1. Calculate the first order derivatives u_{x} and u_{y} for the following change of coordinates
(i) $r=2 x-y, \quad s=x+y$,
(ii) $r=x \mathrm{e}^{y}, \quad s=x \mathrm{e}^{-y}$,
2. Using the chain rule $u_{r}=u_{x} x_{r}+u_{y} y_{r}$, find u_{x} and u_{y} in terms of r for the following:
(i) $x=r, \quad y=-r, \quad u=1$,
(ii) $x=r, \quad y=1, \quad u=r^{2}$,
3. Solve the following first order ordinary differential equations

$$
\begin{array}{ll}
\text { (i) } \quad x y^{\prime}=3 y+x^{2} & \text { (ii) } \quad x y^{\prime}+y=x^{2} y^{2} \\
\text { (iii) } \quad \frac{d y}{d x}=\frac{y^{2}-3 x^{2} y}{x^{3}-2 x y} & \text { (iv) } \quad x^{2} y^{\prime}=x^{2} y^{2}+x y-3
\end{array}
$$

4. Solve the following systems of ODEs

$$
\begin{aligned}
& \text { (i) } \frac{d x}{x}=\frac{d y}{y}=\frac{d z}{z} \\
& \text { (ii) } \frac{d x}{y}=\frac{d y}{x}=\frac{d z}{z} \\
& \text { (iii) } \frac{d x}{y}=\frac{d y}{x-z}=\frac{d z}{y}
\end{aligned}
$$

For Math 5315

5. Consider the following system of ODEs

$$
\frac{d x}{P(x, y, u)}=\frac{d y}{Q(x, y, u)}=\frac{d u}{R(x, y, u)}
$$

Show that for some real constants a, b and c

$$
\frac{d x}{P(x, y, u)}=\frac{d y}{Q(x, y, u)}=\frac{d u}{R(x, y, u)}=\frac{d(a x+b y+c u)}{a P+b Q+c R} .
$$

Due: Friday Sept. 3, 2021

