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Abstract— In this paper we study the controllability of
networked systems with static network topologies using tools
from algebraic graph theory. Each agent in the network acts
in a decentralized fashion by updating its state in accordance
with a nearest-neighbor averaging rule. In order to control the
system, external control inputs are injected into the so called
leader nodes, and the influence is propagated throughout the
network. Our main result is a tight lower bound on the rank
of the controllability matrix associated with such systems. This
bound is derived using the distances of nodes to the leaders,
and valid for systems with arbitrary network topologies and
possibly multiple leaders.

I. INTRODUCTION

Decentralized control of networked multi-agent systems
has received a considerable amount of attention during the
last decade. Numerous applications of decentralized con-
trol laws have been studied including flocking (e.g., [2]),
alignment and formation control (e.g., [1]-[4]), distributed
estimation (e.g., [6]), sensor coverage (e.g., [5]) and dis-
tributed control of robotic networks (e.g., [7]), to name a
few. In a distributed framework, a global task is achieved by
the local interactions of agents among each other without
a centralized control. In this framework, a fundamental
question is whether such a decentralized system can be
controlled by directly manipulating only some of the agents.
This question motivates our analysis of the controllability of
networked systems.

Controllability of networked systems was initially ad-
dressed in [8], where a connection between the spectral
properties of the underlying graph modelling a network,
and the controllability of the system was analyzed. A more
topological analysis of the problem was later presented in
[9] with an emphasis on how symmetry with respect to
the leader node affects the controllability of the system.
More general conditions were presented in [10], [11] by
introducing equitable partitions in the analysis. These con-
cepts were extended along with additional results in [12]. In
[13], these equitable partitions were used to obtain an upper
bound on the rank of the controllability matrix. Recently,
distance partitions are used in [14] to study the controllability
of leader-follower networks. A lower bound for the single-
leader case, which is a key result that will be extended in
this paper, is presented there for general graphs. A further
analysis of distance regular graphs, including the multiple-
leaders case, is also presented in [14].

In this paper, we analyze leader-follower networks in
which the agents utilize a nearest-neighbor averaging rule.
Some agents, called the leaders, support external control
inputs that ultimately influence the dynamics of all other
agents, the followers. We explore the controllability of the
overall system under this setting, and relate it to the topology
of the interaction graph. Clearly, tools from linear systems
theory, such as rank tests, can be employed for controllability
analysis of such systems as well. However, such methods do
not explicitly reveal the influence of the underlying network
structures on the controllability properties. Thus, the affect
of adding (or removing) edges/nodes is not evident. For
instance, removing certain edges may reduce the controlla-
bility of the system while removing others may improve it.
Similarly, based on the structure of the network, a particular
way of adding nodes may be better than others from the
controllability stand point. Also, some leader selections may
enhance the controllability of the overall system compared
to the other leader assignments. Relating network topology
to system controllability provides a more direct way of
addressing these issues.

Our main contribution in this paper is a tight lower bound
on the rank of the controllability matrix for any graph
structure with possibly multiple leaders. This lower bound
is based on distances of nodes to the leaders, represented
as distance-to-leaders (DL) vectors. More precisely, it is the
maximum length of sequences obtained by arranging these
DL vectors in a certain pseudo monotonically increasing
(PMI) order. Moreover, we also present an algorithm for
computing this lower bound.

The organization of this paper is as follows: Section II
presents some preliminaries related to the system dynamics
and algebraic graph theory. In Section III, we present our
controllability analysis. Section IV provides an algorithm
to compute the proposed lower bound on the rank of the
controllability matrix for arbitrary networks. Finally, Section
V provides the concluding remarks.

II. PRELIMINARIES

Consider a networked system of n agents that utilize
the same nearest neighbor averaging rule, known as the
consensus equation, to govern their dynamics. For each
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particular agent i, the consensus equation is given as

ẋi =
∑

j∈Ni

(xj − xi), (1)

where xi is the state of agent i, and Ni is the set of
agents neighboring agent i. Without loss of generality, let us
assume that xi ∈ R, and the interactions among the agents
are encoded via a static undirected graph G = (V,E). In
this graph, each node in the node set, V = {1, 2, . . . , n},
corresponds to a particular agent, and the edge set, E ⊆
V × V , is the set of unordered pairs (i, j) depicting that the
nodes i and j are neighbors. In this context, neighbor nodes
are the ones that have the measurements of each other’s
states.

The consensus equation provides a simple, yet powerful
foundation for decentralized control strategies that can be
utilized in various tasks, including coverage control, con-
tainment control, distributed filtering, flocking and formation
control. With all agents utilizing the consensus equation,
their states asymptotically converge to the stationary mean,if
and only if the underlying graph is connected [3].

Assume that we would like to control this network simply
by applying external control signals to some of the nodes.
Without loss of generality, let the first m nodes be the leaders
taking the external control inputs, and let the remaining (n−
m) nodes be the followers whose dynamics are governed by
(1). Let the m dimensional control input be represented by
vector u. Then, the dynamics of the leader nodes satisfy

ẋi =
∑

j∈Ni

(xj − xi) + [u]i, for i = 1, 2 . . . ,m. (2)

where, [u]i denotes the ith entry of the control vector u.
When the external control signals are applied to the leader
nodes, their effect on the dynamics propagates to the rest of
the nodes through the underlying network.

Our main goal here is to characterize the controllability
of the overall system under this setting. In particular, we
are interested in the dimension of the controllable subspace,
and aim to relate it to the structure of the underlying network
from a graph theoretic perspective. To this end, we use some
basic tools from algebraic graph theory, in particular the
degree matrix, the adjacency matrix, and the graph Laplacian.

Let ∆ be the n × n degree matrix associated with the
graph. The entries of ∆ are given as

[∆]ij =

{
|Ni| if i = j
0 otherwise, (3)

where |Ni| denotes the cardinality of Ni, and it is equal to
the number of neighbors of node i.

The adjacency matrix, A, is an n × n symmetric matrix
with its entries given as

[A]ij =

{
1 if (i, j) ∈ E
0 otherwise. (4)

The graph Laplacian, L, is simply given as the difference
of the degree and the adjacency matrices,

L = ∆−A. (5)

In light of (1) and (2), the dynamics of the leader-follower
network with m leaders can be given as

ẋ = −Lx+Bu, (6)

where x = [x1, x2, . . . , xn]T is the state vector obtained by
stacking the states of each individual node (including the
leaders), and B is an n×m matrix with the following entries

[B]ij =

{
1 if i = j
0 otherwise. (7)

Note that (6) represents a standard linear time-invariant
system and it relates the system dynamics to the graph
topology through the graph Laplacian.

III. CONTROLLABILITY OF LEADER-FOLLOWER
NETWORKS

In this section we will analyze the controllability of the
system given in (6). In particular, we present relationships
between the network topology and the rank of the con-
trollability matrix for such systems. We start this section
by referring to the results based on the equitable partitions
presented in [11], [13].

A partition of a graph G = (V,E) is given by a mapping
π : V → {C1, C2, . . . , Cr}, where π(i) denotes the cell that
node i gets mapped to, and we use dom(π) to denote the
domain to which π maps, i.e., dom(π) = {C1, C2, . . . , Cr}.
Definition (External Equitable Partition): A partition π of a
graph G with cells C1, C2, . . . , Cr is said to be an external
equitable partition (EEP) if each node in cell Ci has the
same number of neighbors in cell Cj for every i 6= j.

In the controllability analysis, we are particularly in-
terested in the maximal leader-invariant EEP of a graph,
denoted by π∗. An EEP is said to be leader-invariant if
the leader nodes are mapped to singleton cells, and such a
mapping is said to be maximal if no other leader-invariant
EEP with fewer number of cells exists. Examples of maximal
leader-invariant EEPs are depicted in Fig. 1.

G1 G2

1 1

2

Fig. 1. Maximal leader-invariant EEP’s for two networks, G1 and G2. G1

has a single leader namely 1, whereas G2 has two leaders namely 1 and 2.

Maximal leader-invariant EEPs are useful structures in
the controllability analysis since the states of the nodes that
appear in the same cell of the maximal leader-invariant EEP
asymptotically converge to the same value [11].

Theorem 3.1 [11] If G is a connected graph with π∗ being
its maximal leader-invariant EEP, then for all Ci ∈ dom(π∗)

lim
t→∞

(xk(t)− xl(t)) = 0,∀k, l ∈ π∗−1(Ci). (8)
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In light of Theorem 3.1, one can at most be able to control
all of the average state values within each cell of the π∗.
Hence, the cardinality of dom(π∗) provides an upper bound
on the rank of the controllability matrix as given in [13].

Theorem 3.2 [13] Let G be a connected network, and π∗

denote its maximal leader-invariant EEP. Given the dynamics
in (6), the rank of the controllability matrix, Γ, satisfies

rank(Γ) ≤ |π∗|, (9)

where |π∗| is the cardinality of dom(π∗).

The upper bound given in Theorem 3.2 is quite useful
in analyzing the controllability of a leader-follower network.
For instance, one can conclude that a system is not com-
pletely controllable if there exists non-singleton cells in its
maximal leader-invariant EEP. However, all the cells being
singletons does not necessarily imply that the network is
completely controllable.

Next, we present our main result, a lower bound on the
rank of the controllability matrix when multiple leaders are
present. In [14], the authors present a lower bound for
single-leader networks. To this end, they utilize the distance
partition of an underlying graph with respect to its leader. In
this partition all the nodes that are at the same distance from
the leader are mapped into a single cell. It is shown there
that the rank of the controllability matrix is greater than or
equal to the number of cells in this partition.

Theorem 3.3 [14] Let G be a connected single-leader net-
work, and πD denotes its distance partition with respect
to the leader. Given the dynamics in (6), the rank of the
controllability matrix, Γ, satisfies

|πD| ≤ rank(Γ), (10)

where |πD| is the number of cells in the distance partition.

Similar to the single-leader case, the distances of nodes
from the leaders appear as the fundamental property in our
analysis. We start our analysis with the following proposition.

Proposition 3.4 Let G = (V,E) be a connected network
with the dynamics in (6), and let bk be the kth column of
the input matrix B. Then, for any node i and leader k,

[(−L)rbk]i =

{
0 if 0 ≤ r < dik
[Ar]ik if r = dik

(11)

where L is the graph Laplacian, A is the adjacency matrix
of the graph, and dik is the distance of node i to the leader
node k.

Proof:
Using the equality in (5), (−L)r can be expanded as

(−L)r = (A−∆)r = Ar +

r−1∑

m=0

(−1)r−mSm, (12)

where Sm is the sum of all matrices that can be represented
as a multiplication in which A appears m times and ∆

appears r − m times. Note that since ∆ and A have only
non-negative entries, any matrix that can be represented this
way has only non-negative entries. Moreover, since ∆ is a
diagonal matrix with positive entries on the main diagonal,
it doesn’t add or remove zeros when multiplied by a matrix.
Hence, Sm has zeros only at the same locations as Am, and
the following condition is satisfied:

[Sm]ik = 0 ⇐⇒ [Am]ik = 0. (13)

Using (7) and (12), the ith entry of the vector (A−∆)rbk
can be expressed as follows:

[(A−∆)rbk]i = [(A−∆)r]ik

= [Ar]ik +

r−1∑

m=0

(−1)r−m[Sm]ik. (14)

As A is the adjacency matrix of the graph, [Ar]ik is equal to
the number of walks of length r from node i to node k. Since
the distance of node i to the leader node k is dik, [Ar]ik = 0
for all 0 ≤ r < dik. Hence, (13) and (14) together imply
that [(A − ∆)rbk]i = 0 for all 0 ≤ r < dik. Furthermore,
plugging r = dik into (14), we get

[(A−∆)dikbk]i = [Adik ]ik, (15)

where [Adik ]ik is equal to the number of paths with the
shortest length, dik, from node i to the leader node k, and
for a connected graph it is non-zero.

In a network with m leaders, for each node i we can define
an m dimensional vector, di, containing the distance of node
i to each of the leaders.

Definition (Distance-to-Leaders (DL) Vector): For each
node i, the DL vector, di is defined as

di =
[
di1 di2 . . . dim

]T
, (16)

where, dij denotes the distance of node i to the leader j.

In our controllability analysis, we utilize the sequences
of these DL vectors, D =

(
d1, d2, . . . , d|D|

)
, where |D|

denotes the length of sequence D. In this representation, we
drop the lower indices corresponding to the node labels, and
use the super indices to denote the order of the particular
vector in the sequence. In particular, we are interested in the
pseudo-monotonically increasing (PMI) sequences defined as
follows,

Definition (Pseudo-Monotonically Increasing (PMI) Se-
quence): Given a set of vectors v ∈ Rm, we call a sequence
of these vectors PMI, if each v in the sequence has an entry
that is strictly smaller than the corresponding entries of all
the following vectors in that sequence, i.e., for every pth vec-
tor, vp, in such a sequence, ∃ an index kp ∈ {1, 2, · · · ,m}
satisfying,

[vq]kp
> [vp]kp

, ∀q > p. (17)

Example: Consider a set of six vectors,
{[

0
3

]
,

[
1
2

]
,

[
1
3

]
,

[
2
1

]
,

[
2
2

]
,

[
3
0

]}
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A vector sequence satisfying the rule in (17) can be

D =

([
0©
3

]
,

[
3
0©

]
,

[
2
1©

]
,

[
1©
2

]
,

[
2©
2

])
.

For each vector vp in this sequence, the index kp satisfying

(17) is marked with a circle. Note that here v1 =

[
0
3

]
and

k1 = 1, as the first element of all other vectors vq , where
q > 1, is greater than the first element of v1 which is 0.

Similarly, for the second vector in the sequence, v2 =

[
3
0

]
,

we have k2 = 2, as the second element of all the vectors vq

for q > 2 are greater than the second element of v2, and so
on.

Theorem 3.5 For any connected leader-follower network,
let D be the set of all PMI sequences, D, of DL vectors, and
|D∗| = max

D∈D
|D| be the maximum length for such sequences.

Then the rank of the controllability matrix, Γ, satisfies

rank(Γ) ≥ |D∗|. (18)

Proof:
For a system with n nodes, the controllability matrix is given
as

Γ =
[
B (−L)B (−L)2B . . . (−L)n−1B

]
. (19)

Now, consider vectors of the form

(−L)rpbkp , (20)

where rp = [dp]kp
, and bkp

denotes the kthp column of the
input matrix B. Let dp be the DL vector of node i, i.e.
dp = di. Then, we have rp = [di]kp = dikp , and from
Proposition 3.4, we know that the ith entry of the vector in
(20) is non-zero and equal to [Arp ]ikp

. Also, for any node
j with [dj ]ki

> [di]ki
we have the jth entry of the vector

in (20) equal to zero. Using this along with the definition of
PMI sequences, we conclude that the n× |D∗| matrix
[

(−L)r1bk1
(−L)r2bk2

. . . (−L)r|D∗|bk|D∗|
]
, (21)

has full column rank since each column has a non-zero entry
that none of the preceding columns have. Note that for every
p ∈ {1, 2, . . . , |D∗|}, we have rp = [dp]kp ≤ n− 1 since the
distance between any two nodes is always smaller than or
equal to n− 1. Hence, each column of the matrix in (21) is
also a column of Γ, and rank of Γ is greater than or equal to
rank of the matrix in (21). Thus, we have rank(Γ) ≥ |D∗|.

The lower bound presented in Theorem 3.5 is tight as
there are infinitely many graphs satisfying it with equality.
Cycle graphs with any two adjacent nodes being leaders,
or path graphs with an end node being a leader are some
examples of such cases. As an illustration of the lower bound
in (18), consider a network with a single leader. In that case,
the DL vectors, di, are one dimensional, hence the longest
PMI sequence starts with 0 and monotonically increases to
the maximum distance from the leader. The length of this

sequence is equal to the maximum distance plus one, which
is equal to the number of cells in the distance partition with
respect to the leader. Thus, for one dimensional case this
lower bound is equal to the one presented in [14]. A couple
of examples with multiple leaders are depicted in Fig. 2.
For those networks, the lower bounds on the dimension of
the controllable subspaces are computed as |D∗1 | = 5, and
|D∗2 | = 6, whereas for both systems the actual ranks of the
controllability matrices are equal to 6. Note that in general
there is not a unique PMI sequence with the maximum
possible length, yet we present sample sequences, D∗1 and
D∗2 , in Fig 2.

By combining the lower bound in Theorem 3.5 and
the upper bound in Theorem 3.2 we obtain the following
corollary for the rank of the controllability matrix for any
connected leader-follower network with the dynamics given
in (6).

Corollary 3.6 Let G = (V,E) be a connected network
with the dynamics given in (6). Let |D∗| be the maximum
length for PMI sequences of DL vectors, and π∗ be the
maximal leader-invariant EEP of G. Then, the rank of the
controllability matrix, Γ, satisfies

|D∗| ≤ rank(Γ) ≤ |π∗|. (22)

IV. COMPUTING THE LOWER BOUND

In this section we present an algorithm to compute the
lower bound mentioned in Theorem 3.5. Note that the main
contribution of this work is the derivation of this lower
bound, not its computation. However, here we also illustrate
one possible way of computing it through a simple algorithm.

Let S = {d1, d2, . . . , dn} be the set of all DL vectors for
a given graph. Given these vectors, let us consider a way of
iteratively generating PMI sequences. Let Cp be the set of
all DL vectors that can be assigned as the pth element of
such a sequence D. According to these definitions, C1 = S.
Once a vector from Cp is assigned as the pth element of
the sequence, dp, and an index kp satisfying (17) is chosen,
Cp+1 can be obtained from Cp as

Cp+1 = Cp \ {d ∈ Cp | [d]kp
≤ [dp]kp

}. (23)

In order to obtain longer sequences, this iteration must
be continued until Cp = ∅. However, in general there are
too many possible sequences that can be obtained this way,
and it is not feasible to find the maximum length for PMI
sequences by searching among all these possibilities. Instead,
we present a necessary condition for a PMI sequence to
have the maximum possible length. This necessary condition
significantly lowers the number of sequences that needs to
be considered.

Proposition 4.1 Let D∗ be a PMI sequence of DL vectors
with the maximum possible length, then its pth entry, dp,
satisfies

[dp]kp = min
d∈Cp

[d]kp . (24)

1981



D∗
1 =

[
0
3

]
,

[
3
0

]
,

[
2
1

]
,

[
1
2

]
,

[
2
2

]
10

0 1
2( )

[
0
3

]

[
1
3

]

[
2
2

]

[
1
2

]

[
2
1

]
[

3
0

]

1

2

3 4

5 6

G1

.

1

2 6

3 5

4

[
0
1

]

[
1
0

]

[
2
1

]

[
3
2

]

[
2
3

]

[
1
2

]

G2

D∗
2 =

[
0
1

]
,

[
1
0

]
,

[
2
1

]
,

[
1
2

]
,

[
2
3

]
,

[
3
2

]
10

0 1
2( )2

Fig. 2. Leader-follower networks, G1 and G2, each having two leaders namely, 1 and 2. Each node has its 2-dimensional distances-to-leaders (DL) vectors,
shown next to itself. For each network, a sample PMI sequence with the maximum possible length is given. For each vector in these sequences, the entry
corresponding to the index satisfying the rule in (17) is circled.

Proof: Assume, for the sake of contradiction, this is
not true. Then, there exists an DL vector dj ∈ Cp such that
[dj ]kp

< [dp]kp
. By the construction of a PMI sequence, dj

can not be added to this sequence after dp. However, dj can
be placed right before dp since its index kp satisfies the rule
of the sequence. Hence, we obtain a longer PMI sequence
by placing dj right before dp leading to the contradiction
that D∗ does not have the maximum possible length.

Note that in obtaining the lower bound, we only care
about the lengths of sequences, not about their actual entries.
Hence, if for any di, dj ∈ Cp we have [di]kp

= [dj ]kp
=

min
d∈Cp

[d]kp
, then we do not care whether di or dj is added to

the sequence as dp since the resulting Cp+1 will be same as
long as kp is chosen as the index satisfying the rule in (17).
Thus, as far as the sequence length is concerned, the only
important decision at each step of the sequence generation
is the choice of kp. Based on this observation, we present
an algorithm that can be used to compute the lower bound.

In this algorithm we define a new variable, C, as the set of
all possible non-empty sets Cp that can be obtained at step
p. Initially this set only includes the set of all DL vectors, S,
since there is a unique C1 namely S. For each such Cp, one
can obtain m (number of leaders) different Cp+1 depending
on the choice of kp. Once, these Cp+1 are computed, we
remove all the previous Cp and store the non-empty Cp+1

sets in C, and continue the iteration. Iterations stop when
C = ∅. We keep a counter variable ` in the algorithm and it
is incremented by one every time C is updated for the next
step. Once we reach C = ∅, the final value of ` gives us the
maximum possible length, |D∗| of PMI sequence.

Algorithm I

1 : initialize: C = {S} and ` = 0
2 : while C 6= ∅
3 : C̄ = ∅
4 : for i = 1 to | C |
5 : for j = 1 to m
6 : C̄(i−1)nl+j = Ci \ {d ∈ Ci | [d]j = min

d∈Ci
[d]j}

7 : end for
8 : end for
9 : C̄ = C̄ \ {C ∈ C̄ | C = ∅}
10 : C = C̄
11 : ` = `+ 1
12 : end while
13 : return `

Algorithm I searches through all possible PMI sequences
satisfying the necessary condition in Proposition 4.1. Hence,
the length of the longest PMI sequence that can be obtained
through these iterations is |D∗|, and we have the following:

Proposition 4.2 Given the DL vectors for any connected
leader-follower network, Algorithm I returns the lower
bound, |D∗|.

For a sample run of Algorithm I, consider the network G1
with two leaders shown in Fig. 2. We can represent the flow
of Algorithm I as a tree structure shown in the Fig. 3. In this
tree diagram, each node at a given level p corresponds to an
element of C̄ that is computed in the line 6 of Algorithm I in
the pth iteration of the while loop. Algorithm will terminate
after the fifth iteration of the while loop as all C̄i will be
empty sets.
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C̄1 =

{[
0
3

]
,

[
1
2

]
,

[
1
3

]
,

[
2
1

]
,

[
2
2

]}
; C̄2 =

{[
1
2

]
,

[
1
3

]
,

[
2
1

]
,

[
2
2

]
,

[
3
0

]}
Level 1:

C̄1 =

{[
0
3

]
,

[
1
2

]
,

[
1
3

]
,

[
2
2

]}
; C̄2 = C̄3 =

{[
1
2

]
,

[
1
3

]
,

[
2
1

]
,

[
2
2

]}
; C̄4 =

{[
2
1

]
,

[
2
2

]
,

[
3
0

]}
Level 2:

C̄1 =

{[
0
3

]
,

[
1
3

]}
; C̄2 = C̄3 = C̄5 =

{[
1
2

]
,

[
1
3

] [
2
2

]}
; C̄4 = C̄6 = C̄7

{[
2
1

]
,

[
2
2

]}
; C̄8 =

{[
3
0

]}
;Level 3:

Level 4: C̄1 = C̄8 = C̄12 = C̄14 = C̄15 = C̄16 = {}; C̄2 = C̄3 = C̄5 = C̄9 =

{[
1
3

]}
; C̄4 = C̄6 = C̄7 = C̄10 = C̄11 = C̄13 =

{[
2
2

]}
;

C̄1

C̄3 C̄4 C̄7 C̄8

C̄3 C̄4 C̄5 C̄6 C̄7 C̄8 C̄9 C̄11 C̄12 C̄13

C̄1 C̄2 C̄3 C̄4 C̄5 C̄6 C̄7 C̄8 C̄9 C̄10 C̄11 C̄12 C̄13 C̄14 C̄15 C̄16 C̄17 C̄18 C̄19

Level 5: C̄1 = C̄2 = C̄3 = · · · = C̄20 = {};

Level 1

Level 2

Level 3

Level 4

Level 5

C̄1 C̄2

C̄1 C̄2

C̄1 C̄2

C̄2

C̄3 C̄4

C̄5 C̄6

C̄14 C̄15 C̄16C̄10

C̄20

Fig. 3. A tree representation for the flow of Algorithm I for the system G1 in Fig. 2. Each time the while loop is completed, the algorithm moves to
the next level. Each node at the same level represents a particular C̄i computed in line 6 of the algorithm in the corresponding iteration of the while loop.
The right child of a node C̄i corresponds to C̄i \ {d ∈ C̄i | [d]1 = min

d∈C̄i

[d]1}, whereas, the left child corresponds to C̄i \ {d ∈ C̄i | [d]2 = min
d∈C̄i

[d]2}.

For example, C̄4 at level 3 is a right child of C̄2 at level 2, and is obtained by deleting all DL vectors with the minimum first index from C̄2 at level 2,

namely
[

1
2

]
and

[
1
3

]
. All C̄i are explicitly given below the tree diagram. In the fifth iteration of the while loop, each computed C̄i is an empty set

and the algorithm terminates. The number of levels in the tree, stored in the variable `, corresponds to the required lower bound.

V. CONCLUSION

In this paper we presented a graph theoretic analysis on
the controllability of leader-follower networks with possibly
multiple leaders. In particular, we presented a tight lower
bound on the rank of the controllability matrix of such
systems with arbitrary interaction graphs. This lower bound
is based on the distances of nodes from the leaders. We
also presented an algorithm to compute this lower bound
for any leader-follower network. This lower bound may find
its applications in various problems such as selecting leaders
in a network that are sufficient to establish a certain level of
controllability.
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