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Introduction

The satellite “ping” data is crucial in the effort to locate the missing aircraft with registration
9M-MRO (carrier of missing flight MH370). The focus of the analysis here is to find a method
to calculate the possible end point of the flight path as well as to reconstruct the path
followed towards this end point, without the need of assuming a (average) speed or
(autopilot mode) restricted track. It uses the so called BFO data only to reconstruct position
latitude as a function of time. Only after the lat(t) function is found it is combined with BTO
data to determine the full positions including longitude.
The analysis presented below can be used in MH370 flight path reconstruction if:

- The published Inmarsat data is complete and correctly represents the

received/measured BFO values.
- The AES was located in 9M-MRO
- The AES was functioning correctly (including frequency compensation)

Vector analysis

The start is eq. (6) as derived by Henrik Rydberg [1], which can be related to the measured
BFO [2] assuming a zero rate of climb (ROC) during the portion of the flight we are
considering.

D =f/(C'p)'(p'V5+5'(Vp—Vs)) (1)

Here D is the (first order approximation) of the frequency compensated Doppler shift (Af,, +
Afcomp for zero ROC), f is the transmitter frequency, c is the speed of light, p’ = p-p, p is the
aircraft position vector, s is the satellite position vector, and v, and v are the aircraft and
satellite velocity vectors respectively. Note that p and s are defined in a translated ECEF
reference system, having the origin shifted to the satellite nominal position Os (above NO,
E64.5 at geostationary height). Currently we have used Os = (18155, 38063, 0) in ECEF [km].
The method basically starts by realizing that the satellite mainly moves N-S about the
nominal position, which gives rise to the D value because the frequency compensation
algorithm ignores this satellite movement. As “Gysbreght” (@jeffwise.net) pointed out the D
value numerically seems not very much dependent on aircraft longitude, nor on longitudinal
velocity components. This can be explained (see error analysis) by detailed analysis of eq.(1)
and allows ignoring certain x, y components in the vectors in eq. (1). The result is a
differential equation (DE) having time dependent coefficient, which expresses vp,(t) as a
function of p,(t), and can be solved for p,(t) by numerical integration. To do this for all times
we need a (smoothened and continuous) parametrization of D, vs and s. The satellite
positions and velocities vs. time are well known and the parametrization currently used was
given by “el-gato” (@jeffwise.net):



“the following coefficients to a polynomial of sixth degree (t*0..t*6) describe satellite position and
velocity well, where t is the time in seconds since 2014-03-07T00:00:00 (r,v in ecef in m or m/s, resp.):

rx = [25390482.8946,-603.709190215,0.0202346407905,-3.51527772866e-07,3.336001796e-12,-

1.62943435432e-17,3.16666502295e-23]

ry = [52828180.6019,-1335.18772729,0.0498326103051,-9.79751909045e-07,1.06955367164e-11,-

6.14815083023e-17,1.45432521871e-22]

rz =[-13999389.4178,1383.34310161,-0.0643188230889,1.55178847604e-06,-1.92854573249e¢-

11,1.17064142086e-16,-2.75704174714e-22]

vx = [589.937962045, -0.0634348200486, 2.70332163472e-06, -5.89252174093e-11,
6.97853792222e-16, -4.27753510762e-21, 1.06352790169e-26]

vy =[-1689.70257166, 0.143905678484, -4.9795915624e-06, 8.966832853e-11, -8.86971097191e-16,

4.57247710665e-21, -9.60218377943e-27]

vz =[1009.11103215, -0.103087216501, 3.97737381779e-06, -6.86620866226e-11, 5.40993469347e-

16, -1.65772106007e-21, 5.90565435208e-28]“

The parametrization of D has been done in Microsoft Excel based on the measured values at
19:41, 20:41, 21:41, 22:41, 23:11, 00:11 UTC. In the rest of the analysis we define t = 0 at

19:41 UTC on March 7' 2014, and work with t in seconds.
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Figure 1: D vs. t

In the rest of the analysis we define t = 0 at 19:41 UTC on March 7" 2014, and work with t in

seconds.

Deriving and solving the DE
First we rewrite eq. (1):

D(t)=f/c-p(t)- ((p—5) - Vs +5-Vp)

The assumptions used to simplify the problem:

* For the relevant time interval s-v, is dominated by s,(t)-vy,(t),

* Aircraft to (nominal) satellite distance p is relatively weakly dependent on changing
aircraft position (because of the large distance of satellite to earth), so use p(0).

(2)

* (p—s)-vs can well be approximated by (p - s)x(0) - Vs (t) + (p - s)y (0) - vy (t) + (P —5)2 (t) - Vs

(t)



The resulting DE to be solved is:

P2(t)-Vsz(t)+Vpe(t)-52(t) = D(t)-c- p(t) / f + 52(t)-Vsz(t)+(5x(0)-px(0))-vsx(t)+(sy(0)-py(0))-vsy (t)  (3)

Which directly gives vp,(t) as a function of satellite velocity and position, aircraft z-position
and residual Doppler shift. It is solved by:

P: (t + At) =Pp: (t) +At- Vpz (t) (4)
Results
Lat(0) = NO.8, Lon(0) = E94
lat(t) v_lat(t)
5 -10
0 .\\ 0 5000 10000 15000 20000
0 w5000 10000 15000 20000 110
5 .\.
10 \'\- 210
15 \\\ —e—lat{t) ——uy_lat(t)
20 .\. -310
N
25
\\ 410 =
-30 pa I S
-35 . 510
a) b)
Lat(0) = NO.4, Lon(0) = E94
lat(t) v_lat(t)
5 -10
0 i 0 5000 10000 15000 20000
5 0 \'\\.5000 10000 15000 20000 110
10 S
15 N -210
~ ——lat(t) ——y_lat(t)
20
\ 310
25
30 - 10 1
- ~ 210 N 8
~
-40 -510
c) d)
Lat(0) = NO, Lon(0) = E94
lat(t) v_lat(t)
0 = :
. NG 5m0 10000 15000 20000 ) 5000 10000 15000 20000
-10 \ -110
15 \\ 210
-20 "~ —+—lat(t) . —v—v_lat(t)
25 \\.\ -310
-30 N )
e ~ 410 \“'--._ ..........
40 510 e
e) f)

Figure 2: Calculated lat(t) [degrees]and vi.(t) [knots] for different realistic starting positions at 19:41
UTC for an early final turn south (before 18:40 UTC). Note the sensitivity of v_lat(t) curves on slight
changes in lat(0).



Error analysis for flight paths starting at 19:41 UTC @ March 7" 2014

Equation (2) can be rearranged into an expression for vy;:
Se Vpz= D(t) ¢ p(t) / f- (P —S) - Vs = Sx - Vo = Sy Vpy (5)

Here we focus on estimation of possible errors introduced by fixing the aircraft longitude at
the initial value, an assumption needed to find a solution for aircraft latitude as a function of
time from BFO values only.

Ignoring (sx - Vpx + Sy- Vpy):

The typical cruising speed of 490 knots corresponds to 247 m/s. For a mainly southerly
oriented track we assume vy, en vp, < 100 m/s. Note that for an aircraft at level flight near 90
degree longitude vy, will mostly be much smaller than this anyway. Note that during the
time interval considered (19:41 UTC — 00:20 UTC) s, < 20 km and s, < 30 km. All together it
means that the error budget for completely ignoring (s - Vpx + Sy Vpy) is less than 5 km”2 /s.

Error in p by using fixed aircraft position:

Because of the geostationary height of the satellite, an error in aircraft position will always
result in an error of less than 2% in p (aircraft to nominal satellite position). As D varies
between -40 and +40 Hz the term D-¢c-p / f varies between +-280 km”2 / s. With the error in
p < 2% if we take p”2 = (p(0))(p(0)) constant, the error contribution of this whole term will
be less than 6 km~2 / s.

Errorin (p - s)vs by ignoring changes in (p —s)x and (p —s),:
Write (p -s) = (p—s) (0) + A(p - s)(t)

Under the assumption given above A(p; — si)(t) in x and y direction is less than 2000 km
(linearly increasing in time from 0)

Vs is typically 0.002 km /s

Vsy is typically 0.001 km /s

All together the error contribution by ignoring (p — s)x and (p — s), is less than 5 km?2 /s,
linearly increasing in time from 0 at t = 0.

Total absolute error budget:
The total maximum error due to the unknown variation in aircraft longitude can thus be
estimated to increase from 11 km”2 /s at 19:41 UTC to 16 km”2 / s at 00:20 UTC.

Relative error in s;vp;:

To translate the absolute error budget into a relative error budget we need to estimate the
absolute value of the terms Dc:p / f and (p —s) - vs. As these terms are strongly changing
with time, their estimates are plotted in figure 3:
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Figure 3: Estimated contributions of the two major terms in eq. (5) and there sum (the red squares)
[km~2 /s]. The sum can be compared with the estimated total max. error (purple dots) to get an
estimate for the relative error in vy, introduced by ingoring aircraft longitude displacements. Initially
the relative error is less than 5% and increases to about 10% at t = 13000 s. Only in the final hour the
max. error is between 10% and 16%.

Possibilities for improvement:

The error estimates have been ample. For a mainly southerly track the error in p can be
largely reduced by only fixing aircraft longitude and calculate the time varying p (taking into
account the calculated changing latitude). Practically it must be possible to reduce the error
in p to less than 1% (< 3 km”2 / s). This will be implemented soon. Also the estimated error
in (p —s)x and (p —s), is rather large. It would not be surprising if the combination with BTO
analysis would point out that A(p —s)x (t) and A(p —s), (t) are both less than 1000 km, leading
to an error of less than 3 km”2 /s (linearly increasing in time) by fixing (p —s)x and (p —s), to
the initial value. With these modifications the total max. error would increase linearly in time
from 8 to 11 km”2/s.

From relative error in vp,(t) to the relative error in p,(t):

As equation (4) points out the position p,(t) is found from v,,(t) by direct integration. It is
tempting to think that for example a relative error in vy,(t) of less than 10% will lead to an
error of less than 10% in p,(t) at all times. However, as vp,(t) depends on p,(t) there could be
an exponential growth of errors introduced early in the integration time. This will be
addressed next. Looking closer to eq. (5) the coefficient in the DE connecting vy, with p, is
given by v, / s,. Its value changes from -1.6e-06 s* at t=0's, to -9e-05 s™ at t = 12k s. This
means that for t < 12k s the exponential grow of possible errors in p, is limited (eﬂ where At
< 1). Again in the final hour of the interval considered one has to be aware of a possible
multiplication effect of initial position error into the final position.



A more global look at the errors:

A pragmatic way to look at the error budget is by first solving for vp,(t) and then compare the
obtained values with max. abs. error | s,(t). Typical values for the max. abs. error are
between 11 and 16 km”2 / s. Typical values for s,(t) are between 1200 and 400 km. So
typical values of the max. error in vp,(t) are between 10 and 40 m/s, mostly less than 20 m/s.
For solutions that indicate that abs(vp,) > 200 m/s at all times the error is indeed most of
time 10% or less. The exception is the last hour (t between 13k and 16.2k). There the error
can go up to 20%.

With a total flight time of 16k s an estimated average 20 m/s max. error corresponds with +-
300 km in z-direction, or +-4 degrees in latitude assuming a final position in the 30S — 40S
range.

Summary of initial results

Based on 19:41 UTC latitudes of 0 — 0.8 degrees N, we find 00:11 UTC positions of S33 - S35
(degrees). In combination with the estimated error range this would indicate a 00:11 UTC
position in the range of 29S — 39S. Crucial of course is the assumed initial position. This will
be discussed in a follow-up document where we compare BFO-only with combined BFO/BTO
analysis. This document will include an extensive discussion, conclusions and
recommendation section.
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