Bayesian Opponent Exploitation in
Imperfect-Information Games

Sam Ganzfried
http://www.qganzfriedresearch.com/
sam.ganzfried@gmail.com

Qingyun Sun
Stanford University, Department of Mathematics
gysun@Stanford.edu


http://www.ganzfriedresearch.com/

Constructing an opponent model

E.g., iIf opponent has played Rock 10 times Paper
7 times Scissors 3 times, can predict he will play
R with prob 10/20, etc.

In imperfect-information games more challenging
but doable to approximate

— e.g., Ganzfried/Sandholm AAMAS 2011



But 1s 1t really valid to assign a single “model”?
What if he 1sn’t following that exact strategy, how
will our performance be If we are wrong?



Restricted Nash Response
Johanson, Zinkevich, Bowling NIPS 2007
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* Suppose opponent Is playing c;, where 6(s) IS
probability that he plays pure strategy s in S
Ui(oi, 6.9) = 2, [o.i(s,) * ui(oi, S5)]

« Now suppose opponent is playing a probability
distribution f_; over mixed strategies
Ui(oi, £.) = I [Fi(0) * Ui(oy, 0,)]

» Let f*;denote the mean of ;. Selects s ;with prob

Jos [6.i(s,) * Ti(c.))]



Theorem: u(c;, f*.) = u(c;, )

Proof:

Ui(oi, T%5) = 2. LUi(ois S ) Io-i [6.(S;) * f.i(o)]]
= Vs [Jo-i [Ui(os, S;) * o(s;) * (o]l
= o [2s Lui(oi, S5) * 0.i(s;) * Li(o)]]
=i [Ui(o;, 03) * £4(0)]
= Uj(o;, 1)



Corollary: uj(o;, p*(c.|x)) = ui(o;, p(o.i|x))
— p(o_;) denotes prior (probability distribution over

mixed strategies) and p(c_|X) denote posterior given
some observations X

— p*(o,|X) Is mean of p(c.i|x)

* Theorem and corollary apply to normal-form
and extensive-form (both perfect and imperfect
Information) for any number of players (can let
c_; be joint strategy profile for all other agents)



Meta-algorithm for Bayesian
opponent exploitation

Algorithm 1 Meta-algorithm for Bavesian opponent ex-
ploltation

Inputs: Prior distribution py, response functions r; for () <
t<T
Mg +— pol(o_;)
”[] — .f'.][_'.hiru-::
Play according to I
fort=1toT1 do
T +— observations of opponent’s play at time step {
ps  +— posterior distribution of opponent’s strategy
given prior p;_; and observations
M; + expectation of p
H; «— ri( M, ]

Play according to K,




Challenges

#1. Assumes we can compactly represent prior and
posterior distributions p,, which have infinite domain

Algorithm 1 Meta-algorithm for Bayesian opponent ex-
ploitation
[nputs: Prior distribution p,., response functions r; for () <

t<T

My « Polo—i)

.Jrf[] — T |: _'.l ;.ir|:- :
Play according to F,
fort =1toT do
T; +— observations of opponent’s play at time step 1
pe 4+ posterior distribution of opponent’s strategy
given prior p;_; and observations
M; + expectation of p;
Ry + ry( M)

Play according to R,




Challenge #2

» Requires procedure to efficiently compute posterior distributions
given prior and observations, which will involve having to
update potentially infinitely-many strategies

Algorithm 1 Meta-algorithm for Bayesian opponent ex-
ploitation

Inputs: Prior distribution py,. response functions r; for () <
t<T

A f[] — PolT_;)
Jrl"'[] — T |: _'ll f|:- :
Play according to R
fort =1toT do
T; +— observations of opponent’s play at time step t
p; +— posterior distribution of opponent’s strategy
given prior py_; and observations
M; + expectation of py
.“",J — Tl _'.lf,l |

Play according to [,




#3

Requires efficient procedure to compute mean of p;

Algorithm 1 Meta-algornthm for Bayesian opponent ex-
ploitation
Inputs: Prior distribution pg, response functions r; for () <

t<T

My « Dol d_i)

.”'[] — ol A J.irl:- :
Play according to K
fort=1toT do
T; +— observations of opponent’s play at time step 1
py 4 posterior distribution of opponent’s strategy
given prior p; _; and observations
M; + expectation of py
Ry + ri( M)

Play according to I,




#4

Requires that the full posterior distribution from one
round be compactly represented to be used as the prior
distribution in the next round

Algorithm 1 Meta-algorithm for Bayesian opponent ex-
ploitation

Inputs: Prior distribution py,. response functions r; for () <

A |

A f[] — Polo_;)
.”'[] — T |: _'.l ;r|:- :
Play according to H,
fort=1toT do
T; +— observations of opponent’s play at time step 1
p: 4+ posterior distribution of opponent’s strategy
given prior py_, and observations T,
M; + expectation of p,
Ry — (M)

Play according to R,




Can solve #4 by using the following modification:

p, € posterior distribution of opponent's strategy given
prior p, and observations X, ... , X;

Algorithm 1 Meta-algorithm for Bayvesian opponent ex-
ploitation
Inputs: Prior distribution p,, response functions r; for () <

t <1

My Polod—;)

Ry + ro( My )
Play according to
fort =1to1 do
T; +— observations of opponent’s play at time step 1
p: 4 posterior distribution of opponent’s strategy
given prior i and observations
M; + expectation of p,
Ry + (M)

Play according to R,




Robustness of the approach

How will this approach perform if our perception of the
opponent’s strategy 1s slightly incorrect?

Suppose we believe the opponent is playing strategy x_; while he
1s actually playing x’ .

Let M be the maximum absolute value of a player’s payoff and
N be the maximum number of actions for a player.

Let € > 0 be arbitrary. Then, if |x;(J) — x’;(J)| < o for all J, where
0=¢/(MN),

lu;(o*,x_;) —u;(o™,2" )| = Z[:I_.;_ (7) — 2’ ;(7)ui(o”, S_j)
7

1

<= Z | (1 i(7) — 2" [;]] u;(0”, 8 4 jl <= Z (|1 () —x' [;Jll - |ui(o™, s _,’J|]
7

£

MN

<= (lz_i(G) — 2’ ;(j)| - M) <M § <= MNé=MN - _y
- _

J



» This same analysis can be applied to show that our payoff is
continuous in the opponent’s strategy for many popular distance
functions (i.e., for any distance function where one strategy can
get arbitrarily close to another as the components get arbitrarily
close).

« For instance, this would apply to L1, L2, and earth mover’s
distance, which have been applied previously to compute
distances between strategies within opponent exploitation
algorithms [Ganzfried/Sandholm AAMAS 2011]

* Thus, if we are slightly off in our model of the opponent’s
strategy, even if we are doing a full best response we will only
do slightly worse.



Dirichlet distribution

ndf of the Dirichlet distribution returns the belief that the
probabilities of K rival events are x; given that each event
nas been observed o; - 1 times:

— f(x, o) = [[] xi%1] / B(a)

Normalization B(a) Is beta function

— B(a) = [[il'(ou)/T (O 06), where T'(n) = (n-1)! iIs Gamma function

E[Xi] = o4/ 20y

Assuming multinomial sampling, the posterior
distribution after including new observations is also a
Dirichlet distribution with parameters updated based on

the new observations.




Dirichlet distribution

Very natural distribution, has been previously used for
modeling in large imperfect-information games

Dirichlet is conjugate prior for multinomial
distribution, and therefore posterior is also Dirichlet
— Opponent plays in proportion to updated weights

So simple closed form for mean of posterior

— Alg 1 gives exact efficient algorithm for computing Bayesian
Best Response [Fudenberg/Levine ‘98]

— “Fictitious play” [Brown ‘51]

This applies to normal-form games and extensive-form
games with perfect information

— Zero-sum, general-sum, and any number of players



Imperfect information

|t would also apply to imperfect-information games if
the opponent’s private information was observed after
each round (so we knew exactly what information set
he took observed action from)

 But not to imperfect-information games where
opponent’s private information 1s not (or 1s only
sometimes) observed.

 Algorithm exists using importance sampling to
approximate value of infinite integral [Southey et.al UAI *05]

— Has been applied to limit Texas hold ‘em successfully
— But has no guarantees, and does not provide much intuition



 P1 given private information state x; according to distribution.
 P1 takes publicly observable action a;.
« P2 observes a; but not x;. Then P2 acts and players get payoff.




 If we observe opponent’s hand after each play,
we could just maintain counter for each
action/info set and update appropriate one

 But if we don’t observe his card, we wouldn’t
know which counter to increment



» To simplify analysis assume we never see
opponent’s card after a hand (and also assume
we don’t observe our payoff until the end so that
we could not draw Inferences about his card).

 This Is not realistic, but no known exact
algorithms even for this simplified setting

— Suspect approach can extend straightforwardly to
case of partial observability



* Let oy, -1denote number of “fictitious” times

we have observed opponent play b with K
according to our prior

 Now assume we observe him take action b, but
don’t observe his card



» Mean of posterior for probability he bets big
with J:

* [Blokptl, axg)Blag,t1, ay) + Bl oks)Blay,+2, ay)]/Z

* Z=B(oxytl, ays)Blogyt1, aye) + Bloy, oys)Bl(ayy+2, o)
+ B(ogptl, o) Bloyp, a5t1) + Blogy, 0ks)B(ay,tl, oygtl)

» Recall B(a) = [[.I'(0;)/T'(Qi05), where I'(n) = (n-1)! 1S
Gamma function



General solution

Assume we observe him play b 6, times and s 6, times

Mean of posterior of probability of betting big with
Jack:

2.i2.iBloyey 1, ayest)) Blogy+0p -1+1, 0 +0-)) / Z

7= Zizj[B(%b"'i, Okst)) If%(ohb"'elo '_i"'l’ 0y +0s-)) +
B(OLKb+I, OLKS+J) B(ajb+eb _|1 (X’.JS +eS-J+1)]



Example

Suppose prior Is that opponent played b with K 10
times, played s with K 3 times, played b with J 4 times,
played s with J 9 times.

Now suppose we see him play b at next iteration

Previously we thought probability of betting big with a
Jack was 4/13 = 0.308

Now: p(b|0,J) = B(11,3)B(5,9) + B(10,3)(6,9)/Z
0(s|0,J) = B(11,3)B(4,10) + B(10,3)(5,10)/Z
->p(b|O,J) = p(b|O,J)/[p(b|O,J)+p(s|O,] = ...



* p(b|O,J) =0.322
 Previously we thought probability of betting
with a jack was 4/13 = 0.308

« \What If we observed his card after game play
and observed he had a jack?



* p(b|O,J) =0.322
 Previously we thought probability of betting
with a jack was 4/13 = 0.308

« \What If we observed his card after game play
and observed he had a jack?

— 5/14 = 0.357



* What about “naive” approach where we
Increment counter for o, by o /(0 4 0kp)?



0(b|0,J) = 0.322

Previously we thought probability of betting
with a jack was 4/13 = 0.308

What if we always observed his card after game
play and observed he had a jack?

— 5/14 = 0.357

“Naive” approach: (4 +4/13)/14 = 0.308



“Naive” approach

e “Naive” approach: (4 +4/13)/14 = 0.308
« [t turns out that this Is equivalent to just using prior




Algorithm for general setting

* We now consider the general setting where the opponent can
have n different states of private information according to an
arbitrary distribution = and can take m different actions. Assume
he is given private information x; with probability ;, for i =1 to
n, and can take action k; for 1 = 1 to m. Assume the prior Is
Dirichlet with parameters o; for the number of times action |
was played with private information 1 (so the mean of the prior
has the player selecting action k; at state x; with probability o;; /
2 %

» Assume that action k;. was observed in a new time step, while
the opponent's private information was not observed. We now
compute the expectation for the posterior probability that the
opponent plays k;. with private information X;..



Algorithm for general setting

 For the case of multiple observed actions, the posterior is not
Dirichlet and cannot be used directly as the prior for the next
Iteration. Suppose we have observed action k; ; times (in
addition to the number of fictitious times indicated by the prior

counts ay;). We compute P(g|O) analogously as

Il H* le.F Hf‘ _E:__J p':'rj-‘h Hf’

zzz > 3

{pap}t  P16=0 p2p=0 Pu—1,6=0 o =0,—5""2 p

The expression for the full posterior distribution is

. E-i [}T": E{ﬂ'ab} Hh B[‘“- 1h + Plhy -y knh + Prh }:|
P(go) = T e

. o . Tan !w L ‘ .
The total number of terms 1s OJ (( %) , which 1s ex-
ponential in the number of private information states and ac-
tions, but polynomial in the number of iterations.




Algorithm for general setting

« The following theorem shows an approach for computing
products of the beta function that leads to an exponential
Improvement in the running time of the algorithm for one
observation, and reduces the dependence on m for the multiple
observation setting from exponential to linear, though the
complexity still remains exponential in n and T for the latter.
Full details in tech report (Ganzfried & Sun °16).

Theorem 2. Define v; = T P **', J and the empirical probability
i
MNz) = [[Ta* e ™ :h ,rm integer =, I'(xz) = (z — 1)!. Now

define the ur!mp'. nff_ as E(FP j} =—> . P (i) In f,{:] Then
we have | [~ B(y;,.. ., “,Jequuia

distribution I_ I,’e} = 5= i — ~-- De fine the Gamma function
R ¥

7L 1 Th . N
exp (E ( v E(Pj) — =(n— 1) In(y;) + > In(P;(i)) + f)) :
j=1 \ = ;

1=1

Here d is a constant such that 1 In(2m)n — 1 < d < n —
1 lILI[ 27), where In(2m) =~ 0.92.




Uniform prior over polyhedron

* Opponent playing uniformly at random within region of fixed
strategy, e.g., specific NE or “population mean” strategy

« E.g., “sophisticated” Rock-Paper-Scissors opponents who play
uniformly at random out of strategies with probability within
[0.31,0.35], instead of completely random over [0,1].

— Ganzfried/Sandholm used similar opponents for poker, EC12/TEAC15

Algorithm 2 Algorithm for opponent exploitation with uni-
form prior distribution over polyhedron
Inputs: Prior distribution over vertices p", response functions
rpfor0<t+<T
My + strategy profile assuming opponent ¢ plays each ver-
tex v; ; with probability p? ; = ¢-
,II?[] — T |_1| ! 0 :
Play according to
fort =1t0T do
fori =1to N do
a; +— action taken by player 7 at time step 1
for j =1t V; do
i

pi ;4 ;_:-;_I-l Ui (a;)

Normalize the p! ’s so they sum to 1

M; + strategy profile assuming opponent i plays each
vertex v; ; with probability p! ;

R, + r (M)

Play according to R,




Run time of basic algorithm

 Colt Java math library for Beta computation

 Dirichlet parameters uniformly random in {1,n}
— n =100 corresponds to ~200 prior observations on average
— Previous work (Southey et al) used 200 hands per match

« Computation very fast but numerical instability for large n

Table 1: Results of modifying Dirichlet parameters to be U{1.n}
over one million samples. First row is average runtime in millisec-
onds. Second row 1s percentage of the trials that output “NaN.”




Run time of generalized algorithm

» Tested generalized algorithm for different
numbers of observations keeping prior fixed

« Used Dirichlet prior with all parameters equal to
2 (as done In prior work Southey et al)

 For 0, =101, 6, = 100, ran in 19 milliseconds.

([0 [ % [ [ w [ w0 [ %o | e

Table 2: Results using Dirichlet prior with all parameters equal to
2 and 0y, 0, in U{1,n} averaged over one thousand samples.




Comparison to other approaches

EBBR: our Exact Bayesian Best Response
BBR: Bayesian Best Response
— samples strategies from prior, best responds to posterior mean

MAP: Max A Posteriori Response
— samples from prior, computes posteriors, best response to max

Thompson’s Response

— Sample from prior, compute posteriors, best response to sample

[Algorithm | Initial | 10|
-ﬂmﬁ- 0. nnm i 0 000@ u n{m 0. 001
-0.C -0.138

—0.2593 £ 0.0007 -0.3020
0.4976 £ 0.0006 0.4963
~0.3750 £ 0.0001 | -0.3751 | 03745

Table 3: Comparison of our algorithm with algorithms from prior
work (BBR, MAP, Thompson), full best response, and Nash equi-
librium. Prior is Dirichlet with parameters equal to 2. For the ini-
tial column we sampled ten million opponents from the prior, for
10 rounds we sampled one million opponents, and for 25 rounds
100,000. Results are average winrate per hand over all opponents.
For initial column 95% confidence intervals are reported.




Comparison to other approaches

Algorithm Initial
0.0003 + 0.0009 0.0012
BBR 0.0002 £ 0.0009 -0.0522
MAP 0.2701 & 0.0008 -0.2984
Thompson | —0.2593 + 0.0007 -0.3020

FullBR 0.4963

—0.3750 £ 0.0001 | -03751 | -0.3745 |

Table 3: Comparison of our algorithm with algorithms from prior
work (BBR, MAP, Thompson), full best response, and Nash equi-
librium. Prior 1s Dirichlet with parameters equal to 2. For the ini-
tial column we sampled ten million opponents from the prior, for
10 rounds we sampled one million opponents, and for 25 rounds
100,000. Results are average winrate per hand over all opponents.
For imitial column 95% confidence intervals are reported.

BBR

FullBR 0.4
0.3749 % 0.0001

Table 4: Comparison of our algorithm with algorithms from
prior work (BBR, MAP, Thompson), full best response,
and Nash equilibrium using Dirichlet prior with parameters
equal to 2. The sampling algorithms each use 10 samples
from the opponent’s strategy (as opposed to 1000 samples
from our earlier analysis). For the initial column we sam-
pled ten million opponents from the prior, for 10 rounds we
sampled one million, for 25 rounds 100,000, and for 100
rounds 1,000. Results are average winrate per hand over all
opponents. Initial column reports 95% confidence interval.




Generalizations

« (Generalized model to n different states according to
arbitrary distribution = and can take m actions

 Have closed-form solution, but contains number of
terms exponential in n and m (though polynomial in T).

 Can approach or analysis be improved?



Conclusions and directions

First exact algorithm for Bayesian opponent exploitation
In class of imperfect-information games

Runs quickly experimentally and outperforms prior
approaches, but frequent numerical instability for large n

General meta-algorithm and new theoretical framework
Studied Dirichlet prior and uniform over polyhedron

Future research and extensions:

— Partial observability (likely straightforward)

— General game trees with sequential actions (likely hard)

— Any number of agents (alg not specialized for 2 pl zero-sum)
— Other important and tractable prior distributions



