

Uncertainties in thermoelectric materials

Alexandre Cuenat, Pablo Diaz-Chao, Ekaterina Selezneva, Andres Muniz-**Piniella**

Materials Division, National Physical Laboratory, Teddington TW11 0LW, UK

alexandre.cuenat@npl.co.uk

14th of April 2015

Message of today

1. **Every measurement is subject to some uncertainty**

• There is an internationally agreed way to quantify this uncertainty

"Any inference from the particular to the general must be attended with some degree of uncertainty, but this is not the same as to admit that such inference cannot be absolutely rigorous, for the nature and degree of the uncertainty may itself be capable of rigorous expression." R. A. Fisher (1966)

What is NPL What are we doing

NPL: The UK's national standards laboratory

- **For more than a century NPL has developed and maintained the nation's primary measurement standards.** Founded in **1900**
- Over 500 scientists, based in south-west London.
- 36,000 square-metre purpose built measurement building with 388 of the world's most extensive and sophisticated

What we do

- Develop & disseminate UK's measurement standards, ensure they are internationally accepted
- Multidisciplinary R&D and technical services for public and private sector

A long history …

The invention of Radar 1935

Turing and World's first Automatic Computing Engine (ACE) 1946

World's first Caesium Atomic Clock 1955

Packet-switching developed at NPL 1966

Weighing Concorde 1980

Fixing Big Ben 1976

NPL Thermoelectric activity

Our mission,

as defined by our **industrial advisory group**,

is to measure thermal and electrical semiconductor materials properties at a scale below 1 micrometre with enough **accuracy**

to allow the rapid adoption of emerging materials into more efficient commercial devices

- £/watt
- Manufacturing Readiness Level
- **Designing with uncertainty**
- **Thermal and electrical transport in heterogeneous** materials

Nextec

Nanostructured thermoelectric skutterudite

Skutterudite is a cobalt arsenide mineral with a cage structure that has variable amounts of nickel and iron substituting for cobalt with a general formula: $(\mathsf{Co}, \mathsf{Ni}, \mathsf{Fe})$ As $_3$.

- Ambitious and wide ranging objectives covering;
	- Thermoelectric nanomaterials development
	- Development of novel metrology tools
		- 3D Van der Pauw Method
		- Improved "On-Top" 3omega microchips; "Pressed onto" ZTMeter
		- Thin-film TE measurement
		- Microwave cavity measurement
	- Pioneering in module development
		- Pioneering Ring module for cars
		- Planar energy generation modules
		- Planar cooling modules
	- Life cycle impact analysis of nano TE materials

KTH Information and Communication Technology

SIEMENS

1

Materials uniformity and anisotropy

Large scale production requires properties to be kept constant across ingot - similar to doping uniformity in wafer processing

Disc-shaped compacted CoSb₃-Skutterudite (CSIC-SPS 641) cut in 15 cubes. The size of the cubes is for this example $2x2x2$ mm³

All results are within the 95% confidence interval (coverage factor k=2)

Comparison with Siemens- Panco and Fraunhofer

Internal electrical

- Open-circuit voltage: Good agreement
- **Internal electrical resistance:** Unexpected scatter
- Thermal resistance: Expected scatter

Both T hot and T cold are key to comparison

Current Annex VIII Participants

IEA-AMT Thermoelectric Annex

- **Annex lead: Oak Ridge National Laboratory (H. Wang)**
- **USA: GMZ (G. Joshi); Clemson (T. Tritt); Marlow (J. Sharp); GM R&D (J. Salvador); Army Research Laboratory (P. Taylor)**
- **China: SICCAS (S.Q. Bai, L. Chen)**
- **Canada: CANMET(Y.C. Tseng); University of Waterloo (H. Kleinke);**
- **Germany: Fraunhofer IPM (J. König)**
- **United Kingdom: NPL (A. Cuenat)**

- **IEA-AMT members countries:**
	- **Finland: VTT**
	- **Israel:**
	- **Australia:**
	- **Korea: KERI (H. W. Lee)**

Nanoscale traceability of thermoelectric measurements

- **1) Current 5) Thermistor**
- 2) EM force $\overline{4}$ RF oscillation (~1 GHz)
- 3) Kelvin probe Work function

Accuracy + models required:

- feedback loop
- probe convolution
- nanoscale transport …

"Quantitative nanoscale surface voltage measurement on organic semiconductor blends" Cuenat et al, Nanotechnology 23 045703 (2012)

Main problem for AFM is to be **quantitative rather than qualitative**

Metrology for manufacturing 3D integrated circuits 3D Stack

IEG ISO

semr

European Metrology Project Energy 51: Metrology for III-V materials based high efficiency multi junction solar cells

http://projects.npl.co.uk/solcell/

44% efficiency, no need for cooling

Modules metrology

At NPL, we are developing facilities to measure **traceably** the performance of thermoelectric generators (TEG)

"**Traceability**: the result can be related to a reference through a documented unbroken chain of **calibrations,** each contributing to the **measurement uncertainty"**

- **Precision: reproducibility**
- **Accuracy: "true value"**

Low accuracy High precision

Higher accuracy Low precision

High accuracy High precision

Tomorrow's presentation: Better than 0.1% power repeatability

Short review of uncertainties in thermoelectric materials measurement

Tomorrow : modules!

Why is metrology important

Who needs it Why is it needed

- Accurate, consistent measurement enables fair trade
- It guarantees manufacturing quality and supports innovation
- It underpins our safety, our health and our quality of life
- It facilitates environmental management
- It provides for effective regulation
- **WE Allows to rigorously test and evaluate new and** established scientific theories.

Standards are traceable through a chain of comparisons

NPL at the heart of the UK Measurement infrastructure

1,000,000,000s of traceable measurements pa

Why do we need uncertainties

• To meet specifications

- − to "operate within the uncertainty budget"
- − to know the most important (largest) uncertainties –and to reduce them
- To manage risk
- To improve by knowing or reducing measurement uncertainty:
	- − to increase quality, efficiency, utilisation
	- − to reduce energy, waste, re-work

Precision, accuracy and trueness

Error and uncertainty

Seebeck coefficient

International round robins (interlaboratory reproducibility!):

Co0.97Ni0.03Sb³ round robin (2015) $\bar{u}_{s} \rightarrow \pm 6\%$ u_{S} (T ~ 300K) \rightarrow ±~10% $u_{\rm s}$ (350K < T < 600K) $\rightarrow \pm$ ~5% u_{S} (T ~ 700K) \rightarrow ±~10% \rightarrow Conf. level $= 68\%$ France (7), Switzerland (1), Czech Republic (1)

Bi2Te³ round robin (2013)

USA (5), Germany (1), China (1), Canada (3)

"scatter about" \pm 5.5% (\pm 4% for ZEM-3 users)

Seebeck coefficient

Instrument and the measurement protocol uncertainty

- Simultaneous acquisition of T and $V \rightarrow$ differences up to 9%
- Thermal contact:
	- Gas pressure \rightarrow differences up to 6%
	- Contact geometry \rightarrow differences up to 14%
- Thermal stability
- Type of Thermocouple
- Type of multimeter (T and V acquisition)
- Temperature of the reference junction

J. Martin, "Protocols for the high temperature measurement of the Seebeck coefficient in thermoelectric materials." Rev. Sci. Inst. 2012, 83, 065101.

J. Mackey, F. Dynys, A. Sehirlioglu. "Uncertainty analysis for common Seebeck and electrical resistivity measurement systems." Rev. Sci. Inst. 2014, 85(8), 085119. What can we get (if all the previous points are taken into account)?: ZEM-3: +1% / -13% @ High T ±1% @ RT NIST: ±"2.1% " PTB: ±"2.9% " (Cold finger effect)

```
J. Martin, "Apparatus for high temperature measurement of the Seebeck coefficient in thermoelectric materials." Rev. Sci. Inst. 2012, 83, 065101.
```
Seebeck coefficient

Therefore:

- Reproducibility (Round robins) : ~6%
- Instrumental: $\sim +1/-13\%$

Combined Uncertainty $\sim +6/ -14.3\%$

(68% conf. level)

IEA results:

Seebeck Coefficient Lab #1

International round robins (only reproducibility!):

Co0.97Ni0.03Sb³ round robin (2015)

France (7), Switzerland (1), Czech Republic (1)

$$
u_{\rho} (300 \text{ K} < T < 400 \text{ K}) \rightarrow \pm \text{-7\%} \mid u_{\rho} (500 \text{ K} < T < 750 \text{ K}) \rightarrow \pm \text{-9\%} \mid \cdot \text{-1\%} \mid u_{\rho} (500 \text{ K} < T < 750 \text{ K}) \rightarrow \pm \text{-9\%} \mid \cdot \text{-1\%} \mid u_{\rho} (500 \text{ K} < T < 750 \text{ K}) \rightarrow \pm \text{-9\%} \mid u_{\rho} (500 \text{ K} < T < 750 \text{ K}) \rightarrow \pm \text{-9\%} \mid u_{\rho} (500 \text{ K} < T < 750 \text{ K}) \rightarrow \pm \text{-9\%} \mid u_{\rho} (500 \text{ K} < T < 750 \text{ K}) \rightarrow \pm \text{-9\%} \mid u_{\rho} (500 \text{ K} < T < 750 \text{ K}) \rightarrow \pm \text{-9\%} \mid u_{\rho} (500 \text{ K} < T < 750 \text{ K}) \rightarrow \pm \text{-9\%} \mid u_{\rho} (500 \text{ K} < T < 750 \text{ K}) \rightarrow \pm \text{-9\%} \mid u_{\rho} (500 \text{ K} < T < 750 \text{ K}) \rightarrow \pm \text{-9\%} \mid u_{\rho} (500 \text{ K} < T < 750 \text{ K}) \rightarrow \pm \text{-9\%} \mid u_{\rho} (500 \text{ K} < T < 750 \text{ K}) \rightarrow \pm \text{-9\%} \mid u_{\rho} (500 \text{ K} < T < 750 \text{ K}) \rightarrow \pm \text{-9\%} \mid u_{\rho} (500 \text{ K} < T < 750 \text{ K}) \rightarrow \pm \text{-9\%} \mid u_{\rho} (500 \text{ K} < T < 750 \text{ K}) \rightarrow \pm \text{-9\%} \mid u_{\rho} (500 \text{ K} < T < 750 \text{ K}) \rightarrow \pm \text{-9\%} \mid u_{\rho} (
$$

$$
\rightarrow \frac{\boxed{\overline{u}_{\scriptscriptstyle S} \rightarrow \pm 7.3\%}}{\boxed{\overline{u}_{\scriptscriptstyle S} \rightarrow \pm 7.3\%}}
$$

Conf. level $= 68\%$

Normalised resistivity (no geometrical factor) $\rho(300 K) = \frac{R(1)}{R(300K)}$ $\rho(T)$ $\rho(300 K)$ = $R(T)$ $R(300K)$ $\bar{u}_s \rightarrow \pm 3.7\%$ Conf. level $= 68\%$

Bi2Te³ round robin (2013)

USA (5), Germany (1), China (1), Canada (3)

$$
\text{``scatter about''} \boxed{\pm 12.5\%}
$$

Resistivity:

Geometrical factors:

- Distance between probes
- Probe size
- Section of the sample
- Calliper/Micrometer resolution

Voltage factors:

- Multimeter(s) accuracy
- Offset drift

Statistical factors:

- **Repeatability**
- **Reproducibility**

Most important factor!

Therefore:

- Reproducibility (Round robins) : \sim 7.3%
- Instrumental: \sim 7%

If the main factor is measuring the dimensions of the sample…

How should we measure geometrical dimensions?

The beginners guide to uncertainty of measurements

Callipers and micrometers

No. 11 No. 40 No. 30 Fundamental good practice in dimensional metrology

http://www.npl.co.uk/publications/guides/

Absolute method:

- **No** reference sample
- \rightarrow Heat flux = I·V \rightarrow Guarded methods!
- Guarded hot plate: $\pm 2\%$ @ RT; $\pm 5\%$ @ HT (ASMT-C177; ISO 8302) NPL

Non-absolute methods:

- **Need** reference sample
- Thin heater: $\pm 3\%$
- Heat flow meter: $\pm 2\%$
- Guarded comparative longitudinal: \pm 5%

$$
+\n\n
$$
\geq 4\%
$$
\n
$$
+\n\nreference sample!
$$
$$

Thermal diffusivity, Cp and density

- Laser flash: ~2%
- Heat capacity: ~1%
- Density: $\leq 1\%$

Sample requirements and data corrections needed:

- Homogeneous of the sample
- Correction for thermal expansion
- Flat sample
- **Parallel faces**
- Squareness of the sample
- Constant density in the T range

Only geometrical can $be +5%$

Round robins (reproducibility):

Co_{0.97}**Ni**_{0.03}**Sh**₃ round robin (2015)
\nFrance (7), Switzerland (1), Czech Republic (1)
\n
$$
\downarrow \text{Normalised conductivity} \xrightarrow{\kappa(T)} \overline{u_S} \rightarrow \pm 10.8\%
$$
\n(no geometrical factor)
\n
$$
\kappa(300 \text{ K}) \rightarrow \overline{u_S} \sim \pm 5.3\%
$$
\nASTM E1228: round robin
\n
$$
\boxed{\overline{u_S} \rightarrow \pm 6.8\%}
$$

Therefore:

- Reproducibility (Round robins) : $\geq 7\%$
- Instrumental: $\geq 2\%$

Combined Uncertainty $\gtrsim 7.3\%$ (Guarded hot plate)

Combined Uncertainty ≥ 10% methods (Other \rightarrow + ref. sample)

IEA results: Specific heat for n-type half-Heusler

Figure of merit

Seebeck: $U \gtrsim +6/ -14\%$ Resistivity: $U \gtrsim 10\%$ Thermal conductivity: $U \gtrsim 7\%$

 \rightarrow ZT: U \ge +15/-23 %

(Uncertainty in T not included)

Thermal conductivity: $U \ge 10\%$ \rightarrow ZT: $U \ge +17/25\%$

(Uncertainty in T not included)

Improving uncertainty

- Instrumental: more accurate equipment
	- smaller instrumental error
	- smaller random error (**better repeatability and reproducibility)**
-
- Repeatability $\vert \rightarrow \vert$ take more measurements!
- Reproducibility $| \to$ do more experiments!

Key points to remember

- **Every measurement is subject to some uncertainty.**
- *Guide to the Expression of Uncertainty in Measurement freely available on BIPM website http://www.bipm.org/en/publications/guides/gum.html*
- **A measurement result is incomplete without a statement of the uncertainty.**
- **When you know the uncertainty in a measurement, then you can judge its fitness for purpose.**
- **Understanding measurement uncertainty is the first step to reducing it**
- **Material properties will carry uncertainties in permit of the Material String String String Termity** ±**25%**
- **Precision vs trueness**

alexandre.cuenat@npl.co.uk

"Measure thrice, cut once'. You can reduce the risk of making a mistake by checking the measurement a second or third time.