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Constructing an opponent model

E.g., if opponent has played Rock 10 times Paper 

7 times Scissors 3 times, can predict he will play 

R with prob 10/20, etc.

In imperfect-information games more challenging 

but doable to approximate 

– e.g., Ganzfried/Sandholm AAMAS 2011



But is it really valid to assign a single “model”? 

What if he isn’t following that exact strategy, how 

will our performance be if we are wrong?



Restricted Nash Response
Johanson, Zinkevich, Bowling NIPS 2007



• Suppose opponent is playing σ-i, where σ-i(s-j) is 

probability that he plays pure strategy s-j in S-j

ui(σi, σ-i) = ∑s-j [σ-i(s-j) * ui(σi, s-j)]

• Now suppose opponent is playing a probability 

distribution f-i over mixed strategies

ui(σi, f-i) = ∫σ-i [f-i(σ-i) * ui(σi, σ-i)]

• Let f*-i denote the mean of f-i. Selects s-j with prob

∫σ-i [σ-i(s-j) * f-i(σ-i)]



Theorem: ui(σi, f*-i) = ui(σi, f-i) 

Proof: 

ui(σi, f*-i) = ∑s-j [ui(σi, s-j) ∫σ-i [σ-i(s-j) * f-i(σ-i)]]

= ∑s-j [∫σ-i [ui(σi, s-j) * σ-i(s-j) * f-i(σ-i)]]

= ∫σ-i [∑s-j [ui(σi, s-j) * σ-i(s-j) * f-i(σ-i)]]

= ∫σ-i [ui(σi, σ-i) * f-i(σ-i)]

= ui(σi, f-i) 



Corollary: ui(σi, p*(σ-i|x)) = ui(σi, p(σ-i|x)) 

– p(σ-i) denotes prior (probability distribution over 

mixed strategies) and p(σ-i|x) denote posterior given 

some observations x

– p*(σ-i|x) is mean of p(σ-i|x) 

• Theorem and corollary apply to normal-form 

and extensive-form (both perfect and imperfect 

information) for any number of players (can let 

σ-i be joint strategy profile for all other agents)



Meta-algorithm for Bayesian 

opponent exploitation



Challenges

• #1: Assumes we can compactly represent prior and 

posterior distributions pt, which have infinite domain



Challenge #2

• Requires procedure to efficiently compute posterior distributions 

given prior and observations, which will involve having to 

update potentially infinitely-many strategies



#3

Requires efficient procedure to compute mean of pt



#4

Requires that the full posterior distribution from one 

round be compactly represented to be used as the prior 

distribution in the next round



Can solve #4 by using the following modification:

pt posterior distribution of opponent's strategy given                  

prior p0 and observations x1, … , xt



Robustness of the approach

• How will this approach perform if our perception of the 

opponent’s strategy is slightly incorrect?

• Suppose we believe the opponent is playing strategy x-i while he 

is actually playing x’-i. 

• Let M be the maximum absolute value of a player’s payoff and 

N be the maximum number of actions for a player. 

• Let ε > 0 be arbitrary. Then, if |x-i(j) – x’-i(j)| < δ for all j, where 

δ = ε / (MN), 



• This same analysis can be applied to show that our payoff is 

continuous in the opponent’s strategy for many popular distance 

functions (i.e., for any distance function where one strategy can 

get arbitrarily close to another as the components get arbitrarily 

close).

• For instance, this would apply to L1, L2, and earth mover’s 

distance, which have been applied previously to compute 

distances between strategies within opponent exploitation 

algorithms [Ganzfried/Sandholm AAMAS 2011]

• Thus, if we are slightly off in our model of the opponent’s 

strategy, even if we are doing a full best response we will only 

do slightly worse.



Dirichlet distribution

• pdf of the Dirichlet distribution returns the belief that the 

probabilities of K rival events are xi given that each event 

has been observed αi - 1 times:

– f(x, α) = [∏ xiαi-1] / B(α)

• Normalization B(α) is beta function

– B(α) = ∏iΓ(αi)/Γ(∑iαi), where Γ(n) = (n-1)! is Gamma function

• E[xi] = αi / ∑kαk

• Assuming multinomial sampling, the posterior 

distribution after including new observations is also a 

Dirichlet distribution with parameters updated based on 

the new observations.



Dirichlet distribution

• Very natural distribution, has been previously used for 

modeling in large imperfect-information games

• Dirichlet is conjugate prior for multinomial 

distribution, and therefore posterior is also Dirichlet

– Opponent plays in proportion to updated weights

• So simple closed form for mean of posterior

– Alg 1 gives exact efficient algorithm for computing Bayesian 

Best Response [Fudenberg/Levine ‘98]

– “Fictitious play” [Brown ‘51]

• This applies to normal-form games and extensive-form 

games with perfect information

– Zero-sum, general-sum, and any number of players



Imperfect information

• It would also apply to imperfect-information games if 

the opponent’s private information was observed after 

each round (so we knew exactly what information set 

he took observed action from)

• But not to imperfect-information games where 

opponent’s private information is not (or is only 

sometimes) observed.

• Algorithm exists using importance sampling to 

approximate value of infinite integral [Southey et.al UAI ’05]

– Has been applied to limit Texas hold ‘em successfully

– But has no guarantees, and does not provide much intuition



• P1 given private information state xi according to distribution.

• P1 takes publicly observable action ai.

• P2 observes ai but not xi. Then P2 acts and players get payoff.



• If we observe opponent’s hand after each play, 

we could just maintain counter for each 

action/info set and update appropriate one

• But if we don’t observe his card, we wouldn’t 

know which counter to increment 



• To simplify analysis assume we never see 

opponent’s card after a hand (and also assume 

we don’t observe our payoff until the end so that 

we could not draw inferences about his card).

• This is not realistic, but no known exact 

algorithms even for this simplified setting

– Suspect approach can extend straightforwardly to 

case of partial observability 



• Let αKb -1denote number of “fictitious” times 

we have observed opponent play b with K 

according to our prior 

• Now assume we observe him take action b, but 

don’t observe his card



• Mean of posterior for probability he bets big 

with J:
• [B(αKb+1, αKs)B(αJb+1, αJs) + B(αKb, αKs)B(αJb+2, αJs)]/Z

• Z = B(αKb+1, αKs)B(αJb+1, αJs) + B(αKb, αKs)B(αJb+2, αJs)

• + B(αKb+1, αKs)B(αJb, αJs+1) + B(αKb, αKs)B(αJb+1, αJs+1)

• Recall B(α) = ∏iΓ(αi)/Γ(∑iαi), where Γ(n) = (n-1)! is 

Gamma function



General solution

• Assume we observe him play b θb times and s θs times

• Mean of posterior of probability of betting big with 

Jack:

• ∑i∑jB(αKb+i, αKs+j) B(αJb+θb -i+1, αJs+θs-j) / Z

• Z = ∑i∑j[B(αKb+i, αKs+j) B(αJb+θb -i+1, αJs+θs-j) + 

B(αKb+i, αKs+j) B(αJb+θb -i, αJs +θs-j+1)] 



Example

• Suppose prior is that opponent played b with K 10 

times, played s with K 3 times, played b with J 4 times, 

played s with J 9 times.

• Now suppose we see him play b at next iteration

• Previously we thought probability of betting big with a 

jack was 4/13 = 0.308

• Now: p(b|O,J) = B(11,3)B(5,9) + B(10,3)(6,9)/Z

• p(s|O,J) = B(11,3)B(4,10) + B(10,3)(5,10)/Z

• -> p(b|O,J) = p(b|O,J)/[p(b|O,J)+p(s|O,J)] = … 



• p(b|O,J) = 0.322

• Previously we thought probability of betting 

with a jack was 4/13 = 0.308

• What if we observed his card after game play 

and observed he had a jack?



• p(b|O,J) = 0.322

• Previously we thought probability of betting 

with a jack was 4/13 = 0.308

• What if we observed his card after game play 

and observed he had a jack? 

– 5/14 = 0.357



• What about “naïve” approach where we 

increment counter for αJb by αJb/(αJb + αKb)?



• p(b|O,J) = 0.322

• Previously we thought probability of betting 

with a jack was 4/13 = 0.308

• What if we always observed his card after game 

play and observed he had a jack? 

– 5/14 = 0.357

• “Naïve” approach: (4 + 4/13)/14 = 0.308



“Naïve” approach

• “Naïve” approach: (4 + 4/13)/14 = 0.308

• It turns out that this is equivalent to just using prior



Algorithm for general setting

• We now consider the general setting where the opponent can 

have n different states of private information according to an 

arbitrary distribution π and can take m different actions. Assume 

he is given private information xi with probability πi, for i = 1 to 

n, and can take action ki for i = 1 to m. Assume the prior is 

Dirichlet with parameters αij for the number of times action j 

was played with private information i (so the mean of the prior 

has the player selecting action kj at state xi with probability αij / 

∑j αij. 

• Assume that action kj* was observed in a new time step, while 

the opponent's private information was not observed. We now 

compute the expectation for the posterior probability that the 

opponent plays kj* with private information xi*.



Algorithm for general setting

• For the case of multiple observed actions, the posterior is not 

Dirichlet and cannot be used directly as the prior for the next 

iteration. Suppose we have observed action kj θj times (in 

addition to the number of fictitious times indicated by the prior 

counts αij). We compute P(q|O) analogously as



Algorithm for general setting

• The following theorem shows an approach for computing 

products of the beta function that leads to an exponential 

improvement in the running time of the algorithm for one 

observation, and reduces the dependence on m for the multiple 

observation setting from exponential to linear, though the 

complexity still remains exponential in n and T for the latter. 

Full details in tech report (Ganzfried & Sun ‘16).



Uniform prior over polyhedron
• Opponent playing uniformly at random within region of fixed 

strategy, e.g., specific NE or “population mean” strategy

• E.g., “sophisticated” Rock-Paper-Scissors opponents who play 

uniformly at random out of strategies with probability within 

[0.31,0.35], instead of completely random over [0,1].

– Ganzfried/Sandholm used similar opponents for poker, EC12/TEAC15



Run time of basic algorithm

• Colt Java math library for Beta computation

• Dirichlet parameters uniformly random in {1,n}

– n = 100 corresponds to ~200 prior observations on average

– Previous work (Southey et al) used 200 hands per match

• Computation very fast but numerical instability for large n



Run time of generalized algorithm

• Tested generalized algorithm for different 

numbers of observations keeping prior fixed

• Used Dirichlet prior with all parameters equal to 

2 (as done in prior work Southey et al)

• For θb = 101, θs = 100, ran in 19 milliseconds.



Comparison to other approaches

• EBBR: our Exact Bayesian Best Response

• BBR: Bayesian Best Response

– samples strategies from prior, best responds to posterior mean

• MAP: Max A Posteriori Response

– samples from prior, computes posteriors, best response to max

• Thompson’s Response

– Sample from prior, compute posteriors, best response to sample



Comparison to other approaches



Generalizations

• Generalized model to n different states according to 

arbitrary distribution π and can take m actions

• Have closed-form solution, but contains number of 

terms exponential in n and m (though polynomial in T).

• Can approach or analysis be improved?



Conclusions and directions

• First exact algorithm for Bayesian opponent exploitation 

in class of imperfect-information games

• Runs quickly experimentally and outperforms prior 

approaches, but frequent numerical instability for large n

• General meta-algorithm and new theoretical framework

• Studied Dirichlet prior and uniform over polyhedron

• Future research and extensions:

– Partial observability (likely straightforward)

– General game trees with sequential actions (likely hard)

– Any number of agents (alg not specialized for 2 pl zero-sum)

– Other important and tractable prior distributions


