supervised 

learning problem and normalizing the input variables. All the 

features are normalized using a min-max scalar to fit into the 

range [0, 1], and then the dataset is transformed into a 

supervised learning problem. 

C. Define and Train the Model  

 In this section, fit an LSTM on the multivariate input 

data. First, split the prepared dataset into train and test sets, 

then splits the train and test sets into input and output 

variables. Finally, the inputs (X) are reshaped into the 3D 

format expected by LSTMs, namely [no. of samples, 

lookback, no. of features].  

 Now LSTM model can be defined and fit it for the 
training data. The model definition varies as the no. of layers 
and the no. of neurons per layer are hyper parameters. 
Different values have to be tried to fine-tune these parameters 
to arrive at the optimum number of layers and number of 
neurons. A 3-hidden layer LSTM model with 150 neurons in 
the first hidden layer, 150 neurons in the second hidden layer 
and 100 neurons in the last layer is considered here. The 
output layer has 9 neurons representing the 9 features in the 
scenario. Mean Absolute Error (MAE) loss function with the 
efficient “RMSprop” version of stochastic gradient descent is 
used in this implementation. 

III. EVALUATION 

A. Training 

The model is then trained for 40 epochs with a batch size of 

32. During this training, 30% of the training data is used for 

validation. Callbacks are used to get a view on internal states 

and statistics of the model during training. Callback is a set of 

functions to be applied at given steps of the training 

procedure.  

     A trained model will be used without having to retain it on 

pick-up training where it is left off in case the training process 
was interrupted. The tf.keras.callbacks.ModelCheckpoint call 

back allows to repeatedly saving the model both during and 

also the end of the training. The model is saved only if there’s 

an improvement within the validation accuracy. 

     An LSTM-RNN model, which can accept past states of 

targets and predict their future states, is created. Different 

models including variants of LSTM-RNN will be developed 

so that the optimal model can be chosen for the final 

implementation. 

B. Evaluate Model 

     After the model is fit, the entire test dataset can be 

forecasted. The trained network model is loaded first and the 

test dataset is given as an input to this model to forecast the 

rest of the scenario. The forecasted output is then scaled back 

to original scale and saved. With forecasts and actual values in 

their original scale, accuracy and error score for the model can 

be calculated. The loss and accuracy are then plotted. 
------- 
Epoch 00039: val_acc did not improve from 0.99716 
Epoch 40/40 
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12320/12320 [==============================] - 
1815s 147ms/step - loss: 3.9384e-05 - acc: 0.9960 
- val_loss: 1.3530e-05 - val_acc: 0.9977 
 
Epoch 00040: val_acc improved from 0.99716 to 
0.99773, saving model to 
Scenario_Predictions_Scaled_Circular_3Features_150
0U_100LB_Noisy.hdf5 dict_keys (['val_loss', 
'val_acc', 'loss', 'acc'])  

 

Plots showing the model accuracy & model loss during 

training & validation are shown below. Once the training 

phase was completed, the trained LSTM model with best 
validation accuracy got saved in to a hierarchical data format 

(.hd5). 

 

 

Fig.2 Accuracy 

 

Fig.3 Loss Plot 

The performances of the LSTM model were compared against 

that of a 3-model Kalman Filter based IMM tracker. The 

prediction output for the last 30% of the unused training data 

is shown in below figures. 

IV. RESULTS 

Blaire, et. al, had introduced 6 benchmarking trajectories in 

their paper. These benchmarking problems are now widely 

used for benchmarking Radar Trackers. 

 

 

Fig.4. IMM Vs Measured Vs LSTM 

Few outputs for LSTM and IMM are shown with benchmark 

scenarios. 

 
Fig.5 Comparison of LSTM Results with IMM Results & True 

Scenario for Benchmark 2 
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Fig. 6.Comparison of LSTM Results with IMM Results & True 

Scenario for Benchmark 3 (x-coordinate) 

 

 
Fig. 7. Comparison of LSTM Results with IMM Results & 

True Scenario for Benchmark 4 (y-coordinate) 

 
Fig. 8. Comparison of LSTM Results with IMM Results & 

True Scenario for Benchmark 4 (z-coord) 
When compared with all 6 cases it can be seen that LSTM 

model provides good results that helps in tracking.   

V. CONCLUSION 

 The objective of this work is to explore the feasibility 

of using deep learning in Radar tracking. The results obtained 

with the benchmark trajectories are very much promising and 

are as good as the results of a 3-model IMM Kalman tracker. 
As no trace of any previous work could be found in the 

literature, I can proudly say that this is very first study on the 

usage of AI techniques in radar target tracking. The results can 

further be improved by adding velocity components, 

acceleration components and target heading as training inputs. 

But this will add more complexity to the LSTM model. 
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