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Artificial Intelligence

Instructor: Sam Ganzfried
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• http://www.ultimateaiclass.com/

• https://moodle.cis.fiu.edu/

• HW1 out 9/5 today, due 10/3 

– Remember that you have up to 4 late days to use throughout 

the semester.

– https://www.cs.cmu.edu/~sganzfri/HW1_AI.pdf

– http://ai.berkeley.edu/search.html

– HW2 will go out next week, due 10/17

– Midterm on 10/19

• TA office hours:

– Thursday 3:15-4:15PM, ECS 254

http://www.ultimateaiclass.com/
http://ai.berkeley.edu/search.html
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Local search
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Hill-climbing search

• The hill-climbing search algorithm (steepest-ascent

version) is simply a loop that continually moves in the 

direction of increasing value—that is, uphill. It 

terminates when it reaches a “peak” where no neighbor 

has a higher value. The algorithm does not maintain a 

search tree, so the data structure for the current node 

need only record the state and the value of the 

objective function. Hill climbing does not look ahead 

beyond the immediate neighbors of the current state. 

This resembles trying to find the top of Mount Everest 

in a thick fog while suffering from amnesia.
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Hill-climbing search
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Hill climbing can get stuck

• Unfortunately, hill climbing often gets stuck for the 

following reasons:

– Local maxima: a local maximum is a peak that is higher 

than each of its neighboring states but lower than the global 

maximum. Hill-climbing algorithms that reach the vicinity of 

a local maximum will be drawn upward toward the peak but 

will then be stuck with nowhere else to go. 

– Ridges: a ridge is shown in next figure. Ridges result in a 

sequence of local maxima that is very difficult for greedy 

algorithms to navigate.

– Plateaux: a plateau is a flat area of the state-space landscape. 

It can be a flat local maximum, from which no uphill exist 

exists, or a shoulder, from which progress is possible. A hill-

climbing search might get lost on the plateau.
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Hill climbing ridge
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Hill climbing

• In each case, the algorithm reaches a point at which no 

progress is being made. Starting from a randomly 

generated 8-queens state, steepest-ascent hill climbing 

gets stuck 86% of the time, solving only 14% of 

problem instances. It works quickly, taking just 4 steps 

on average when it succeeds and 3 when it gets stuck—

not bad for a state space with 8^8 ~= 17 million states.
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Hill climbing

• The algorithm halts if it reaches a plateau where 

the best successor has the same value as the 

current state. Might it not be a good idea to keep 

going—to allow a sideways move in the hope 

that the plateau is really a “shoulder?”
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Hill climbing

• The answer is usually yes, but we must take care. If we 

always allow sideways moves when there are no uphill 

moves, an infinite loop will occur whenever the 

algorithm reaches a flat local maximum that is not a 

shoulder. One common solution is to put a limit on the 

number of consecutive sideways moves allowed. For 

example, we could allow up to, say, 100 consecutive 

sideways moves in the 8-queens problem. This raises 

the percentage of problem instances solved by hill 

climbing from 14% to 94%. Success comes at a cost: 

the algorithm averages roughly 21 steps for each 

successful instance and 64 for each failure.
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Hill climbing

• Many variants of hill climbing have been invented. 

• Stochastic hill climbing chooses at random from 

among the uphill moves; the probability of selection 

can vary with the steepness of the uphill move. This 

usually converges more slowly than steepest ascent, 

but in some state landscapes, it finds better solutions.

• First-choice hill climbing implements stochastic hill 

climbing by generating successors randomly until one 

is generated that is better than the current state. This is 

a good strategy when a state has many (e.g., thousands) 

of successors).
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Hill climbing

• The hill-climbing algorithms described so far are 

incomplete—they often fail to find a goal when one 

exists because they can get stuck on local maximum. 

• Random-restart hill climbing adopts the well-known 

adage, “If at first you don’t succeed, try, try again.” It 

conducts a series of hill-climbing searches from 

randomly generated initial states, until a goal is found. 

It is trivially complete with probability approaching 1, 

because it will eventually generate a goal state as the 

initial state.
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Random-restart hill climbing

• If each hill-climbing search has a probability p of 

success, then the expected number of restarts required 

is 1/p. For 8-queens instances with no sideways moves 

allowed, p~=0.14, so we need roughly 7 iterations to 

find a goal (6 failures and 1 success). The expected 

number of steps is the cost of one successful iteration 

plus (1-p)/p times the cost of failure, or roughly 22 

steps in all. When we allow sideways moves, 1/0.94 ~= 

1.06 iterations are needed on average and 

(1x21)+(0.06/0.94)x64~=25 steps. For 8-queens, then, 

random-restart hill climbing is very effective indeed. 

Even for three million queens, the approach can find 

solutions in under a minute.
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Simulated annealing

• A hill-climbing algorithm that never makes “downhill” 

moves toward states with lower value (or higher cost) 

is guaranteed to be incomplete, because it can get stuck 

on a local maximum. In contrast, a purely random 

walk—that is, moving to a successor chosen uniformly 

at random from the set of successors—is complete but 

extremely inefficient. Therefore, it seems reasonable to 

try to combine hill climbing with a random walk in 

some way that yields both efficiency and completeness.
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Simulated annealing

• Simulated annealing is such an algorithm. In metallurgy, 

annealing is the process used to temper or harden metals and 

glass by heating them to a high temperature and then gradually 

cooling them, thus allowing the material to reach a low-energy 

crystalline state. To explain simulated annealing, we stich our 

point of view from hill climbing to gradient descent

(minimizing cost) and imagine the task of getting a ping-pong 

ball into the deepest crevice in a bumpy surface. If we just let 

the ball roll, it will come to rest at a local minimum. If we shake 

the surface, we can bounce the ball out of the local minimum. 

The trick is to shake just hard enough to bounce the ball out of 

the LM but not hard enough to dislodge it from the global 

minimum. The SA solution is to start by shaking hard (i.e., high 

temperature) and then gradually reduce the intensity.
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Simulated annealing
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Simulated annealing

• Simulated annealing was first used extensively to solve 

VLSI layout problems (creating integrated circuit by 

combining thousands of transistors into a single chip) 

in the early 1980s. It has been applied widely to factory 

scheduling and other large-scale optimization tasks. 

• Homework exercise (for HW2): compare performance 

of simulated annealing to that of random-restart hill 

climbing on the 8-queens puzzle.
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Local beam search

• Keeping just one node in memory might seem to be an 

extreme reaction to the problem of memory limitations. 

The local beam search algorithm keeps track of k 

states rather than just 1. It begins with k randomly 

generated states. At each step, all successors of all k 

states are generated. If any one is a goal, the algorithm 

halts. Otherwise, it selects the k best successors from 

the complete list and repeats.
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Local beam search

• At first sight, a local beam search with k states might seem to be 

nothing more than running k random restarts in parallel instead 

of in sequence. In fact, the two algorithms are quite different. In 

a random-restart search, each search process runs independently 

of the others. In a local beam search, useful information is 

passed among the parallel search threads. In effect, the states 

that generate the best successors say to the others, “Come over 

here, the grass is greener!” The algorithm quickly abandons 

unfruitful searches and moves its resources to where toe most 

progress is being made.
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Local beam search

• In its simplest form, local beam search can suffer from a lack of 

diversity among the k states—they can quickly become 

concentrated in a small region of the state space, making the 

search little more than an expensive version of hill climbing. A 

variant called stochastic beam search, analogous to stochastic 

hill climbing, helps alleviate this problem. Instead of choosing 

the best k from the pool of candidate successors, SBS chooses k 

successors at random, with the probability of choosing a given 

successor being an increasing function of its value. SBS bears 

some resemblance to the problem of natural selection, whereby 

the “successors” (offspring) of a “state” (organism) populate the 

next generation according to its “value” (fitness).
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Genetic algorithms

• A genetic algorithm (GA) is a variant of stochastic beam 

search in which successor states are generated by combining two

parent states rather than by modifying a single state. 

• Like beam searches, GAs begin with a set of k randomly 

generated states, called the population. Each state, or 

individual, is represented a s a string over a finite alphabet—

most commonly, a string of 0s and 1s. For example, an 8-queens 

state must specify the positions of 8 queens, each in a column of 

8 squares, and so requires 8 x log(8) = 24 bits. Alternatively, the 

state could be represented as 8 digits, each in the range from 1 to 

8. The figure shows a population of four 8-digit strings 

representing 8-queens states.
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Genetic algorithms
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Genetic algorithms
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Genetic algorithms

• Like stochastic beam search, genetic algorithms combine uphill 

tendency with random exploration and exchange of information 

among parallel search threads. The primary advantage, if any, of 

genetic algorithms comes from the crossover operation. Yet it 

can be shown mathematically that, if the positions of the genetic 

code are permuted initially in a random order, crossover conveys 

no advantage. Intuitively, the advantage comes from the ability 

of crossover to combine large blocks of letters that have evolved 

independently to perform useful functions, thus raising the level 

of granularity at which the search operates. For example, it could 

be that putting the first three queens in positions 2, 4, and 6 

(where they do not attack each other) constitutes a useful block 

that can be combined with other blocks to construct a solution.



25

Genetic algorithms

• In practice, genetic algorithms have had a widespread 

impact on optimization problems, such as circuit layout 

and job-shop scheduling. At present, it is not clear 

whether the appeal of genetic algorithms arises from 

their performance or from their aesthetically pleasing 

origins in the theory of evolution. Much work remains 

to be done to identify the conditions under which 

genetic algorithms perform well.
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Local search for continuous spaces

• Earlier we explained the distinction between discrete and 

continuous environments, pointing out that most real-world 

environments are continuous. Yet none of the algorithms we 

have described (except for first-choice hill climbing and 

simulated annealing) can handle continuous state and action 

spaces, because they have infinite branching factors. There exist 

other local search techniques for finding optimal solutions in 

continuous spaces. Many of the basic techniques originated in 

the 17th century after the development of calculus by Newton 

and Leibniz. We find use for these techniques at several places, 

including for learning, vision, and robotics.
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Local search for continuous spaces 

• Suppose we want to place three new airports anywhere 

in Romania, such that the sum of squared distances 

form each city on the map to its nearest airport is 

minimized. The state space is then defined by the 

coordinates of the airports: (x1,y1), (x2,y2), and 

(x3,y3). This is a six-dimensional space; we also say 

that the states are defined by six variables. Moving 

around in this space corresponds to moving one or 

more of the airports on the map.  The objective 

function f(x1,y1,x2,y2,x3,y3) is relatively easy to 

compute for any particular state once we compute the 

closest cities. 
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Local search extensions

• More advanced approaches for continuous spaces: 

empirical gradient, line search, Newton-Raphson 

method, Hessian matrix, etc. We will see some of these 

in the optimization module of the class.

• Can also apply local search for nondeterministic 

actions (And-Or search trees), for partial observation 

(belief-state search), and for online search in real-time 

for unknown environments (all of the algorithms we 

have seen produce agents for offline search). 
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Local search wrap-up

• Local search methods such as hill climbing operate on 

complete-state formulations, keeping only a small number of 

nodes in memory. Several stochastic algorithms have been 

developed, including simulated annealing, which returns 

optimal solutions when given an appropriate cooling schedule.

• Many local search methods apply also to problems in continuous 

spaces. Linear programming and convex optimization

problems obey certain restrictions on the shape of the state space 

and the nature of the objective function, and admit polynomial-

time algorithms that are often extremely efficient in practice.

• A genetic algorithm is a stochastic hill-climbing search in 

which a large population of states is maintained. New states are 

generated by mutation and crossover, which combines pairs of 

states from the population.
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Adversarial search

• We first consider games with two players, whom we 

call MAX and MIN. MAX moves first, and then they 

take turns moving until the game is over. At the end of 

the game, points are awarded to the winning player, 

and penalties given to the loser. A game can be 

formally defined as a kind of search problem with the 

following elements:
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Search problem definition

• States

• Initial state

• Actions

• Transition model

• Goal test

• Path cost
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Definition for 8-queens problem

• States: Any arrangement of 0 to 8 queens on the 

board is a state.

• Initial state: No queens on the board.

• Actions: Add a queen to any empty square.

• Transition model: Returns the board with a 

queen added to the specified square

• Goal test: 8 queens are on the board, none 

attacked

• Path cost: (Not applicable)
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Game definition

• S0: the initial state, which specifies how the game starts

• PLAYER(s): defines which player has the move in a state

• ACTIONS(s): Returns the set of legal moves in a state

• RESULT(s,a): The transition model, which defines the result of 

a move.

• TERMINAL-TEST(s): A terminal test, which is true when the 

game is over and false otherwise. States where the game has 

ended are called terminal states.

• UTILITY(s,p): A utility function (also called an objective 

function or payoff function), defines the final numeric value for a 

game that ends in terminal state s for a player p. In chess, the 

outcome is a win, loss, or draw, with values +1, 0, or ½. Some 

games have a wider variety of possible outcomes; the payoffs in 

backgammon range from 0 to +192.
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Zero-sum games

• A zero-sum game is (confusingly) defined as 

one where the total payoff to all players is the 

same for every instance of the game. 

• Is chess zero-sum?

• Checkers?

• Poker?
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Zero-sum games

• Chess is zero-sum because every game has payoff of 

either 0 +1, 1+0, or ½ + ½ 

• “Constant-sum” would have been a better term, but 

zero-sum is traditional and makes sense if you imagine 

that each player is charged an entry fee of ½.
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Game tree

• The initial state, ACTIONS function, and RESULT function 

define the game tree for the game—a tree where the nodes are 

game states and the edges are moves. The figure shows part of 

the game tree for tic-tac-toe. From the initial state, MAX has 

nine possible moves. Play alternates between MAX’s placing an 

X and MIN’s placing an O until we reach leaf nodes 

corresponding to terminal states such that one player has three in 

a row or all the squares are filled. The number on each leaf node 

indicates the utility value of the terminal state from the point of 

view of MAX; high values are assumed to be good for MAX 

and bad for MIN (which is how the players get their names).
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Game trees
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Game trees

• For tic-tac-toe the game tree is relatively small—fewer 

than 9! = 362,880 terminal nodes. But for chess there 

are over 10^40 nodes, so the game tree is best thought 

of as a theoretical construct that we cannot realize in 

the physical world. But regardless of the game tree, it 

is MAX’s job to search for a good move. We use the 

term search tree for a tree that is superimposed on the 

full game tree, and examines enough nodes to allow a 

player to determine what move to make.
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Optimal decisions in games

• In a normal search problem, the optimal solution would 

be a sequence of actions leading to a goal state—a 

terminal state that is a win. In adversarial search, MIN 

has something to say about it. MAX therefore must 

find a contingent strategy, which specifies MAX’s 

move in the initial state, then MAX’s moves in the 

states resulting from every possible response by MIN, 

then MAX’s moves in the states resulting by every 

possible response by MIN to those moves, and so on. 

Roughly speaking, an optimal strategy leads to 

outcomes at least as good as any other strategy when 

one is playing an infallible opponent. 
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Game tree
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Optimal decisions in games

• Even a simple game like tic-tac-toe is too complex for 

us to draw the entire game tree on one page, so we will 

instead examine a “trivial” game. The possible moves 

for MAX at the root node are labeled a1, a2, and a3. 

The possible replies to a1 for MIN are b1, b2, b3, and 

so on. This particular game ends after one move each 

by MAX and MIN. (We say that this tree is one move 

deep, consisting of two half-moves, each of which is 

called a ply.) The utilities of the terminal states in this 

game range from 2 to 14.
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Optimal decisions in games

• Given a game tree, the optimal strategy can be determined from 

the minimax value of each node, which we write as 

MINIMAX(n). The minimax value of a node is the utility (for 

MAX) of being in the corresponding state, assuming that both 

players play optimally from there to the end of the game. 

Obviously, the minimax value of a terminal state is just its 

utility. Furthermore, given a choice, MAX prefers to move to a 

state of maximum value, whereas MIN prefers a state of 

minimum value. So we have:
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Optimal decisions in games

• Let us apply these definitions to the game tree 

considered above. The terminal nodes on the bottom 

level get their utility values from the game’s UTILITY 

function. The first MIN node, labeled B, has three 

successor states with values 3, 12, and 8, so its 

minimax value is 3. Similarly, the other two MIN 

nodes have minimax value 2. The root node is a MAX 

node; its successor states have minimax values 3, 2, 

and 2; so it has a minimax value of 3. We can also 

identify the minimax decision at the root: action a1 is 

the optimal choice for MAX because it leads to the 

state with the highest minimax value.
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Optimal decisions in games

• This definition of optimal play for MAX assumes that 

MIN also plays optimally—it maximizes the worst-

case outcome for MAX. What if MIN does not play 

optimally? Then it is easy to show (homework 

exercise) that MAX will do even better. Other 

strategies against suboptimal opponents may do better 

than the minimax strategy, but these strategies 

necessarily do worse against optimal opponents.
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The minimax algorithm

• The minimax algorithm computes the minimax decision from 

the current state. It uses a simple recursive computation of the 

minimax values of each successor state, directly implementing 

the defining equations. The recursion proceeds all the way down 

to the leaves of the tree, and then the minimax values are 

backed up through the tree as the recursion unwinds. For 

example, in the figure the algorithm first recurses down to the 

three bottom-left nodes and uses the UTILITY function on them 

to discover that their values are 3, 12, and 8, respectively. Then 

it takes the minimum of these values, 3, and returns it as the 

backed-up value of node B. A similar process gives the backed-

up values of 2 for C and 2 for D. Finally, we take the maximum 

of 3, 2, and 2 to get the backed-up value of 3 for the root node.
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Minimax algorithm
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Minimax algorithm

• Does the minimax algorithm resemble any 

algorithms we have seen previously?

• How does it rate on the “big 4”?

– Recall that game-tree search is still a form of search.
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Minimax algorithm

• The minimax algorithm performs a complete depth-

first exploration of the game tree. If the maximum 

depth of the tree is m and there are b legal moves at 

each point, then the time complexity of the minimax 

algorithm is O(b^m). The space complexity is O(bm) 

for an algorithm that generates all actions at once, or 

O(m) for an algorithm that generates actions one at a 

time. For real games, of course, the time cost is totally 

impractical, but this algorithm serves as the basis for 

the mathematical analysis of games and for more 

practical algorithms.
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Optimal decisions in multiplayer games

• Many popular games allow more than two players. Let us 

examine how to extend the minimax idea to multiplayer games. 

This is straightforward from the technical viewpoint, but raises 

some interesting conceptual issues.

• First, we need to replace the single value for each node with a 

vector of values. For example, in a three-player game with 

players A, B, and C, a vector (vA,vB,vC) is associated with each 

node. For terminal states, this vector gives the utility of the state 

from each player’s viewpoint. (In two-player zero-sum games, 

the two-element vector can be reduced to a single value because 

the values are always opposite.) The simplest way to implement 

this is to have the UTILITY function return a vector of utilities.
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Multiplayer minimax algorithm
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Multiplayer minimax

• Now we have to consider nonterminal states. Consider 

the node marked X in the game tree. In that state, 

player C chooses what to do. The two choices lead to 

terminal states with utility vectors (vA=1,vB=2,vC=6) 

and (vA=4,vB=2,vC=3). Since 6 is bigger than 3, C 

should choose the first move. This means that if state X 

is reached, subsequent play will lead to a terminal state 

with utilities (vA=1,vB=2,vC=6). Hence, the backed-

up value of X is this vector. 
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Multiplayer minimax

• The backed-up value of a node n is always the utility 

vector of the successor state with the highest value for 

the player choosing at n. Anyone who plays 

multiplayer games, such as Diplomacy, quickly 

becomes aware that much more is going on than in 

two-player games. Multiplayer games usually involve 

alliances, whether formal or informal, among the 

players. Alliances are made and broken as the game 

proceeds. How are we to understand such behavior? 

Are alliances a natural consequence of optimal 

strategies for each player in a multiplayer game? 
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Multiplayer minimax

• It turns out that they can be. For example, suppose A and B are 

in weak positions and C is in a stronger position. Then it is often 

optimal for both A and B to attach C rather than each other, lest 

C destroy each of them individually. In this way, collaboration 

emerges from purely selfish behavior. Of course, as soon as C 

weakens under the joint onslaught, the alliance loses its value, 

and either A or B could violate the agreement. In some cases, a 

social stigma attaches to breaking an alliance, so players must 

balance the immediate advantage of breaking an alliance against 

the long-term disadvantage of being perceived as untrustworthy.
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Multiplayer minimax

• If the game is not zero-sum, then collaboration can also occur 

with just two players. Suppose, for example, that there is a 

terminal state with utilities (vA=1000,vB=1000) and that 1000 is 

the highest possible utility for each player. Then the optimal 

strategy is for both players to do everything possible to reach 

this state—that is, the players will automatically cooperate to 

achieve a mutually desirable goal.
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Game-tree search pruning

• The problem with minimax search is that the number of game 

states it has to examine is exponential in the depth of the tree. 

Unfortunately, we can’t eliminate the exponent, but it turns out 

that we can effectively cut it in half. The trick is that it is 

possible to compute the correct minimax decision without 

looking at every node in the game tree. That is, we can borrow 

the idea of pruning from the search section (recall that A* 

pruned the subtree following below Timisoara) to eliminate 

large parts of the tree from consideration. The particular 

technique we consider is alpha-beta pruning. When applied to 

a standard minimax tree, it returns the same move as minimax 

would, but prunes away branches that cannot possibly influence 

the final decision.
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Game tree
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Alpha-beta pruning

• Consider again the two-play game tree. Let’s go 

through the calculation of the optimal decision once 

more, this time paying careful attention to what we 

know at each point in the process. The steps are 

explained in the figure on the next page. The outcome 

is that we can identify the minimax decision without 

ever evaluating two of the leaf nodes.
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Alpha-beta pruning
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Alpha-beta pruning

• Another way to look at this is as a simplification of the formula 

for MINIMAX. Let the two unevaluated successors of node C in 

the figure have values x and y. Then the value of the root node is 

given by:

MIMIMAX(root) 

= max(min(3,12,8),min(2,x,y),min(14,5,2)

= max(3,min(2,x,y),2)

= max(3,z,2) where z = min(2,x,y) <= 2

= 3.

• In other words, the value of the root and hence the minimax 

decision are independent of the values of the pruned leaves x 

and y. 
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Alpha-beta pruning

• Alpha-beta pruning can be applied to trees of any depth, 

and it is often possible to prune entire subtrees rather 

than just leaves. The general principle is this: consider a 

node n somewhere in the tree (see next figure) such that 

Player has a choice of moving to that node. If Player 

has a better choice m either at the parent node of n or at 

any choice point further up, then n will never be 

reached in actual play. So once we have found out 

enough about n (by examining some of its descendants) 

to reach this conclusion, we can prune it.
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General alpha-beta pruning
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Alpha-beta search

• Remember that minimax search is depth-first, so at any 

one time we just have to consider the nodes along a 

single path in the tree. Alpha-beta pruning gets its 

name from the following two parameters that describe 

bounds on the backed-up values that appear anywhere 

along the path:

– α = the value of the best (i.e., highest-value) choice we have 

found so far at any choice point along the path for MAX.

– β = the value of the best (i.e., lowest-value) choice we have 

found so far at any choice point along the path for MIN.
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Alpha-beta search algorithm

• Alpha-beta search updates the values of α and β as it 

goes along and prunes the remaining branches at a 

node (i.e., terminates the recursive call) as soon as the 

values of the current node is known to be worse than 

the current α or β value for MAX or MIN, respectively. 

The complete algorithm is given on the next slide. We 

can trace its behavior when applied to the example.
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Alpha-beta search algorithm
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Move ordering

• The effectiveness of alpha-beta pruning is highly 

dependent on the order in which the states are examined. 

For example, in the figure we could not prune any 

successors of D at all because the worst successors 

(from the point of view of MIN) were generated first. If 

the third successor of D had been generated first, we 

would have been able to prune the other two. This 

suggests that it might be worthwhile to try to examine 

firs the successors that are likely to be best.
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Alpha-beta move ordering

• If this can be done, then it turns out that alpha-beta needs to 

examine only O(b^(m/2)) nodes to pick the best move, instead 

of O(b^m) for minimax. This means that the effective branching 

factor becomes sqrt(b) instead of b – for chess, about 6 instead 

of 35. Put another way, alpha-beta can solve a tree roughly twice 

as deep as minimax in the same amount of time. If successors 

are examined in random order rather than best-first, the total 

number of nodes examined will be roughly O(b^(3m/4)) for 

moderate b. For chess, a fairly simple ordering function (such as 

trying captures first, then threats, then forward moves, and then 

backward moves) gets to within about a factor of 2 of the best-

case O(b^(m/2)) result. 
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Alternative search paradigms

• Local search: evaluates and modifies one or more current states, 

rather than systematically exploring paths from an initial state. 

– Global vs. local minimum/maximum, hill-climbing, simulated annealing, 

local beam search, genetic algorithms

• Adversarial search: search with multiple agents, where our 

optimal action depends on the cost/“utilities” of other agents and 

not just our own. 

– E.g., robot soccer, computer chess, etc.

– Zero-sum games, perfect vs. imperfect information, minimax search, 

alpha-beta  pruning

• Constraint satisfaction: assign a value to each variable that 

satisfies certain constraints. E.g., map coloring.
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Constraint satisfaction
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Homework for next class

• Chapter 9 from Russell-Norvig textbook.

• HW1: out 9/5 due 10/3


