CAP 4630
Artificial Intelligence

Instructor: Sam Ganzfried
sganzfri@cis.fiu.edu

nttp://www.ultimateaiclass.com/
nttps://moodle.cis.fiu.edu/

HW1 out 9/5 today, du&0/3

I Remember that you have up to 4 late days to use throughc
the semester.

I https://www.cs.cmu.edu/~sganzfri/HW1 Al.pdf
I http://ai.berkeley.edu/search.html

I HW2 will go out next week, due 10/17

I Midterm on 10/19

A TA office hours:
I Thursday 3:154:15PM, ECS 254

o To T

http://www.ultimateaiclass.com/
http://ai.berkeley.edu/search.html

| ocal search

current

’ state
"g’:* ——
Figure 4.1

A one-dimensional state-space landscape in which elevation co
objective function. The aim is o find the global maximum. Hill-climbmn

the current state to try to improve it, as shown by the arrow, The vanous topoyg
are defined in the text.

Hill -climbing search

A Thehill -climbing search algorithmsteepestascent
version) Is simply a loop that continually moves In the
direction of increasing valdethat is, uphill. It
termi nates when It react
has a higher value. The algorithm does not maintain
search tree, so the data structure for the current node
need only record the state and the value of the
objective function. Hill climbing does not look ahead
beyond the immediate neighbors of the current state.
This resembles trying to find the top of Mount Everes
In a thick fog while suffering from amnesia.

Hill -climbing search

function HILL-CLIMBING(problem) returns a state that is a local maximum

current < MAKE-NODE(problem.INITIAL-STATE)

loop do
neighbor < a highest-valued successor of current
if neighbor. VALUE < current. VALUE then return current.STATE
current «— neighbor

Figure 4.2 The hill-climbing search algorithm, which is the most basic local search tech-
nique. At each step the current node is replaced by the best neighbor; in this version, that

means the neighbor with the highest VALUE, but if a heuristic cost estimate / is used, we
would find the neighbor with the lowest .

Hill climbing can get stuck

A Unfortunately, hill climbing often gets stuck for the
following reasons:

I Local maxima: a local maximum is a peak that is higher
than each of its neighboring states but lower than the globe
maximum. Hillclimbing algorithms that reach the vicinity of
a local maximum will be drawn upward toward the peak bul
will then be stuck with nowhere else to go.

I Ridges a ridge is shown In next figure. Ridges result in a
sequence of local maxima that is very difficult for greedy
algorithms to navigate.

I Plateaux a plateau is a flat area of the stapace landscape.
It can be a flat local maximum, from which no uphill exist
exists, or ahoulder, from which progress is possible. A hill
climbing search might get lost on the plateau. 6

Hill climbing ridge

Figure 4.4 [Hlustration of why ridges cause difficulties for hill climbir

(dark circles) 1s superimposed on a ridge rising from left to right, creati

maxima that are not directly connected to each other. From each
available actions point downbhill.

Hill climbing

A In each case, the algorithm reaches a point at which
progress Is being made. Starting from a randomly
generated 8jueens state, steepasicent hill climbing
gets stuck 86% of the time, solving only 14% of
problem instances. It works quickly, taking just 4 ster
on average when it succeeds and 3 when it getsdstuc
not bad for a state space with 88 ~= 17 million state

Hill climbing

A The algorithm halts if it reaches a plateau whe

the best successor has the same value as the

current state. Might it not be a good idea to
going to allow asideways moven the hope
t hat the plateau 1 s

KE

I

Hill climbing

A The answer is usually yes, but we must take care. If\
always allow sideways moves when there are no upr
moves, an Iinfinite loop will occur whenever the
algorithm reaches a flat local maximum that is not a
shoulder. One common solution is to put a limit on th
number of consecutive sideways moves allowed. For
example, we could allow up to, say, 100 consecutive
sideways moves in thedueens problem. This raises
the percentage of problem instances solved by hill
climbing from 14% to 94%. Success comes at a cost
the algorithm averages roughly 21 steps for each
successful instance and 64 for each failure. |,

Hill climbing

A Many variants of hill climbing have been invented.

A Stochastic hill climbing chooses at random from
among the uphill moves; the probability of selection
can vary with the steepness of the uphill move. This
usually converges more slowly than steepest ascent,
but iIn some state landscapes, it finds better solutions

A First-choice hill climbing implements stochastic hill
climbing by generating successors randomly until one
IS generated that is better than the current state. This
a good strategy when a state has many (e.g., thousa

of successors).
11

Hill climbing

A The hill-climbing algorithms described so far are
incomplet® they often fail to find a goal when one
exists because they can get stuck on local maximum

A Random-restart hill climbing adopts the welknown
adage, nif at first vyou
conducts a series of htlimbing searches from
randomly generated initial states, until a goal is founc
It Is trivially complete with probability approaching 1,
because It will eventually generate a goal state as the
Initial state.

12

Random-restart hill climbing

A If each hilkclimbing search has a probability p of
success, then the expected number of restarts requir
IS 1/p. For 8gueens instances with no sideways move
allowed, p~=0.14, so we need roughly 7 iterations to
find a goal (6 failures and 1 success). The expected
number of steps Is the cost of one successful iteratior
plus (Ep)/p times the cost of failure, or roughly 22
steps in all. When we allow sideways moves, 1/0.94 -
1.06 iterations are needed on average and
(1x21)+(0.06/0.94)x64~=25 steps. FegBeens, then,
randomrestart hill climbing is very effective indeed.
Even for three million queens, the approach can find
solutions in under a minute. 13

Simulated annealing

A A hill-climbing algorithm thaheverma k e s i d o
moves toward states with lower value (or higher cost
IS guaranteed to be incomplete, because it can get st
on a local maximum. In contrast, a purely random
walkd that is, moving to a successor chosen uniform
at random from the set of succesgois complete but
extremely inefficient. Therefore, it seems reasonable
try to combine hill climbing with a random walk in
some way that yields both efficiency and completene

14

Simulated annealing

A Simulated annealingis such an algorithm. In metallurgy,
annealingis the process used to temper or harden metals and
glass by heating them to a high temperature and then gradual
cooling them, thus allowing the material to reach aémgrgy
crystalline state. To explain simulated annealing, we stich our
point of view from hill climbing togradient descent
(minimizing cost) and imagine the task of getting a ypogg
ball into the deepest crevice in a bumpy surface. If we just let
the ball roll, it will come to rest at a local minimum. If we shake
the surface, we can bounce the ball out of the local minimum.
The trick Is to shake just hard enough to bounce the ball out o
the LM but not hard enough to dislodge it from the global
minimum. The SA solution is to start by shaking hard (i.e., hig
temperature) and then gradually reduce the intensity,

Simulated annealing

N ‘ ‘ ule) returns
function SIMULATED-ANNI : retu

il‘lpul\ prd ap obhicm

(\f1rg ‘' A ',;i"v"~ll-r|(||._- () .Al,i.l,

Currerl s~ MAKE-NODE . INITIAL-STA

for f= | to « do
)

= schvanind

if 7' =0then return .

S s=a randomly selected successor of
Sl = next VALUS urrent VA
WAE > 0then currens '

else current — 1oy only with probabilir

e

e

Figure4s 1. simulated annealine algorithm, a version of
some downhill moves are allowed. Doy
ng schedule and then e ofte

: ‘-t('\:].l\llt ’IIV (l'?'l“l'
wninll moves are
the temperature 7 45 8 Tunction of ime

acCepted readiy Carlv 1 th

048 time goes on Ihe sehedil
- ‘“ (SCASTLLS |”l‘£.! Il | TINines 1
weistinmes the

Simulated annealing

A Simulated annealing was first used extensively to sol
VLSI layout problems (creating integrated circuit by
combining thousands of transistors into a single chip’
In the early 1980s. It has been applied widely to factc
scheduling and other largeale optimization tasks.

A Homework exercise (for HW2): compare performanc
of simulated annealing to that of randoestart hill
climbing on the &ueens puzzle.

17

| ocal beam search

A Keeping just one node in memory might seem to be :
extreme reaction to the problem of memory limitation
Thelocal beam searchalgorithm keeps track of k
states rather than just 1. It begins with k randomly
generated states. At each step, all successors of all |
states are generated. If any one Is a goal, the algoritt
halts. Otherwise, it selects the k best successors fror
the complete list and repeats.

RS

| ocal beam search

A At first sight, a local beam search with k states might seem to
nothing more than running k random restarts in parallel instea
of in sequence. In fact, the two algorithms are quite different. |
a randomrestart search, each search process runs independe
of the othersln a local beam search, useful information is
passed among the parallel search threddseffect, the states
t hat generate the best succ:¢
here, the grass I s greener! (
unfruitful searches and moves its resources to where toe mos
progress is being made.

19

| ocal beam search

A In its simplest form, local beam search can suffer from a lack
diversity among the k stai@shey can quickly become
concentrated in a small region of the state space, making the
search little more than an expensive version of hill climbing. A
variant calledstochastic beam searchanalogous to stochastic
hill climbing, helps alleviate this problem. Instead of choosing
the best k from the pool of candidate succesSSBS chooses k
successors at random, with the probability of choosing a giver
successor being an increasing function of its value. SBS bear
some resemblance to the problem of natural selection, wherel
the Asuccessorso (offspring)
next generation according t«

20

Genetic algorithms

A A genetic algorithm (GA) is a varianbf stochastic beam
search in which successor states are generated by comaming
parent states rather than by modifying a single state.

A Like beam searches, GAs begin with a set of k randomly
generated states, called tapulation. Each state, or
iIndividual , is represented a s a string over a finite alpl@abet
most commonly, a string of Os and 1s. For example;@une@ns
state must specify the positions of 8 queens, each in a columr
8 squares, and so requires 8 x log(8) = 24 bits. Alternatively, tl
state could be represented as 8 digits, each in the range from
8. The figure shows a population of foud§it strings
representing -8jueens states.

21

Genetic algorithms

_24748552‘ 24 31% -L3275241:}\ 432748552 [327482 |
[32752411 [_23 zgo“ B4748552l \ [247524111 —— 24752411 |

24415124 | 20 zso" \32752,411 / 32752124 [32p2124 |
32543213 | 11 14 2441 244154112441541.

(a) (b) (c) (d) (e)

Initial Population Fitness Function Selection Crossover Mutation

Figure 4.6 I'he genetic algorithm, illustrated for digit strings representing 8-queens states.
The initial population in (a) is ranked by the fitness function in (b), resulting in pairs for

mating in (¢). They produce offspring in (d), which are subject to mutation in (e).

Figure 4.7 The 8-quel

the first offspring in Figure 4.01

unshaded columns are retaine

Genetic algorithms

function GENETIC-ALGORITHM(p ' ESS-| returns
inputs: popula!
FITNESS-FN,

repeat
BEW . Jopt
for: = | to SIZE1 po
RANDOM-S
¥~ RANDOM-S!
child ~— REPRODUCI
ff (small randon
add child u
antil some individual 1= fit enough. o
return the bast individual in poy

function REPRODU CE /) returns an
inputs: 1, y. parent individuals

o |
IS

noe LENGTH(s rundom number {ron
return APPENIISUBSTRING L, L,), S

Figure 4.5 A genetic algonthm, The algorithm i

Figure 4.6, with one varstion: in this more popul,
produces only one offspnng, not two

Genetic algorithms

A Like stochastic beam search, genetic algorithms combine uph
tendency with random exploration and exchange of informatio
among parallel search threads. The primary advantage, if any,
genetic algorithms comes from the crossover operation. Yet it
can be shown mathematically that, if the positions of the gene;
code are permuted initially in a random order, crossover conve
no advantage. Intuitively, the advantage comes from the abilit
of crossover to combine large blocks of letters that have evolv
Independently to perform useful functions, thus raising the leve
of granularity at which the search operates. For example, it co
be that putting the first three queens in positions 2, 4, and 6
(where they do not attack each other) constitutes a useful bloc
that can be combined with other blocks to construct a solution

24

Genetic algorithms

A In practice, genetic algorithms have had a widesprea
Impact on optimization problems, such as circuit layo
and jobshop scheduling. At present, it is not clear
whether the appeal of genetic algorithms arises from
their performance or from their aesthetically pleasing
origins in the theory of evolution. Much work remains
to be done to identify the conditions under which
genetic algorithms perform well.

25

Local search for continuous spaces

A Earlier we explained the distinction between discrete and
continuous environments, pointing out that most-veaild
environments are continuous. Yet none of the algorithms we
have described (except for fhshoice hill climbing and
simulated annealing) can handle continuous state and action
spaces, because they have infinite branching factors. There e
other local search techniques for finding optimal solutions In
continuous spaces. Many of the basic techniques originated ir
the 17 century after the development of calculus by Newton
and Leibniz. We find use for these techniques at several place
Including for learning, vision, and robotics.

26

Local search for continuous spaces

A Suppose we want to place three new airports anywhe
INn Romania, such that the sum of squared distances
form each city on the map to its nearest airport is
minimized. The state space Is then defined by the
coordinates of the airports: (x1,yl), (x2,y2), and
(x3,y3). This is asix-dimensionakpace; we also say
that the states are defined by sariables. Moving
around In this space corresponds to moving one or
more of the airports on the map. The objective
function f(x1,y1,x2,y2,x3,y3) Is relatively easy to
compute for any particular state once we compute th

closest cities. -

| ocal search extensions

A More advanced approaches for continuous spaces:
empirical gradient, line search, NewtBaphson
method, Hessian matrix, etc. We will see some of the
In the optimization module of the class.

A Can also apply local search for nondeterministic
actions (AndOr search trees), for partial observation
(belief-state search), and for online search in-timaé
for unknown environments (all of the algorithms we
have seen produce agentsdéftine search).

28

Local search wrapup

A Local search methods suchhal$ climbing operate on
completestate formulations, keeping only a small number of
nodes in memory. Several stochastic algorithms have been
developed, includingimulated annealing which returns
optimal solutions when given an appropriate cooling schedule

A Many local search methods apply also to problems in continu
spacesLinear programming andconvex optimization
problems obey certain restrictions on the shape of the state sy
and the nature of the objective function, and admit polynemial
time algorithms that are often extremely efficient in practice.

A A genetic algorithmis a stochastic hiltlimbing search in
which a large population of states is maintained. New states &
generated bynutation andcrossover which combines pairs of
states from the population. 29

Adversarial search

A We first consider games with two players, whom we
call MAX and MIN. MAX moves first, and then they
take turns moving until the game is over. At the end ¢
the game, points are awarded to the winning player,
and penalties given to the loser. A game can be
formally defined as a kind of search problem with the
following elements:

30

Search problem definition

A States

A Initial state

A Actions

A Transition model
A Goal test

A Path cost

31

Definition for 8-queens problem

A States Any arrangement of O to 8 queens on t
board Is a state.

A Initial state: No queens on the board.
A Actions: Add a queen to any empty square.

A Transition model: Returns the board with a
gueen added to the specified square

A Goal test 8 queens are on the board, none
attacked

A Path cost (Not applicable)

32

Game definition

A S, theinitial state, which specifies how the game starts
A PLAYER(s): defines which player has the move in a state
A ACTIONS(s): Returns the set of legal moves in a state

A RESULT(s,9: Thetransition model, which defines the result of
a move.

A TERMINAL-TEST(s): Aterminal test, which is true when the
game Is over and false otherwise. States where the game has
ended are calle@rminal states

A UTILITY(s,p: A utility function (also called an objective
function or payoff function), defines the final numeric value for
game that ends in terminal state s for a player p. In chess, the
outcome iIs a win, loss, or draw, with values +1, 0, or ¥2. Some
games have a wider variety of possible outcomes; the payoffs
backgammon range from O to +192. 33

Zero-sum games

A A zero-sumgame is (confusingly) defined as
one where the total payoff to all players is the
same for every instance of the game.

A Is chess zeksum?
A Checkers?
A Poker?

34

Zero-sum games

A Chess is zeksum because every game has payoff of
either O +1, 1+0, or %2 + 1%

Al Consstuamdt woul d have bee
zerasum Is traditional and makes sense If you imagir
that each player is charged an entry fee of 4.

35

Game tree

A The initial state, ACTIONS function, and RESULT function
define thegame treefor the gamé a tree where the nodes are
game states and the edges are moves. The figure shows part
the game tree for titactoe. From the Initial state, MAX has
nNnine possi ble moves. Pl ay al
X and MI NOGOs placing an O unt
corresponding to terminal states such that one player has thre
a row or all the squares are filled. The number on each leaf nc
Indicates the utility value of the terminal state from the point o
view of MAX; high values are assumed to be good for MAX
and bad for MIN (which is how the players get their names).

36

CEINERIGCES

MAX (x)

MIN (o)

MAX (x)

MIN (o)

ms,x A (partial) game tree for the game of tic-tac-toe. The | P n
state, and MAX moves first, placing an X I an empty square, We show par
alternating moves by MIN (0) and MAX (X), until we event

an be assigned utilities according 10 the rules of the game,

'J.l”} reach terminat

CEINERIGCES

A For tictactoe the game tree is relatively snafewer
than 9! = 362,880 terminal nodes. But for chess there
are over 1040 nodes, so the game tree Is best thou
of as a theoretical construct that we cannot realize In
the physical world. But regardless of the game tree, |
Il s MAXOs Job to search f
termsearch treefor a tree that is superimposed on the
full game tree, and examines enough nodes to allow
player to determine what move to make.

38

Optimal decisions In games

A In a normal search problem, the optimal solution wou
be a sequence of actions leading to a goaldstate
terminal state that is a win. In adversarial search, Mil
has something to say about it. MAX therefore must
find a contingenstrategy, whi ch speci

move I n the I nitial st at
states resulting from every possible response by MIN
t hen MAXO0OSsS moves I n the

possible response by MIN tbhosemoves, and so on.
Roughly speaking, an optimal strategy leads to
outcomes at least as good as any other strategy whe

one Is playing an infallible opponent. -

Game tree

’
/

T - i A ‘hich it 1 "",I~
Figure 5.2 \ two-ply game tree. The /A nodes are MAX nodes,” in which it 1s MA

MIN nodes.” The terminal nodes show the utility valis
are labeled with their Mminimax values. MAX’s best move at the ro

crause 1t leads to the state with the highest minimax value, and MIN's best reply 1
alue.

with the lowest minimax v

turn to move, and the nodes are *

1or MAX: the other nodes
n

!\L'i.\l“‘k' 1t leads 10 the Stale

Optimal decisions In games

A Even a simple game like tiactoe is too complex for
us to draw the entire game tree on one page, SO we \
l nstead examine a ntri vi
for MAX at the root node are labeled al, a2, and a3.
The possible replies to al for MIN are b1, b2, b3, anc
so on. This particular game ends after one move eac
by MAX and MIN. (We say that this tree is one move
deep, consisting of two hathoves, each of which is
called aply.) The utilities of the terminal states in this
game range from 2 to 14.

41

Optimal decisions in games

A Given a game tree, the optimal strategy can be determined frc
theminimax value of each node, which we write as
MINIMAX(n). The minimax value of a node is the utility (for
MAX) of being in the corresponding stagesssuming that both
players play optimallyrom there to the end of the game.
Obviously, the minimax value of a terminal state is just its
utility. Furthermore, given a choice, MAX prefers to move to a
state of maximum value, whereas MIN prefers a state of
minimum value. So we have:

MINIMAXI(S)

j UTILITY (& il‘TERMINAL-TEST(S)

\ MaXqe Actions(s) MINIMAX(RESULT (s, @)) if PLAYER(S) = MAX
min MINIMAX (RI{SL'LT(.&:._(I.')) if PLAYER(S) — MIN

42

Optimal decisions In games

A Let us apply these definitions to the game tree
considered above. The terminal nodes on the bottom
| evel get their uti i1ty
function. The first MIN node, labeled B, has three
successor states with values 3, 12, and 8, so its
minimax value is 3. Similarly, the other two MIN
nodes have minimax value 2. The root node is a MA>
node; Its successor states have minimax values 3, 2,
and 2: so it has a minimax value of 3. We can also
identify theminimax decisionat the root: action al is
the optimal choice for MAX because it leads to the
state with the highest minimax value.

43

Optimal decisions In games

A This definition of optimal play for MAX assumes that
MIN also plays optimallg it maximizes theavorst
caseoutcome for MAX. What if MIN does not play
optimally? Then it is easy to show (homework
exercise) that MAX will do even better. Other
strategies against suboptimal opponents may do bett
than the minimax strategy, but these strategies
necessarily do worse against optimal opponents.

44

The minimax algorithm

A Theminimax algorithm computes the minimax decision from
the current state. It uses a simple recursive computation of the
minimax values of each successor state, directly implementing
the defining equations. The recursion proceeds all the way do
to the leaves of the tree, and then the minimax values are
backed upthrough the tree as the recursion unwinds. For
example, in the figure the algorithm firgicurseslown to the
three bottorrleft nodes and uses the UTILITY function on then
to discover that their values are 3, 12, and 8, respectively. The
It takes the minimum of these values, 3, and returns it as the
backedup value of node B. A similar process gives the backec
up values of 2 for C and 2 for D. Finally, we take the maximun
of 3, 2, and 2 to get the backagd value of 3 for the root node.

45

Minimax algorithm

function
return

function MAX-

if TERMD
for cach o in
\"

return

function M
i

for each

return

Figure 5.3

¢) returns av
MIN-VALUI (RESULT(sfale

| returns a uluity vaiue

| then return UTILITY((stafe)

¢) do

UEIRESULTY

returns a ulelsty vl
then return UTILITY state)

R s 1
LIKESL LTS

culating minimax decisions.

. It returns the action corre-
that 15, the

move that leads to the outcome with the
4.)- the opponent plays 1o minimize utility. The functions
tirough the whole game tree. gl the w
Of & state. The notation argmax,
mum value of _{!d)

ay to the leaves,
e 5 Jla) computes the

————

Minimax algorithm

A Does the minimax algorithm resemble any
algorithms we have seen previously?

AHow does it rate on t
I Recall that gam#ree search is still a form of search

47

Minimax algorithm

A The minimax algorithm performs a complete depth
first exploration of the game tree. If the maximum
depth of the tree iIs m and there are b legal moves at
each point, then the time complexity of the minimax
algorithm is Ob™m). The space complexity is Qi)
for an algorithm that generates all actions at once, or
O(m) for an algorithm that generates actions one at ¢
time. For real games, of course, the time cost is total
Impractical, but this algorithm serves as the basis for
the mathematical analysis of games and for more
practical algorithms.

48

Optimal decisions in multiplayer games

A Many popular games allow more than two players. Let us
examine how to extend the minimax idea to multiplayer game:
This Is straightforward from the technical viewpoint, but raises
some interesting conceptual issues.

A First, we need to replace the single value for each node with &
vectorof values. For example, in a thrpRyer game with
players A, B, and C, a vectorA,vB,vC) Is associated with each
node. For terminal states, this vector gives the utility of the ste
from each pl ay e rp@gerzereslangpnies, n t
the twoelement vector can be reduced to a single value becal
the values are always opposite.) The simplest way to impleme
this is to have the UTILITY function return a vector of utilities.

49

Multiplayer minimax algorithm

— e

!}

2 &)
s e

n.._~‘;/ OS.I.IQ

— T s — “—-—P’\d‘f—’\w—’:_

Figure 5.4 The firs three plies of 4 EXMDE tree wigh thre
-I.x_hclctj st »xlh X it of cach Player. 'Th

alues it

om I"n: y ’C\Io'p. Y

¢ be
vedtor of the s CENOr stite with
who lavy o -

50

Multiplayer minimax

A Now we have to consider nonterminal states. Consid
the node marked X in the game tree. In that state,
player C chooses what to do. The two choices lead t«
terminal states with utility vectorsA=1,vB=2,vC=6)
and (¢A=4,vB=2,vC=3). Since 6 is bigger than 3, C
should choose the first move. This means that if state
IS reached, subsequent play will lead to a terminal st:
with utilities (vVA=1,vB=2,vC=6). Hence, the backed
up value of X is this vector.

o1

Multiplayer minimax

A The backeeup value of a node n is always the utility
vector of the successor state with the highest value ft
the player choosing at n. Anyone who plays
multiplayer games, such as Diplomacy, quickly
becomes aware that much more is going on than in
two-player games. Multiplayer games usually involve
alliances whether formal or informal, among the
players. Allilances are made and broken as the game
proceeds. How are we to understand such behavior?
Are alliances a natural consequence of optimal
strategies for each player in a multiplayer game?

Sy

Multiplayer minimax

A It turns out that they can be. For example, suppose A and B a
In weak positions and C is in a stronger position. Then it is oft
optimal for both A and B to attach C rather than each other, le
C destroy each of them individually. In this way, collaboration
emerges from purely selfish behavior. Of course, as soon as (
weakens under the joint onslaught, the alliance loses its value
and either A or B could violate the agreement. In some cases,
social stigma attaches to breaking an alliance, so players mus
balance the immediate advantage of breaking an alliance aga
the longterm disadvantage of being perceived as untrustwortr

53

Multiplayer minimax

A If the game is not zersum, then collaboration can also occur
with just two players. Suppose, for example, that there is a
terminal state with utilitiesvA=1000,vB=1000) and that 1000 is
the highest possible utility for each player. Then the optimal
strategy Is for both players to do everything possible to reach
this staté that is, the players will automatically cooperate to
achieve a mutually desirable goal.

24

Game-tree search pruning

A The problem with minimax search is that the number of game
states it has to examine is exponential in the depth of the tree
Unf ortunately, we canot el i1
that we can effectively cut it in half. The trick is that it Is
possible to compute the correct minimax decision without
looking at every node in the game tree. That is, we can borrov
the idea opruning from the search section (recall that A*
pruned the subtree following below Timisoara) to eliminate
large parts of the tree from consideration. The particular
technique we consider @pha-beta pruning. When applied to
a standard minimax tree, it returns the same move as minima;
would, but prunes away branches that cannot possibly influen
the final decision.

55

Game tree

’
/

T - i A ‘hich it 1 "",I~
Figure 5.2 \ two-ply game tree. The /A nodes are MAX nodes,” in which it 1s MA

MIN nodes.” The terminal nodes show the utility valis
are labeled with their Mminimax values. MAX’s best move at the ro

crause 1t leads to the state with the highest minimax value, and MIN's best reply 1
alue.

with the lowest minimax v

turn to move, and the nodes are *

1or MAX: the other nodes
n

!\L'i.\l“‘k' 1t leads 10 the Stale

Alpha-beta pruning

A Consider againthetwp| ay game tr ee
through the calculation of the optimal decision once
more, this time paying careful attention to what we
know at each point in the process. The steps are
explained in the figure on the next page. The outcom
IS that we can identify the minimax decision without
ever evaluating two of the leaf nodes.

¥4

Alpha-beta pruning

Figure 5.5

: i . ~ . - 2
¢ calculation of the optimal decision for the game tree in Figure 5.2,

ow th of possible v;

lues for cach node. (a) The first leaf below B
ich is a MIN node, has 4 value of at most 3. (b) The second leaf
MIN would avoid this move, so the alue of B is still at most 3.
“low B has a value of §: we have seen all B’s Successor states, so the
'y 3. Now, we can infer tha the value of the 0oL is at least 3, because
as a choice worth 3 at the root, (d) The first leaf below € has the value 2. Hence.
L, which is a MIN node, has a value of ar most 2. But we know that B is worth 3, 50 MAX
would never choose €, Therefore, there i no point in looking at the other successor states
OF C'. This is an example 91 alpha-beta pruning (e) The first leaf below) has the value 14,
;” {‘) 3 ““nlh ‘."| ""['j,'< ne"“ s still higher than max's best alternatiye (i.e., 3), so we need

O Keep ¢ on 5 SUcCcesso ate ice ale v A N
‘ wt:ﬁ’:‘;’:‘:’ ; lhegmm. % thc m:ﬂ\':"“\fasl.u L{‘J:l;:od:;n n:(}::: ;&: now have bounds on al] of the
[IS worth 5. ¢o ugain We need 1o kee explon ! : o 7 (D The- second SUCCCSSOI‘ Of D
exactly 2. MAX's decici ¥, CAPlOfing. The thirg SUCcessor is worth 2. go now 1 is

L_:ﬂihi!inll_\: 2%.\ s decision g the TOOLis to move to B i .
—“K—\——\

somewhere in the tree (5¢¢ Figure §
ue

Alpha-beta pruning

A Another way to look at this is as a simplification of the formula
for MINIMAX. Let the two unevaluated successors of node C |
the figure have values x and y. Then the value of the root nod
given by:

MIMIMAX(root)

= max(min(3,12,8),min(2,x,y),min(14,5,2)
= max(3,min(2,x,y),2)

= max(3,z,2) where z = min(2,x,y) <=2

= 3.

A In other words, the value of the root and hence the minimax
decision arendependenof the values of the pruned leaves x
and y.

59

Alpha-beta pruning

A Alpha-beta pruning can be applied to trees of any dep
and It Is often possible to prune entire subtrees rather
than just leaves. The general principle is this: conside
node n somewhere in the tree (see next figure) such t
Player has a choice of moving to that node. If Player
has a better choice m either at the parent node of n o
any choice point further up, thenwill never be
reached in actual playSo once we have found out
enough about n (by examining some of its descendan
to reach this conclusion, we can prune it.

610)

General alphabeta pruning

Opponent

Player

Opponent

The general case for alpha—beta pruning. If m is better than n for Player,

Figure 5.6
i1l never get to n in play.

61

Alpha-beta search

A Remember that minimax search is defutst, so at any
one time we just have to consider the nodes along a
single path in the tree. AlpHaeta pruning gets Its
name from the following two parameters that describ
bounds on the backagp values that appear anywhere
along the path:

i U= the value of the best (i.e., highestiue) choice we have
found so far at any choice point along the path for MAX.

I b =the value of the best (i.e., lowastlue) choice we have
found so far at any choice point along the path for MIN.

62

Alpha-beta search algorithm

A Alpha-beta search updates the value§lahdb as it
goes along and prunes the remaining branches at a
node (i.e., terminates the recursive call) as soon as tl
values of the current node Is known to be worse than
the currentor b value for MAX or MIN, respectively.
The complete algorithm is given on the next slide. W«
can trace Iits behavior when applied to the example.

63

Alpha-beta search algorithm

:) returns an action
function ALPHA-BETA-SEARCH(state) returns an
MAX-VALUE(state, —o0, +00) i3 ST
return the fton 1N ACTIONS(state) with value 1

function MAX-VALUE(sta L 0) returns a utility value

FEST(state) then return UTH ITY(state)

for each o in Ac FTONS(state) do

MAX(v, MIN-VALUE(RESUI T(s,a), v, 3))

then return
return

function MIN-VAL UE(< '€, v, 0) returns ¢ utility valye
if TER) -TEST ¢) then return U FILITY(state)
for each ¢ in ACTIONS(stn
MIN MAx-\ \ E(RESU] I'(s.a)

then return

do

QY (1))

Figure 5.7 alpha-betg se
the MINIMAX functioy

MAax-\ \L1

arch algorithm.
'S in Figure 5.
ntain ¢

E that m:

dding dynamic Move-ordering o

Move ordering

A The effectiveness of alpH@eta pruning is highly
dependent on the order in which the states are examir
For example, in the figure we could not prune any
successors of D at all because the worst successors
(from the point of view of MIN) were generated first. If
the third successor of D had been generated first, we
would have been able to prune the other two. This
suggests that it might be worthwhile to try to examine
firs the successors that are likely to be best.

65

Alpha-beta move ordering

A If this can be done, then it turns out that alplesa needs to
examine only O(b”(m/2)) nodes to pick the best move, insteac
of O(b”m) for minimax. This means that the effective branchin:
factor becomesqrib) instead of b for chess, about 6 instead
of 35. Put another way, alpligeta can solve a tree roughly twice
as deep as minimax in the same amount of time. If successor:
are examined in random order rather than-bestt the total
number of nodes examined will be roughly O(b”*(3m/4)) for
moderate b. For chess, a fairly simple ordering function (such
trying captures first, then threats, then forward moves, and the
backward moves) gets to within about a factor of 2 of the best
case O(b”(m/2)) result.

66

Alternative search paradigms

A Local search: evaluates and modifies one or more current stat
rather than systematically exploring paths from an initial state.
I Global vs. local minimum/maximum, hidllimbing, simulated annealing,
local beam search, genetic algorithms
A Adversarial search: search with multiple agents, where our
opti mal action depends on t|
not just our own.
I E.g., robot soccer, computer chess, etc.
I Zerosum games, perfect vs. imperfect information, minimax search,
alphabeta pruning
A Constraint satisfaction: assign a value to each variable that
satisfies certain constraints. E.g., map coloring.

67

Constraint satisfaction

68

