1. Calculate the first order derivatives u_x and u_y for the following change of coordinates

(i)
$$r = 2x - y$$
, $s = x + y$,
(ii) $r = x e^{y}$, $s = x e^{-y}$,

2. Using the chain rule $u_r = u_x x_r + u_y y_r$, find u_x and u_y in terms of *r* for the following:

(i)
$$x = r$$
, $y = -r$, $u = 1$,
(ii) $x = r$, $y = 1$, $u = r^2$,

3. Solve the following first order ordinary differential equations

(i)
$$xy' = 3y + x^2$$
 (ii) $xy' + y = x^2y^2$
(iii) $\frac{dy}{dx} = \frac{y^2 - 3x^2y}{x^3 - 2xy}$ (iv) $x^2y' = x^2y^2 + xy - 3$

4. Solve the following systems of ODEs

(i)
$$\frac{dx}{x} = \frac{dy}{y} = \frac{dz}{z}$$

(ii) $\frac{dx}{y} = \frac{dy}{x} = \frac{dz}{z}$
(iii) $\frac{dx}{y} = \frac{dy}{x-z} = \frac{dz}{y}$

For Math 5315

5. Consider the following system of ODEs

$$\frac{dx}{P(x,y,u)} = \frac{dy}{Q(x,y,u)} = \frac{du}{R(x,y,u)}$$

Show that for some real constants *a*, *b* and *c*

$$\frac{dx}{P(x,y,u)} = \frac{dy}{Q(x,y,u)} = \frac{du}{R(x,y,u)} = \frac{d(ax+by+cu)}{aP+bQ+cR}.$$

Due: Friday Sept. 3, 2021