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Abstract

Linear discriminant analysis (LDA) represents
a simple yet powerful technique for partition-
ing a p-dimensional feature vector into one of
K classes based on a linear projection learned
from N labeled observations. However, it is
well-established that in the high-dimensional set-
ting (p > N ) the underlying projection estima-
tor degenerates. Moreover, any linear discrim-
inate function involving a large number of fea-
tures may be difficult to interpret. To amelio-
rate these issues, two general categories of sparse
LDA modifications have been proposed, both to
reduce the number of active features and to stabi-
lize the resulting projections. The first, based on
optimal scoring, is more straightforward to im-
plement and analyze but has been heavily criti-
cized for its ambiguous connection with the orig-
inal LDA formulation. In contrast, a second
strategy applies sparse penalty functions directly
to the original LDA objective but requires ad-
ditional heuristic trade-off parameters, has un-
known global and local minima properties, and
requires a greedy sequential optimization proce-
dure. In all cases the choice of sparse regularizer
can be important, but no rigorous guidelines have
been provided regarding which penalty might
be preferable. Against this backdrop, we win-
now down the broad space of candidate sparse
LDA algorithms and promote a specific selec-
tion based on optimal scoring coupled with a par-
ticular, complementary sparse regularizer. This
overall process ultimately progresses our under-
standing of sparse LDA in general, while leading
to targeted modifications of existing algorithms
that produce superior results in practice on three
high-dimensional gene data sets.
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CA, USA. JMLR: W&CP volume 38. Copyright 2015 by the
authors.

1 Introduction

Classical linear discriminant analysis (LDA) or Fisher’s
LDA addresses the classification problem of finding pro-
jections such that a high-dimensional data vector can be
mapped into the most discriminative low-dimensional sub-
space (Fisher, 1936; Hastie et al., 2009). At the most
basic level, this is accomplished by maximizing an esti-
mate of the between-class variance subject to a constraint
on the within-class variance in the projected space. We
can formalize this procedure as follows: Assume we are
given an N × p design matrix X where each row contains
a p-dimensional sample belonging to one of K different
classes, and each column denotesN observations of a given
feature. Let xi denote the ith row of X and µk the sample
mean of class k. For convenience, we assume that each col-
umn of X is centered to have zero mean and unit `2 norm.
Let Y be an N ×K matrix of zeros and ones, where Yi,k
is an indicator of whether sample xi belongs to class k.

The standard between-class covariance Σb is defined by

Σb =
1

N

K∑
k=1

nkµkµ
>
k =

1

N
X>PYX, (1)

where nk denotes the number of samples belonging to
class k and the projection PY is defined by PY =
Y (Y >Y )−1Y >. The corresponding within-class covari-
ance Σw is defined by

Σw =
1

N
X> (I − PY )X. (2)

such that the total sample covariance satisfies 1
NX

>X =
Σb + Σw. LDA then finds L discriminant vectors or a pro-
jection matrix B that solves

maxB tr(B>ΣbB) s.t. B>ΣwB = I, (3)

where B = [β1, . . . , βL] ∈ Rp×L. We call βk the kth dis-
criminant vector and B the discriminant matrix. Given this
B, new observations can be projected to a low-dimensional
space and classified using a simple probabilistic decision
rule (see supplementary file for details).

In general, there are at most K − 1 non-trivial or linearly
independent discriminant vectors since rank[Σb] ≤ K−1;
hence we typically choose L ≤ K − 1.
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When Σw is not full-rank, which will necessarily be the
case in the high-dimensional setting where p > N , then
the LDA problem is no longer well-posed. Consequently,
several regularized versions of LDA have been proposed
(Hastie et al., 1994). One such example is to modify the
within-class covariance using some Ω such that Σw + Ω is
positive definite and convert the canonical LDA cost to

maxB tr(B>ΣbB) s.t. B>(Σw + Ω)B = I, (4)

which can be solved as an eigenvalue problem by convert-
ing to the reparameterized form

maxB tr(B̃>Σ̃bB̃) s.t. B̃>B̃ = I, (5)

where Σ̃b = (Σw + Ω)
−1/2

Σb (Σw + Ω)
−1/2. The latter

expression is optimized by setting B̃ to the eigenvectors of
Σ̃b associated with the L largest eigenvalues.

Alternatively, it has been shown in (Hastie et al., 1994) and
(Hastie et al., 1995) that (4) is equivalent to solving

minB,Θ
1
N ‖YΘ−XB‖2F + tr(B>ΩB)

s.t. Θ>Y >YΘ = I,
(6)

where ‖ · ‖F denotes the Frobenius norm. Here we refer
to Θ = [θ1, . . . , θL] as the scoring matrix and θk as the
kth scoring vector. Consequently, LDA can be recast as a
multi-output regression problem, which opens the door to
more elaborate forms of regularization.

Both (4) and (6) solve the problem of a degenerate Σw,
but require the heuristic selection of Ω. Additionally, even
when an effective choice for Ω is somehow provided, the
resulting high-dimensional discriminant vectors βk will in-
volve a combination of every feature and therefore will be
difficult to interpret and possibly expensive to deploy in
real-time environments. Consequently, sparse variants of
LDA represent a highly desirable alternative.

To promote sparse discriminant vectors, a sparse penalty
function φ can be added to either of the equivalent LDA
expressions given above, although once such penalty is
adopted the equivalence no longer holds as will be dis-
cussed more in the sequel. Perhaps the most common se-
lection is φ(β) = ‖β‖1 (which is associated with the Lasso
sparse estimator in the context of regression (Tibshirani,
1996)), but later we will see that other possibilities can lead
to considerable improvement.

In (Witten & Tibshirani, 2011) the canonical Fisher LDA
objective (4) is supplemented with an `1-based penalty and
a closely-related, specialized variant is proposed in (Zhang
& Chu, 2013). Similar ideas are applied in (Wu et al., 2009)
and (Moghaddam et al., 2006), where a sparsity regularizer
is added instead to the constraints. Alternatively, (Clem-
mensen et al., 2011) and (Grosenick et al., 2008) apply a
sparse penalty to the optimal scoring framework (6). Like-
wise, (Merchante et al., 2012) and (Leng, 2007) consider

optimal scoring variants based upon a group Lasso penalty.
Some other related work and applications can be found in
(Dundar et al., 2005) and (Fung & Ng, 2007).

In general, applying a sparse penalty φ to (4) leads to prob-
lems of the form

maxB tr(B>ΣbB)− λ
∑L
k=1 φ(βk)

s.t. B>(Σw + Ω)B = I
(7)

or related sequential versions. In contrast, with optimal
scoring we must solve something akin to

minB,Θ
1
N ‖YΘ−XB‖2F + tr(B>ΩB) + λ

∑
k φ(βk)

s.t. Θ>Y >YΘ = I,
(8)

where Ω may or may not equal zero. However, one impor-
tant modification of the sparse penalty produces aB matrix
that is row sparse rather than element-wise sparse, the ad-
vantage being that a zero-valued row corresponds with a
feature being completely pruned from the model. A spe-
cific successful instance of this comes from (Merchante
et al., 2012), which proposes to solve the group Lasso pe-
nalized optimal scoring problem

minB,Θ
1
2‖YΘ−XB‖2F + λ

∑
i ‖βi‖2

s.t. Θ>Y >YΘ = I,
(9)

where βi denotes the ith row of B and Ω = 0.

The remainder of the paper is organized as follows. In
Section 2 we describe limitations in the current analysis
and understanding of existing sparse LDA algorithms, all
of which make choosing an optimal variant out of the nu-
merous possibilities difficult. Next, Section 3 presents new
analysis regarding the relationship between the two pri-
mary classes of sparse LDA techniques, demonstrating that
the optimal scoring route is preferable in many respects de-
spite pervasive conventional wisdom to the contrary. This
perspective allows us to focus our attention on optimal
scoring paradigms, with competing algorithms differenti-
ated only by various families of sparsity penalties and as-
sociated update rules as discussed in Section 4. As a par-
ticular special case, we then argue that sparse regulariz-
ers that emerge implicitly from classical Bayesian learning
algorithms, e.g., the relevance vector machine (Bishop &
Tipping, 2000; Tipping, 2001), are natural candidates for
retrofitting into a principled, optimal scoring LDA frame-
work. Moreover, in a restricted setting we prove that this
adaptation will produce maximally sparse projections un-
like existing sparse LDA algorithms. Finally, Section 5 re-
veals that these insights can lead to state-of-the-art perfor-
mance on real-world high-dimensional datasets. Note that
our overall objective here is not to derive completely new
algorithms per se; rather it is to better understand existing
frameworks leading to specific design choices and targeted
enhancements such that sparse LDA is optimally utilized to
the extent possible.
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2 Limitations of Existing Sparse LDA
Algorithms and Analyses

As described above, there are basically two entry points
for enforcing sparsity in the LDA framework: either di-
rectly to the original LDA cost function leading to (7)
(e.g., (Witten & Tibshirani, 2011)), or indirectly via opti-
mal scoring producing (8) and related row sparse variants
(e.g., (Clemmensen et al., 2011; Merchante et al., 2012)).
We now describe algorithmic and related analytical issues
that have previously not been fully appreciated, and yet
which nonetheless greatly impact the evaluation of ideal
algorithm selections.

2.1 Algorithmic Issues

Applying sparse penalties directly to (7) comes with a sub-
stantial downside which is not addressed in existing sparse
LDA studies. Simply put, sparse penalties themselves do
not actually help solve the problem of a degenerate within-
class covariance matrix Σw, which always occurs with
p > N . To understand this, note that sparse penalties in a
vector space are typically jointly concave, non-decreasing
functions of the magnitudes of each element, otherwise in-
dividual coefficients have essentially no chance of being
shrunk to zero (Rao et al., 2003). Now consider again the
sparse LDA cost function from (7) but without the extra
regularization to Σw provided by Ω, i.e., we are assuming
Ω = 0. This leads to the following result:
Lemma 1. Let φ(z) be any concave, non-decreasing func-
tion of |z| , [|z1|, . . . , |zp|]> ∈ Rp+ (e.g., φ(z) =

∑
i |zi|q

with q ≤ 1 or φ(z) =
∑
i log (|zi|+ ε) with ε ≥ 0) and

assume that K = 2 (binary classification for simplicity).
Then if Ω = 0, p > N , and rank[X] = N − 1, the LDA
cost function from (7) is unbounded from above for some β
vector that has no zero-valued elements (non-sparse) and
magnitudes tending towards infinity.

Proofs of all results are deferred to the supplementary file;
however, briefly in words Lemma 1 follows from the fact
that non-sparse discriminate vectors with infinite magni-
tude and lying in the null-space of Σw will maximize the
quadratic Σb term in (7) while swamping out the effects of
the sparse regularizer which grows much more slowly as
elements of β become large.

The rank condition implies that X is full-rank (after re-
moving column means) and is merely included to rule out
a high-dimensional problem with p > N collapsing to an
equivalent lower-dimensional problem with p < N . Like-
wise, while for simplicity Lemma 1 addresses the K = 2
case, the basic result can be extended to all K > 2 as
well, implying that generally we cannot rely on a concave,
sparsity-inducing regularizer to ameliorate the effects of a
degenerate within-class covariance matrix. In fact, it nat-
urally follows from the proof of Lemma 1 that Ω > 0 is
required to counteract this effect. But this then necessi-

tates that both the λ and Ω weighting factors in (7) must
be chosen via some potentially expensive cross-validation
procedure. Moreover, it is entirely unclear to what extent
actual sparse estimates for B even remain possible here
since the larger we make Ω, the more the feasible region
B>(Σw + Ω)B = I begins to disproportionately constrain
sparse solutions (e.g., if Ω = ηI for some constant η > 0,
then the resulting quadratic factor in Lagrangian form can
be viewed as a quadratic penalty well known to disfavor
sparsity).

In contrast, the more indirect optimal scoring formulation
does not suffer from these complications. Rather, a sparsity
penalty applied as in (8) is sufficient to resolve the corre-
sponding underdetermined system such that an additional
Ω factor is not required; hence Ω = 0 represents a simple
robust choice. However, these methods are considered to
be indirect in the sense that optimal scoring will no longer
be equivalent to LDA once sparse penalties have been intro-
duced. This is a perceived weakness as described in (Witten
& Tibshirani, 2011), where it is argued that the direct form
more accurately reflects the most natural, sparse extension
of LDA.

To summarize then, the direct form of incorporating spar-
sity suffers from degenerate global optima without addi-
tional heuristics, making subsequent analysis of sparsity
and efficient implementations more difficult and tuning-
parameter-dependent. Meanwhile the indirect optimal
scoring form maintains an ambiguous connection with the
original LDA formulation but retains the structure of sparse
regression problems more amenable to rigorous investiga-
tion and implementation. Moreover, as an additional algo-
rithmic issue none of these methods come with a clear pre-
scription for choosing an optimal penalty function φ. Note
also that even if φ is convex, joint optimization over both
B and Θ will generally not be.

2.2 Analytical Issues

Here we briefly unpack existing attempts to analytically
characterize some of the differences between existing
sparse LDA algorithms. First, in (Witten & Tibshirani,
2011) it is demonstrated that under certain special condi-
tions (including that K = 2 and φ is an `1-norm penalty)
optimal scoring (8) and direct sparse LDA (7) formulations
may share a common stationary point. However, we are
able to show (in part by extending the range of applicabil-
ity of Lemma 1 to the case where Ω > 0) that in general,
the actual global minima may be very different depending
upon the value of Ω. In other words, this common sta-
tionary point may be completely unrelated to the respective
global optima. Consequently, it is likely to have little over-
all relevance regarding commonalities in the region of the
respective cost functions that we most care about.

Secondly, in (Merchante et al., 2012) another initial attempt
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is made to connect sparse optimal scoring with canoni-
cal sparse LDA. The core argument is that if B? solves
the particular sparse optimal scoring problem given by (9),
again with a convex sparsity penalty, then an appropriate
Ω = f(B?) can be chosen such that the LDA problem from
(6) is optimized by someB proportional toB?. But this re-
sult is circular in that the optimal Ω depends directly on
B?, and hence ultimately the resulting sparsity profile is
completely independent of the original LDA model, signif-
icantly muting the overall relevance.

Finally, a related approach to handling sparse LDA involves
selecting a particular choice of Ω such that (4) has a rela-
tively high-dimensional subspace of global solutions. A
sparsity penalty can then be directly applied to solutions
in this subspace, resulting in a specialized case of (8). In
particular, with Ω = Σb and φ(βk) = ‖βk‖1, then the al-
gorithm proposed in (Zhang & Chu, 2013), called SULDA
(for sparse uncorrelated LDA) is effectively minimizing (8)
in the limit as λ→ 0 (note that the limit must be taken out-
side of the maximization). Although originally presented in
a much different way in (Zhang & Chu, 2013), we can use
the equivalency between (4) and (6) to show that SULDA
is tantamount to executing the following procedure. First,
let B∗ denote an optimum to

minB,Θ ‖YΘ−XB‖2F + tr(B>X>PYXB)
s.t. Θ>Y >YΘ = I.

(10)

Now clearly any additional B̄ ∈ null[X] added to B∗ will
not alter (10), and hence B∗ + B̄ will also represent a so-
lution to (10). Therefore SULDA simply looks for new
sparse solutions by solving L decoupled `1 linear programs
of the form

minβ̄k
‖βk∗ + β̄k‖1

s.t. Xβ̄k = 0.
(11)

One appealing aspect of SULDA is that Ω and λ have been
chosen for us, and moreover, for these specialized choices
we obtain full equivalency between optimal scoring and
canonical sparse LDA formulations, and there is no degen-
erate global solution for the latter.

But all of this comes with a price. For example, it is un-
clear why Ω = Σb might be the best regularizer for sparse
LDA classification performance beyond algorithmic con-
venience. Additionally, the number of nonzero elements in
any potential solution is bounded from below by NL (un-
like algorithms we discuss in Section 3 which are bounded
from above by this same amount, potentially leading to
much greater sparsity and interpretability). Moreover, if we
wish to relax the strict equality constraint in (11) to allow
for greater sparsity, then any solution is no longer optimal
to (10) and we lose any direct connection with the original
Fisher LDA, which was the goal to begin with.

3 Reexamining Sparse LDA

The previous section served to characterize the equivocal
nature of present understanding of sparse LDA methods,
making unequivocal design choices more challenging. In
this section we intend to elucidate the precise connection
between optimal scoring and direct sparse LDA, leading
to arguments suggesting the superiority of the former. We
first consider the K = 2 case (binary classification) which
leads to cleaner analysis, although many of the conclusions
carry over to more general multi-class situations. Later we
address the K > 2 scenario explicitly.

3.1 Sparse LDA with K = 2

When K = 2, only one discriminant vector is required
and so we simply ignore the vector subscript. In this re-
stricted setting there exist two primary methods for intro-
ducing sparsity into the LDA model. The first, based on
optimal scoring involves solving

minβ,θ≥0
1
N ‖Y θ −Xβ‖

2
2 + λφ(β)

s.t. θ>Y >Y θ = 1,
(12)

while the second is given by

max
β

β>Σbβ − λφ(β) s.t. β>Σwβ = 1. (13)

In both cases we are assuming the heuristic Ω factor from
(7) and (8) is set to zero. As we argued in Section 2, this
poses no problem for solving (12), but produces a problem-
atic degenerate global solution when solving (13). Hence
some Ω > 0 has traditionally been applied in a somewhat
ad hoc fashion as a practical remedy. However, we will
now show that (12) is actually equivalent to solving a prob-
lem very similar to (13), but with a principled modification
that automatically removes this undesirable degeneracy. In
doing so we demonstrate that, contrary to conventional wis-
dom (e.g., (Witten & Tibshirani, 2011)), the optimal scor-
ing formulation can actually be viewed as a superior, more
direct entry point for introducing sparsity into LDA models
that does not require heuristic modifications to the within-
class covariance Σw. In other words, we show that opti-
mal scoring does in fact retain a close connection with the
original LDA formulation but with problematic optima re-
moved.

Theorem 1. There exist non-negative constants α1 and α2

(dependent on λ) such that (12) is equivalent to solving

maxβ h
(
β>Σbβ

)
− λφ(α1β)

s.t. β>Σwβ = α2,
(14)

where h(v) , v
N(1+v) . Moreover, every locally minimizing

solution can be achieved at a solution with at most N non-
zero elements (but typically there are fewer).

Clearly (14) possesses the same basic structure as (13), the
primary difference being the monotonic transformation h
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and some rescalings, although the overall scaling of LDA
projections is irrelevant. In fact this squashing function h
serves a very desirable purpose which is most pronounced
when p > N and so Σw is not full rank. Specifically,
by rescaling β>Σbβ between zero and one, it prevents the
type of degenerate solutions that occur when β ∈ null[Σw]
grows arbitrarily large. Instead, there is no significant ad-
vantage to large β coefficients. Consequently the sparse
penalty φ(β) will not be overwhelmed and sparse bounded
solutions will naturally be produced. Note also that when
β is sparse, the effective subspace of Σw encountered by
β>Σwβ will generally be full rank.

3.2 General Case for K > 2

There are at least two different ways to extend (12) to han-
dle the general sparse LDA problem for K > 2. One di-
rection is to solve (8) with Ω = 0. Since each discriminant
vector has an independent sparse penalty, this model will
make each βk sparse, which implies that the total num-
ber of non-zero entries in the resulting B will be small.
In fact, using (Wipf et al., 2011) it is straightforward to
show that every local minima can be achieved with at most
NL nonzeros, while typically the actual number is far less.
However, because the sparsity profile or support of each βk
will generally not be shared, it is unlikely that any given
feature will be entirely pruned from the model when L is
large, which would require that an entire row of B is equal
to zero. Additionally while some of the basic intuitions
from the previous section carry over, the explicit relation-
ship between each discriminant vector and those produced
by the direct sparse LDA formulation (7) is more difficult
to quantify. Regardless, we will empirically demonstrate
in Section 5 that minimizing (8) with Ω = 0 can be very
effective in practice.

As a second option, we may instead apply sparsity penal-
ties which operate in a row-wise fashion, meaning that in-
stead of setting individual elements of B to zero, we look
to explicitly produce zero-valued rows. This leads directly
to feature pruning (meaning greater model interpretability)
and a somewhat more direct relationship with the analysis
from Section 3.1. To accomplish this we need only apply
a standard sparsity penalty φ to a vector of row norms, i.e.,
b = [‖β1‖2, . . . , ‖βp‖2]>, where βi denotes the i-th row
of B. We may then attempt to solve

minB,Θ
1
N ‖YΘ−XB‖2F + λφ(b)

s.t. Θ>Y >YΘ = I.
(15)

We will now demonstrate that this model has reasonable
analytical properties related to row-sparsity and is strongly
connected to the canonical LDA problem.

For this purpose, let γ denote a non-negative vector of aux-
iliary variables and define Γ = diag(γ). Then we consider
the optimization problem

maxγ≥0

∑L
k=1 h (νk(γ))− Lλz(γ), (16)

where νk(γ) is the kth largest eigenvalue of(
Σw + λΓ−1

)−1/2
Σb
(
Σw + λΓ−1

)−1/2
and z is

some penalty function on γ. This construction leads to the
following:

Theorem 2. For any concave non-decreasing function φ,
(15) is equivalent to solving (16) with some function z that
is also concave and non-decreasing (sparsity-inducing),
and then choosing each βk =

(
Σw + λΓ−1

)−1/2
β̃k,

where β̃k is the eigenvector associated with the optimal
eigenvalue νk(γ). Moreover, any locally minimizing so-
lution B can be achieved with at most NL nonzero rows
(regardless of λ) and there exists some finite λ̄ such that for
all λ > λ̄, any locally minimizing solution has no nonzero
rows, i.e., B = 0.

This theorem suggests the the optimal scoring problem is
equivalent to a regularized Fisher LDA problem where Ω
is set equal to the inverse of a diagonal factor penalized
with a sparse regularizer. Returning to the original regu-
larized LDA problems from (4) and (6), it suggests that
we may equivalently inject sparsity by learning the diago-
nal elements of Ω in the presence of an appropriate addi-
tional regularization term. Simply put, if (4) is viewed as
the ideal starting point for applying additional sparse regu-
larizers, there exist two candidate mechanisms for injecting
sparsity: we can either apply a sparse penalty to B or alter-
natively, to the inverse of Ω, since if elements of Ω−1 go to
zero, the constraint can only be satisfied with correspond-
ing rows of B being driven to zero. Both strategies are
equally plausible; however, the second variant provides a
close connection to optimal scoring via Theorem 2, which
also then leads to efficient implementations (see Section
4). And importantly, by adding a sparsity penalty to Ω−1

instead of B, there is no longer any issue with degenerate,
non-sparse global solutions as occurs in (7) without a judi-
ciously chosen Ω and λ combination. Here we only need
to select a single scalar parameter λ.

Additionally, unlike (9) in (Merchante et al., 2012), Theo-
rem 2 quantifies a general equivalence without any circular
dependency on the value of the optimizer of (15). More-
over, it allows us to quantify a minimal amount of row-
sparsity that is to be expected from such a model. It is
worth mentioning here that efficient algorithms and certain
attendant analysis are possible when defining the problem
either in terms of the original sparse function φ in B space
or in terms of the auxiliary penalty z in γ space. This dual-
ity has been explored previously in the context of compres-
sive sensing-type models (Wipf et al., 2011).

4 Robust Algorithms for Sparse LDA

We began with a variety of sparse LDA algorithms that
could largely be partitioned into those based on either (7) or
(8) and row-sparse extensions to (15). In searching for the
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most principled adaptation for handling sparsity, the previ-
ous section then served to narrow the field by rigorously
motivating the latter optimal scoring variants, an added
benefit being that we no longer need any heuristic selection
criteria for Ω, which winnows the possibilities even further.
However, for practical application we must still select some
regularization function φ for enforcing sparsity, and a par-
ticular strategy for minimizing the resulting penalized cost
function, either (8) or (15).

For this purpose we will first consider solving (8) where
Ω = 0 and the sparse penalty φ is an arbitrary concave,
non-decreasing function of coefficient magnitudes; given
that each discriminant vector is penalized separately, we
may expect to minimize the overall number of nonzero el-
ements. We refer to this as an entry-wise sparse model.
Secondly, we describe algorithms for solving (15) with ar-
bitrary row-sparsity penalties, which we refer to as a row
sparse model. In both cases we will first review simple
iterative reweighted algorithms that scale linearly in p, a
desirable property for the high-dimensional setting where
p � N . From this pool we will then motivate a specific
choice for φ, inspired by the popular relevance vector ma-
chine (RVM) from (Bishop & Tipping, 2000) and (Tipping,
2001), that is particularly well-suited for incorporation into
the optimal scoring sparse LDA pipeline.

4.1 General Iterative Reweighted Algorithms

Both iterative reweighted `1 and `2 style algorithms (Wipf
& Nagarajan, 2010) can be applied to either the entry-wise
or row sparse models for general φ. Here for simplicity we
consider the former for the entry-wise case and the latter for
the row-spare model, in part because this sometimes leads
to the simplest implementations.

Entry-wise Sparse Model: In order to solve (8) with Ω =
0, we iteratively update B while holding Θ fixed and then
find the optimal Θ holding B fixed. When B is fixed, the
optimal Θ can be computed in closed form using the SVD
decomposition of (Y >Y )−1/2Y >XB. Next, when Θ is
fixed the optimization problem for each discriminant vec-
tor βk conveniently decouples and hence each can be com-
puted independently. For βk, we rewrite the relevant objec-
tive as

min
βk

1

N
‖Y θk −Xβk‖22 + λφ(βk). (17)

Solving (17) can be accomplished whenever φ is concave
(in coefficient magnitudes) using the general iterative `1
reweighing technique summarized in (Wipf & Nagarajan,
2010). This produces the updates

β
(t+1)
k ← arg min

β

1

N
‖Y θk −Xβ‖22 + λ

∑
i

wki|xi|

wk
(t+1)
i ← ∂φ(µ)

∂|µi|

∣∣∣∣
µ=β

(t+1)
k

. (18)

Note that solving for βk here is a classical weighted Lasso
problem, which can be efficiently computed using fast con-
vex solvers, hence this procedure is computationally effi-
cient. Although the connection to the canonical LDA prob-
lem may be somewhat more ambiguous, not surprisingly
the entry-wise model can nonetheless achieve the overall
sparsest discriminant matrix (see Section 5)

Row Sparse Model: In contrast to the entry-wise sparse
model, we only need compute Θ once and then solve for
the resulting B a single time. This observation is based
directly on the following result:

Lemma 2. When L = K − 1, any Θ in the subspace or-
thogonal to 1 and satisfying Θ>Y >YΘ = I leads to the
same optimal B for solving (15) up to an inconsequential
rotation as long as b is computed using an `2 norm.

By Lemma 2, we can arbitrarily pick a valid Θ by a simple
eigenvalue decomposition and then compute once

min
B

1

N
‖YΘ−XB‖2F + λφ(b). (19)

This can be iteratively solved analogous to the previ-
ous section using an iterative reweighted convex program.
However, because the discriminant vectors are now cou-
pled, a single second-order cone program must replace the
set of independent `1 problems from before. While there
exist many efficient methods for solving such a problem,
here we present a simple alternative based upon iterative
`2 reweighting. An advantage is that often simple updates
are available in closed form, although the convergence rate
can be slower (Wipf & Nagarajan, 2010). For any concave,
non-decreasing φ, the required iterations are

B(t+1) ← W̃ (t)X>
(
λNI +XW̃ (t)X>

)−1

YΘ

w
(t+1)
i ← ∂φ(µ)

∂‖µi‖22

∣∣∣∣
µ=B(t+1)

(20)

where W̃ = diag
(
w−1

1 , . . . , w−1
p

)
.

4.2 Special Case: Using the RVM for Sparse LDA

The RVM represents a popular probabilistic model that has
been shown to be effective for solving sparse regression
problems (Bishop & Tipping, 2000; Tipping, 2001). Here
we derive two simple sparse LDA variants that rely on a
penalty function φ inspired by the RVM. These adaptations
display a unique mechanism for smoothing away bad lo-
cal minima that is specific to this merger with LDA, all at
a computational cost equivalent to only a single RVM re-
gression problem (at least for the row sparse LDA model).
Later in Section 5 we will empirically demonstrate that
these variants outperform existing sparse LDA algorithms
on three important benchmark datasets. Therefore, we
would argue that the RVM is notably well-suited for in-
tegrating with LDA.
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For an observed vector y, the basic RVM builds from the
likelihood function p(y|β) = N (y;Xβ, λI) and coeffi-
cient prior p(β; γ) = N (β; 0,diag(γ)) where γ ∈ Rp+. If γ
were somehow known, then the posterior distribution over
β is Gaussian with closed-form mean and covariance avail-
able as standard formulae. However, because it is typically
not known, we can obtain an estimate via Type II maximum
likelihood, which entails solving maxγ

∫
p(y|β)p(β; γ)dβ.

Once an optimal γ is computed, β can then be estimated
via the corresponding posterior mean. While not directly
amenable to LDA adaptation, it is shown in (Wipf et al.,
2011) that the optimal solution βRVM resulting from this
procedure satisfies

βRVM = arg min
β
‖y −Xβ‖22 + λgα(β), with

gα(β) = min
γ≥0

β>Γ−1β+log |αI+XΓX>|, α > 0. (21)

Note that this implicit penalty (which is concave, non-
decreasing, and hence favors sparsity) can be extended to
the multi-column case via

gα(B) = min
γ≥0

L∑
i=1

β>i Γ−1βi+L log |αI+XΓX>|. (22)

When viewed as abstract penalty functions, it is then
straightforward to derive RVM-based sparse LDA algo-
rithms with either reweighted `1 or `2 updates. It follows
that the general `1 updating rule (18) for entry-wise sparse
model becomes

wk
(t+1)
i ←

[
X>i

(
αI +XW̃

(t)
k B̃

(t+1)
k X>

)−1

Xi

]1/2

,

(23)
where B̃(t)

k = diag
(
|βk(t)

1 |, . . . , |βk
(t)
p |
)

. Likewise, the
general `2 updating rule (20) for row sparsity becomes

w
(t+1)
i ←

[ 1

L

L∑
j=1

(
Bj,i

(t+1)
)2

+ w
(t)
i

−1
(24)

−wi(t)
−2
X>i

(
αI +XW̃ (t)X>

)−1

Xi

]−1

.

We will use the entry-wise sparse model with reweighing
rule (23) and row sparse model with reweighing rule (24) to
handle real world datasets in the following section. While
both models produce extremely sparse solutions, in special-
ized situations the RVM row sparse model can be proven
to be a particularly sensible choice. This occurs in part be-
cause of the orthogonal structure of YΘ.

We first define spark[X] as the smallest number of linearly
dependent columns in a matrix X . Now consider the opti-
mization problem

min
B

gα(B), s.t. YΘ = XB, α→ 0, (25)

This problem can be viewed as the noiseless version of (19)
with φ(b) replaced by the RVM row sparse penalty from
(22). And finally, define X̃ as the D columns of X associ-
ated with nonzero rows in a maximally row sparse feasible
solution to YΘ = XB (i.e., the solution with the fewest
number of nonzero rows, meaning D is minimal). We then
have the following:
Theorem 3. If D ≤ L < N , spark[X] = N + 1, and

min
Λ
‖A‖2‖A−1‖2 <

N

D
s.t. A = ΛX̃X̃>Λ,

Λ a positive diagonal,

then (25) has a single stationary point that is guaranteed
to be a maximally row sparse feasible solution. No row-
sparse penalty of the separable form φ(b) =

∑
i f(‖βi‖2)

can satisfy this result.

Here ‖ · ‖2 represents the spectral norm of a matrix. Hence,
as long as the columns of X̃ display a sufficient degree of
spread, ‖A‖2‖A−1‖2 will be sufficiently small given the
optimal diagonal weighting factor Λ. Interestingly, unlike
typical sparse recovery results that rely on convex penalty
functions and RIP conditions, Theorem 3 is independent of
any correlation structure in the remaining columns of X ,
i.e. X\X̃ . In fact, the other columns only play a weak role
by virtue of the spark condition, but this is extremely mi-
nor given that any design matrix X with even an infinitesi-
mally small continuously random component will satisfy it.
Therefore in this regard, the RVM maintains a substantial
advantage. And while still obviously an idealized result,
which relies on YΘ being orthogonal, more standard sepa-
rable penalties (convex or not) such as in (Merchante et al.,
2012) cannot satisfy something similar (details to follow
in a subsequent publication). At the very least, Theorem
3 motivates applying the RVM adaptation as a viable can-
didate for sparse LDA, that can promote maximal sparsity
without incurring too many suboptimal minima.

We close this section by mentioning that, although the orig-
inal RVM is very straightforward to implement for regres-
sion, it requires an additional heuristic Laplace approxi-
mation for classification and cannot be extended to multi-
class problems without incurring an unacceptable com-
plexity cost with order-K3 dependency on the number of
classes K (Tipping, 2001). Note that, although a more ef-
ficient, greedy version of the RVM has already been devel-
oped, this algorithm has not be adapted for problems with
K > 2 nor row sparse models. Consequently, an appealing
byproduct of the developments herein is an extremely effi-
cient, general-purpose multi-class extension of the RVM.

5 Experimental Results

This section presents experimental results comparing
sparse LDA models built upon the RVM (both entry-wise
denoted RVM-ent and row-wise denoted RVM-row) to sev-
eral existing state-of-the-art LDA methods: the GLOSS
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algorithm (Merchante et al., 2012), `1-PLDA (Witten &
Tibshirani, 2011), and SDA (Clemmensen et al., 2011).
Because of limited space and for ease of direct compar-
ison in the high-dimensional setting, we select the same
three gene datasets used in (Merchante et al., 2012; Wit-
ten & Tibshirani, 2011). These are three gene datasets.
The Ramaswamy dataset (Ramaswamy et al., 2001) con-
tains 198 samples of 16063 gene expression measurements
from 14 distinct cancer subtypes. The Nakayama dataset
(Nakayama et al., 2007) contains contains 195 samples of
22283 gene expression measurements from 10 types of soft
tissue tumours. Consistent with previous experiments us-
ing `1-PLDA and GLOSS, we only consider the 5 main
types of 86 samples. Finally, the Sun data (Sun et al., 2006)
contains 180 samples of 54613 gene expression measure-
ments from 4 classes of tumors.

We follow the training and testing protocol of (Merchante
et al., 2012) and (Witten & Tibshirani, 2011). Each dataset
was split into a training portion containing 75% of the sam-
ples and a testing set containing the remaining 25%. This
process is repeated 10 times with random choice of the
split. The tuning parameters for the entry-wise sparse RVM
model are obtained by 10-fold cross validation (using only
the 75%). However, for the row sparse RVM model the
tuning parameter was simply assigned to a constant value
prior to the random splits and all the splits used the same
parameter for simplicity. This constant value was deter-
mined based on grid-search over another random split.

The test error rates and corresponding sparsity metrics are
presented in Table 1 along with standard deviations. For
`1-PLDA, SDA, and GLOSS, the results were obtained di-
rectly from (Merchante et al., 2012) and (Witten & Tibshi-
rani, 2011); for both RVM models we use our own sim-
ple implementation. Additionally, there are two criteria for
evaluating the sparsity, row- or equivalently feature-wise
sparsity (#FEATURE) and entry-wise sparsity (#ENTRY).
SDA fails to return a solution on the Ramaswamy data be-
cause of numerical instabilities (Merchante et al., 2012).
In all cases, an RVM model achieves better accuracy with
dramatically fewer nonzeros. Additionally, the `1-PLDA
algorithm performs far worse than all of the other algo-
rithms which are based on optimal scoring, consistent with
our analysis presented previously and the requirement that
a heuristic modification of Σw, e.g., by adding an Ω > 0,
is required to avoid degeneracy, which can counteract the
effects of sparse penalties.

While the RVM performs well, there are of course other
non-convex penalty functions that could potentially boost
sparsity beyond existing convex surrogates in the context
of LDA. However, care must be taken such that local min-
ima do not disrupt performance. In this context, we incor-
porated a non-convex Gaussian entropy penalty function
(Figueiredo, 2001) commonly used for sparse estimation;
however, the performance was substantially worse than the

Table 1: Comparisons between different models on three
gene datasets. ERR% denotes the error rate for test split.
#FEATURE denotes the number of non-zero rows in dis-
criminant matrix B (i.e., number of selected features).
#ENTRY is the number of non-zero entries in B. Standard
deviations are shown in parentheses. The best performance
for each criteria is in bold.

MODEL ERR% #FEATURE #ENTRY
Ramaswamy: N = 198, p = 16063, K = 14

`1-PLDA 38.36(6.0) 14874(720) 14874(720)
SDA - - -
GLOSS 20.61(6.9) 372.4(122.1) 4841.2(1457)
RVM-ENT 17.76(6.2) 1940.5(31.9) 1940.5(31.9)
RVM-ROW 16.73(6.1) 218.7(7.3) 2843.1(94.9)

Nakayama: N = 86, p = 22283, K = 5
`1-PLDA 20.95(1.3) 10479(2116) 10479(2116)
SDA 25.71(1.7) 252.5(3.1) 252.5(3.1)
GLOSS 20.48(1.4) 129.0(18.6) 516.0(74.4)
RVM-ENT 19.52(4.2) 74.3(7.7) 74.3(7.7)
RVM-ROW 20.00(1.2) 61.5(7.9) 246.0(31.6)

Sun: N = 180, p = 54613, K = 4
`1-PLDA 33.78(5.9) 21635(7443) 21635(7443)
SDA 36.22(6.5) 384.4(16.5) 384.4(16.5)
GLOSS 31.77(4.5) 93.0(93.6) 279.0(280.8)
RVM-ENT 30.00(4.9) 86.0(4.7) 86.0(4.7)
RVM-ROW 30.68(4.3) 36.1(3.6) 108.3(10.8)

RVM because of local minima. We also performed tests
with the recent SULDA algorithm from (Zhang & Chu,
2013) using code provided by the authors, but the results
were not competitive on these high-dimensional datasets.
The accuracy is considerably worse than the RVM on the
Ramaswamy and Nakayama data and extremely poor for
the Sun data. Consequently, for simplicity we do not in-
clude either Gaussian entropy or SULDA results in Table
1. Finally, (Cai & Liu, 2011) recently derived a slightly
different convex sparse LDA variant; however, this algo-
rithm only applies when K = 2 and does not scale well
with p (reported results require p ≤ 3000).

6 Conclusion

Our starting point was the fragmented understanding of
various sparse LDA algorithms, which can generally be
partitioned into two broad categories, optimal scoring-
based and canonical Fisher LDA-based. Contrary to con-
ventional wisdom, we demonstrated that the former actu-
ally maintains an intrinsic advantage over the latter when
sparse penalties are introduced. We further motivated a
very specific penalty function inspired by the RVM that
assimilates particularly well with optimal scoring, leading
to state-of-the-art performance with theoretical support. A
natural byproduct of this process is an extremely simple,
scalable multi-class extension of the RVM that relies on no
additional approximation steps.
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