
1

CAP 4630

Artificial Intelligence

Instructor: Sam Ganzfried

sganzfri@cis.fiu.edu

2

• http://www.ultimateaiclass.com/

• https://moodle.cis.fiu.edu/

• HW1 out 9/5 today, due 10/3

– Remember that you have up to 4 late days to use throughout

the semester.

– https://www.cs.cmu.edu/~sganzfri/HW1_AI.pdf

– http://ai.berkeley.edu/search.html

– HW2 will go out next week, due 10/17

– Midterm on 10/19

• TA office hours:

– Thursday 3:15-4:15PM, ECS 254

http://www.ultimateaiclass.com/
http://ai.berkeley.edu/search.html

3

Local search

4

Hill-climbing search

• The hill-climbing search algorithm (steepest-ascent

version) is simply a loop that continually moves in the

direction of increasing value—that is, uphill. It

terminates when it reaches a “peak” where no neighbor

has a higher value. The algorithm does not maintain a

search tree, so the data structure for the current node

need only record the state and the value of the

objective function. Hill climbing does not look ahead

beyond the immediate neighbors of the current state.

This resembles trying to find the top of Mount Everest

in a thick fog while suffering from amnesia.

5

Hill-climbing search

6

Hill climbing can get stuck

• Unfortunately, hill climbing often gets stuck for the

following reasons:

– Local maxima: a local maximum is a peak that is higher

than each of its neighboring states but lower than the global

maximum. Hill-climbing algorithms that reach the vicinity of

a local maximum will be drawn upward toward the peak but

will then be stuck with nowhere else to go.

– Ridges: a ridge is shown in next figure. Ridges result in a

sequence of local maxima that is very difficult for greedy

algorithms to navigate.

– Plateaux: a plateau is a flat area of the state-space landscape.

It can be a flat local maximum, from which no uphill exist

exists, or a shoulder, from which progress is possible. A hill-

climbing search might get lost on the plateau.

7

Hill climbing ridge

8

Hill climbing

• In each case, the algorithm reaches a point at which no

progress is being made. Starting from a randomly

generated 8-queens state, steepest-ascent hill climbing

gets stuck 86% of the time, solving only 14% of

problem instances. It works quickly, taking just 4 steps

on average when it succeeds and 3 when it gets stuck—

not bad for a state space with 8^8 ~= 17 million states.

9

Hill climbing

• The algorithm halts if it reaches a plateau where

the best successor has the same value as the

current state. Might it not be a good idea to keep

going—to allow a sideways move in the hope

that the plateau is really a “shoulder?”

10

Hill climbing

• The answer is usually yes, but we must take care. If we

always allow sideways moves when there are no uphill

moves, an infinite loop will occur whenever the

algorithm reaches a flat local maximum that is not a

shoulder. One common solution is to put a limit on the

number of consecutive sideways moves allowed. For

example, we could allow up to, say, 100 consecutive

sideways moves in the 8-queens problem. This raises

the percentage of problem instances solved by hill

climbing from 14% to 94%. Success comes at a cost:

the algorithm averages roughly 21 steps for each

successful instance and 64 for each failure.

11

Hill climbing

• Many variants of hill climbing have been invented.

• Stochastic hill climbing chooses at random from

among the uphill moves; the probability of selection

can vary with the steepness of the uphill move. This

usually converges more slowly than steepest ascent,

but in some state landscapes, it finds better solutions.

• First-choice hill climbing implements stochastic hill

climbing by generating successors randomly until one

is generated that is better than the current state. This is

a good strategy when a state has many (e.g., thousands)

of successors).

12

Hill climbing

• The hill-climbing algorithms described so far are

incomplete—they often fail to find a goal when one

exists because they can get stuck on local maximum.

• Random-restart hill climbing adopts the well-known

adage, “If at first you don’t succeed, try, try again.” It

conducts a series of hill-climbing searches from

randomly generated initial states, until a goal is found.

It is trivially complete with probability approaching 1,

because it will eventually generate a goal state as the

initial state.

13

Random-restart hill climbing

• If each hill-climbing search has a probability p of

success, then the expected number of restarts required

is 1/p. For 8-queens instances with no sideways moves

allowed, p~=0.14, so we need roughly 7 iterations to

find a goal (6 failures and 1 success). The expected

number of steps is the cost of one successful iteration

plus (1-p)/p times the cost of failure, or roughly 22

steps in all. When we allow sideways moves, 1/0.94 ~=

1.06 iterations are needed on average and

(1x21)+(0.06/0.94)x64~=25 steps. For 8-queens, then,

random-restart hill climbing is very effective indeed.

Even for three million queens, the approach can find

solutions in under a minute.

14

Simulated annealing

• A hill-climbing algorithm that never makes “downhill”

moves toward states with lower value (or higher cost)

is guaranteed to be incomplete, because it can get stuck

on a local maximum. In contrast, a purely random

walk—that is, moving to a successor chosen uniformly

at random from the set of successors—is complete but

extremely inefficient. Therefore, it seems reasonable to

try to combine hill climbing with a random walk in

some way that yields both efficiency and completeness.

15

Simulated annealing

• Simulated annealing is such an algorithm. In metallurgy,

annealing is the process used to temper or harden metals and

glass by heating them to a high temperature and then gradually

cooling them, thus allowing the material to reach a low-energy

crystalline state. To explain simulated annealing, we stich our

point of view from hill climbing to gradient descent

(minimizing cost) and imagine the task of getting a ping-pong

ball into the deepest crevice in a bumpy surface. If we just let

the ball roll, it will come to rest at a local minimum. If we shake

the surface, we can bounce the ball out of the local minimum.

The trick is to shake just hard enough to bounce the ball out of

the LM but not hard enough to dislodge it from the global

minimum. The SA solution is to start by shaking hard (i.e., high

temperature) and then gradually reduce the intensity.

16

Simulated annealing

17

Simulated annealing

• Simulated annealing was first used extensively to solve

VLSI layout problems (creating integrated circuit by

combining thousands of transistors into a single chip)

in the early 1980s. It has been applied widely to factory

scheduling and other large-scale optimization tasks.

• Homework exercise (for HW2): compare performance

of simulated annealing to that of random-restart hill

climbing on the 8-queens puzzle.

18

Local beam search

• Keeping just one node in memory might seem to be an

extreme reaction to the problem of memory limitations.

The local beam search algorithm keeps track of k

states rather than just 1. It begins with k randomly

generated states. At each step, all successors of all k

states are generated. If any one is a goal, the algorithm

halts. Otherwise, it selects the k best successors from

the complete list and repeats.

19

Local beam search

• At first sight, a local beam search with k states might seem to be

nothing more than running k random restarts in parallel instead

of in sequence. In fact, the two algorithms are quite different. In

a random-restart search, each search process runs independently

of the others. In a local beam search, useful information is

passed among the parallel search threads. In effect, the states

that generate the best successors say to the others, “Come over

here, the grass is greener!” The algorithm quickly abandons

unfruitful searches and moves its resources to where toe most

progress is being made.

20

Local beam search

• In its simplest form, local beam search can suffer from a lack of

diversity among the k states—they can quickly become

concentrated in a small region of the state space, making the

search little more than an expensive version of hill climbing. A

variant called stochastic beam search, analogous to stochastic

hill climbing, helps alleviate this problem. Instead of choosing

the best k from the pool of candidate successors, SBS chooses k

successors at random, with the probability of choosing a given

successor being an increasing function of its value. SBS bears

some resemblance to the problem of natural selection, whereby

the “successors” (offspring) of a “state” (organism) populate the

next generation according to its “value” (fitness).

21

Genetic algorithms

• A genetic algorithm (GA) is a variant of stochastic beam

search in which successor states are generated by combining two

parent states rather than by modifying a single state.

• Like beam searches, GAs begin with a set of k randomly

generated states, called the population. Each state, or

individual, is represented a s a string over a finite alphabet—

most commonly, a string of 0s and 1s. For example, an 8-queens

state must specify the positions of 8 queens, each in a column of

8 squares, and so requires 8 x log(8) = 24 bits. Alternatively, the

state could be represented as 8 digits, each in the range from 1 to

8. The figure shows a population of four 8-digit strings

representing 8-queens states.

22

Genetic algorithms

23

Genetic algorithms

24

Genetic algorithms

• Like stochastic beam search, genetic algorithms combine uphill

tendency with random exploration and exchange of information

among parallel search threads. The primary advantage, if any, of

genetic algorithms comes from the crossover operation. Yet it

can be shown mathematically that, if the positions of the genetic

code are permuted initially in a random order, crossover conveys

no advantage. Intuitively, the advantage comes from the ability

of crossover to combine large blocks of letters that have evolved

independently to perform useful functions, thus raising the level

of granularity at which the search operates. For example, it could

be that putting the first three queens in positions 2, 4, and 6

(where they do not attack each other) constitutes a useful block

that can be combined with other blocks to construct a solution.

25

Genetic algorithms

• In practice, genetic algorithms have had a widespread

impact on optimization problems, such as circuit layout

and job-shop scheduling. At present, it is not clear

whether the appeal of genetic algorithms arises from

their performance or from their aesthetically pleasing

origins in the theory of evolution. Much work remains

to be done to identify the conditions under which

genetic algorithms perform well.

26

Local search for continuous spaces

• Earlier we explained the distinction between discrete and

continuous environments, pointing out that most real-world

environments are continuous. Yet none of the algorithms we

have described (except for first-choice hill climbing and

simulated annealing) can handle continuous state and action

spaces, because they have infinite branching factors. There exist

other local search techniques for finding optimal solutions in

continuous spaces. Many of the basic techniques originated in

the 17th century after the development of calculus by Newton

and Leibniz. We find use for these techniques at several places,

including for learning, vision, and robotics.

27

Local search for continuous spaces

• Suppose we want to place three new airports anywhere

in Romania, such that the sum of squared distances

form each city on the map to its nearest airport is

minimized. The state space is then defined by the

coordinates of the airports: (x1,y1), (x2,y2), and

(x3,y3). This is a six-dimensional space; we also say

that the states are defined by six variables. Moving

around in this space corresponds to moving one or

more of the airports on the map. The objective

function f(x1,y1,x2,y2,x3,y3) is relatively easy to

compute for any particular state once we compute the

closest cities.

28

Local search extensions

• More advanced approaches for continuous spaces:

empirical gradient, line search, Newton-Raphson

method, Hessian matrix, etc. We will see some of these

in the optimization module of the class.

• Can also apply local search for nondeterministic

actions (And-Or search trees), for partial observation

(belief-state search), and for online search in real-time

for unknown environments (all of the algorithms we

have seen produce agents for offline search).

29

Local search wrap-up

• Local search methods such as hill climbing operate on

complete-state formulations, keeping only a small number of

nodes in memory. Several stochastic algorithms have been

developed, including simulated annealing, which returns

optimal solutions when given an appropriate cooling schedule.

• Many local search methods apply also to problems in continuous

spaces. Linear programming and convex optimization

problems obey certain restrictions on the shape of the state space

and the nature of the objective function, and admit polynomial-

time algorithms that are often extremely efficient in practice.

• A genetic algorithm is a stochastic hill-climbing search in

which a large population of states is maintained. New states are

generated by mutation and crossover, which combines pairs of

states from the population.

30

Adversarial search

• We first consider games with two players, whom we

call MAX and MIN. MAX moves first, and then they

take turns moving until the game is over. At the end of

the game, points are awarded to the winning player,

and penalties given to the loser. A game can be

formally defined as a kind of search problem with the

following elements:

31

Search problem definition

• States

• Initial state

• Actions

• Transition model

• Goal test

• Path cost

32

Definition for 8-queens problem

• States: Any arrangement of 0 to 8 queens on the

board is a state.

• Initial state: No queens on the board.

• Actions: Add a queen to any empty square.

• Transition model: Returns the board with a

queen added to the specified square

• Goal test: 8 queens are on the board, none

attacked

• Path cost: (Not applicable)

33

Game definition

• S0: the initial state, which specifies how the game starts

• PLAYER(s): defines which player has the move in a state

• ACTIONS(s): Returns the set of legal moves in a state

• RESULT(s,a): The transition model, which defines the result of

a move.

• TERMINAL-TEST(s): A terminal test, which is true when the

game is over and false otherwise. States where the game has

ended are called terminal states.

• UTILITY(s,p): A utility function (also called an objective

function or payoff function), defines the final numeric value for a

game that ends in terminal state s for a player p. In chess, the

outcome is a win, loss, or draw, with values +1, 0, or ½. Some

games have a wider variety of possible outcomes; the payoffs in

backgammon range from 0 to +192.

34

Zero-sum games

• A zero-sum game is (confusingly) defined as

one where the total payoff to all players is the

same for every instance of the game.

• Is chess zero-sum?

• Checkers?

• Poker?

35

Zero-sum games

• Chess is zero-sum because every game has payoff of

either 0 +1, 1+0, or ½ + ½

• “Constant-sum” would have been a better term, but

zero-sum is traditional and makes sense if you imagine

that each player is charged an entry fee of ½.

36

Game tree

• The initial state, ACTIONS function, and RESULT function

define the game tree for the game—a tree where the nodes are

game states and the edges are moves. The figure shows part of

the game tree for tic-tac-toe. From the initial state, MAX has

nine possible moves. Play alternates between MAX’s placing an

X and MIN’s placing an O until we reach leaf nodes

corresponding to terminal states such that one player has three in

a row or all the squares are filled. The number on each leaf node

indicates the utility value of the terminal state from the point of

view of MAX; high values are assumed to be good for MAX

and bad for MIN (which is how the players get their names).

37

Game trees

38

Game trees

• For tic-tac-toe the game tree is relatively small—fewer

than 9! = 362,880 terminal nodes. But for chess there

are over 10^40 nodes, so the game tree is best thought

of as a theoretical construct that we cannot realize in

the physical world. But regardless of the game tree, it

is MAX’s job to search for a good move. We use the

term search tree for a tree that is superimposed on the

full game tree, and examines enough nodes to allow a

player to determine what move to make.

39

Optimal decisions in games

• In a normal search problem, the optimal solution would

be a sequence of actions leading to a goal state—a

terminal state that is a win. In adversarial search, MIN

has something to say about it. MAX therefore must

find a contingent strategy, which specifies MAX’s

move in the initial state, then MAX’s moves in the

states resulting from every possible response by MIN,

then MAX’s moves in the states resulting by every

possible response by MIN to those moves, and so on.

Roughly speaking, an optimal strategy leads to

outcomes at least as good as any other strategy when

one is playing an infallible opponent.

40

Game tree

41

Optimal decisions in games

• Even a simple game like tic-tac-toe is too complex for

us to draw the entire game tree on one page, so we will

instead examine a “trivial” game. The possible moves

for MAX at the root node are labeled a1, a2, and a3.

The possible replies to a1 for MIN are b1, b2, b3, and

so on. This particular game ends after one move each

by MAX and MIN. (We say that this tree is one move

deep, consisting of two half-moves, each of which is

called a ply.) The utilities of the terminal states in this

game range from 2 to 14.

42

Optimal decisions in games

• Given a game tree, the optimal strategy can be determined from

the minimax value of each node, which we write as

MINIMAX(n). The minimax value of a node is the utility (for

MAX) of being in the corresponding state, assuming that both

players play optimally from there to the end of the game.

Obviously, the minimax value of a terminal state is just its

utility. Furthermore, given a choice, MAX prefers to move to a

state of maximum value, whereas MIN prefers a state of

minimum value. So we have:

43

Optimal decisions in games

• Let us apply these definitions to the game tree

considered above. The terminal nodes on the bottom

level get their utility values from the game’s UTILITY

function. The first MIN node, labeled B, has three

successor states with values 3, 12, and 8, so its

minimax value is 3. Similarly, the other two MIN

nodes have minimax value 2. The root node is a MAX

node; its successor states have minimax values 3, 2,

and 2; so it has a minimax value of 3. We can also

identify the minimax decision at the root: action a1 is

the optimal choice for MAX because it leads to the

state with the highest minimax value.

44

Optimal decisions in games

• This definition of optimal play for MAX assumes that

MIN also plays optimally—it maximizes the worst-

case outcome for MAX. What if MIN does not play

optimally? Then it is easy to show (homework

exercise) that MAX will do even better. Other

strategies against suboptimal opponents may do better

than the minimax strategy, but these strategies

necessarily do worse against optimal opponents.

45

The minimax algorithm

• The minimax algorithm computes the minimax decision from

the current state. It uses a simple recursive computation of the

minimax values of each successor state, directly implementing

the defining equations. The recursion proceeds all the way down

to the leaves of the tree, and then the minimax values are

backed up through the tree as the recursion unwinds. For

example, in the figure the algorithm first recurses down to the

three bottom-left nodes and uses the UTILITY function on them

to discover that their values are 3, 12, and 8, respectively. Then

it takes the minimum of these values, 3, and returns it as the

backed-up value of node B. A similar process gives the backed-

up values of 2 for C and 2 for D. Finally, we take the maximum

of 3, 2, and 2 to get the backed-up value of 3 for the root node.

46

Minimax algorithm

47

Minimax algorithm

• Does the minimax algorithm resemble any

algorithms we have seen previously?

• How does it rate on the “big 4”?

– Recall that game-tree search is still a form of search.

48

Minimax algorithm

• The minimax algorithm performs a complete depth-

first exploration of the game tree. If the maximum

depth of the tree is m and there are b legal moves at

each point, then the time complexity of the minimax

algorithm is O(b^m). The space complexity is O(bm)

for an algorithm that generates all actions at once, or

O(m) for an algorithm that generates actions one at a

time. For real games, of course, the time cost is totally

impractical, but this algorithm serves as the basis for

the mathematical analysis of games and for more

practical algorithms.

49

Optimal decisions in multiplayer games

• Many popular games allow more than two players. Let us

examine how to extend the minimax idea to multiplayer games.

This is straightforward from the technical viewpoint, but raises

some interesting conceptual issues.

• First, we need to replace the single value for each node with a

vector of values. For example, in a three-player game with

players A, B, and C, a vector (vA,vB,vC) is associated with each

node. For terminal states, this vector gives the utility of the state

from each player’s viewpoint. (In two-player zero-sum games,

the two-element vector can be reduced to a single value because

the values are always opposite.) The simplest way to implement

this is to have the UTILITY function return a vector of utilities.

50

Multiplayer minimax algorithm

51

Multiplayer minimax

• Now we have to consider nonterminal states. Consider

the node marked X in the game tree. In that state,

player C chooses what to do. The two choices lead to

terminal states with utility vectors (vA=1,vB=2,vC=6)

and (vA=4,vB=2,vC=3). Since 6 is bigger than 3, C

should choose the first move. This means that if state X

is reached, subsequent play will lead to a terminal state

with utilities (vA=1,vB=2,vC=6). Hence, the backed-

up value of X is this vector.

52

Multiplayer minimax

• The backed-up value of a node n is always the utility

vector of the successor state with the highest value for

the player choosing at n. Anyone who plays

multiplayer games, such as Diplomacy, quickly

becomes aware that much more is going on than in

two-player games. Multiplayer games usually involve

alliances, whether formal or informal, among the

players. Alliances are made and broken as the game

proceeds. How are we to understand such behavior?

Are alliances a natural consequence of optimal

strategies for each player in a multiplayer game?

53

Multiplayer minimax

• It turns out that they can be. For example, suppose A and B are

in weak positions and C is in a stronger position. Then it is often

optimal for both A and B to attach C rather than each other, lest

C destroy each of them individually. In this way, collaboration

emerges from purely selfish behavior. Of course, as soon as C

weakens under the joint onslaught, the alliance loses its value,

and either A or B could violate the agreement. In some cases, a

social stigma attaches to breaking an alliance, so players must

balance the immediate advantage of breaking an alliance against

the long-term disadvantage of being perceived as untrustworthy.

54

Multiplayer minimax

• If the game is not zero-sum, then collaboration can also occur

with just two players. Suppose, for example, that there is a

terminal state with utilities (vA=1000,vB=1000) and that 1000 is

the highest possible utility for each player. Then the optimal

strategy is for both players to do everything possible to reach

this state—that is, the players will automatically cooperate to

achieve a mutually desirable goal.

55

Game-tree search pruning

• The problem with minimax search is that the number of game

states it has to examine is exponential in the depth of the tree.

Unfortunately, we can’t eliminate the exponent, but it turns out

that we can effectively cut it in half. The trick is that it is

possible to compute the correct minimax decision without

looking at every node in the game tree. That is, we can borrow

the idea of pruning from the search section (recall that A*

pruned the subtree following below Timisoara) to eliminate

large parts of the tree from consideration. The particular

technique we consider is alpha-beta pruning. When applied to

a standard minimax tree, it returns the same move as minimax

would, but prunes away branches that cannot possibly influence

the final decision.

56

Game tree

57

Alpha-beta pruning

• Consider again the two-play game tree. Let’s go

through the calculation of the optimal decision once

more, this time paying careful attention to what we

know at each point in the process. The steps are

explained in the figure on the next page. The outcome

is that we can identify the minimax decision without

ever evaluating two of the leaf nodes.

58

Alpha-beta pruning

59

Alpha-beta pruning

• Another way to look at this is as a simplification of the formula

for MINIMAX. Let the two unevaluated successors of node C in

the figure have values x and y. Then the value of the root node is

given by:

MIMIMAX(root)

= max(min(3,12,8),min(2,x,y),min(14,5,2)

= max(3,min(2,x,y),2)

= max(3,z,2) where z = min(2,x,y) <= 2

= 3.

• In other words, the value of the root and hence the minimax

decision are independent of the values of the pruned leaves x

and y.

60

Alpha-beta pruning

• Alpha-beta pruning can be applied to trees of any depth,

and it is often possible to prune entire subtrees rather

than just leaves. The general principle is this: consider a

node n somewhere in the tree (see next figure) such that

Player has a choice of moving to that node. If Player

has a better choice m either at the parent node of n or at

any choice point further up, then n will never be

reached in actual play. So once we have found out

enough about n (by examining some of its descendants)

to reach this conclusion, we can prune it.

61

General alpha-beta pruning

62

Alpha-beta search

• Remember that minimax search is depth-first, so at any

one time we just have to consider the nodes along a

single path in the tree. Alpha-beta pruning gets its

name from the following two parameters that describe

bounds on the backed-up values that appear anywhere

along the path:

– α = the value of the best (i.e., highest-value) choice we have

found so far at any choice point along the path for MAX.

– β = the value of the best (i.e., lowest-value) choice we have

found so far at any choice point along the path for MIN.

63

Alpha-beta search algorithm

• Alpha-beta search updates the values of α and β as it

goes along and prunes the remaining branches at a

node (i.e., terminates the recursive call) as soon as the

values of the current node is known to be worse than

the current α or β value for MAX or MIN, respectively.

The complete algorithm is given on the next slide. We

can trace its behavior when applied to the example.

64

Alpha-beta search algorithm

65

Move ordering

• The effectiveness of alpha-beta pruning is highly

dependent on the order in which the states are examined.

For example, in the figure we could not prune any

successors of D at all because the worst successors

(from the point of view of MIN) were generated first. If

the third successor of D had been generated first, we

would have been able to prune the other two. This

suggests that it might be worthwhile to try to examine

firs the successors that are likely to be best.

66

Alpha-beta move ordering

• If this can be done, then it turns out that alpha-beta needs to

examine only O(b^(m/2)) nodes to pick the best move, instead

of O(b^m) for minimax. This means that the effective branching

factor becomes sqrt(b) instead of b – for chess, about 6 instead

of 35. Put another way, alpha-beta can solve a tree roughly twice

as deep as minimax in the same amount of time. If successors

are examined in random order rather than best-first, the total

number of nodes examined will be roughly O(b^(3m/4)) for

moderate b. For chess, a fairly simple ordering function (such as

trying captures first, then threats, then forward moves, and then

backward moves) gets to within about a factor of 2 of the best-

case O(b^(m/2)) result.

67

Alternative search paradigms

• Local search: evaluates and modifies one or more current states,

rather than systematically exploring paths from an initial state.

– Global vs. local minimum/maximum, hill-climbing, simulated annealing,

local beam search, genetic algorithms

• Adversarial search: search with multiple agents, where our

optimal action depends on the cost/“utilities” of other agents and

not just our own.

– E.g., robot soccer, computer chess, etc.

– Zero-sum games, perfect vs. imperfect information, minimax search,

alpha-beta pruning

• Constraint satisfaction: assign a value to each variable that

satisfies certain constraints. E.g., map coloring.

68

Constraint satisfaction

69

Homework for next class

• Chapter 9 from Russell-Norvig textbook.

• HW1: out 9/5 due 10/3

