
IJRECE VOL. 8 ISSUE 3 JULY.-SEPT. 2020 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 292 | P a g e

 A Learning-based SEPDA model for Detection and

Prevention of SQLI Attacks inside the DBMS
SAYALI TELI, PRATIMA MORAJKAR, TEJAS PENDHARKAR, TANMAYEE KULKARNI

 BE Students, Department of Information Technology, Marathwada Mitra Mandal's College of

Engineering, Pune.

PREETI JOSHI

 Assistant Professor, Department of Information Technology, Marathwada Mitra Mandal's College

of Engineering, Pune.

Abstract— Database applications are used to search, sort,

calculate, report and share information. Databases can also

contain code to perform mathematical and statistical

calculations on the data to support queries submitted by users.

The grocery store, bank, video rental store and favourite

clothing store all use databases to keep track of customer,

inventory, employee and accounting

information. Databases allow for data to be stored quickly and

easily and are used in many aspects of your daily life. SQL

injection is a code injection technique, used to attack data-

driven applications, in which malicious SQL statements are

inserted into an entry field for execution (e.g., to dump

the database contents to the attacker). The most common

cause of database vulnerabilities is a lack of due care now they

are deployed. In this paper, we propose SEPDA(Self-

Protecting to the data inside DBMS), a mechanism for DBMS

attack prevention, which can also assist on the identification of

the vulnerabilities in the applications. To implement SEPDA

mechanism, we develop an online shopping application that

consists of list of cloths displayed in various materials and

designs. The user may browse through these products as per

categories. If the user likes a product, he/she can add it to

his/her shopping cart. Once user wishes to checkout, he must

register on the site first. Once the user makes a successful

transaction admin will get report of his bought products. The

objective of this project is to develop a secure path for

transaction done by the user. Using AES (Advanced

Encryption Standard) encryption technique, the transaction

and user account details can be made secured. AES encryption

is also used to encrypt the user’s card and password

information while transaction.

Keywords— SQL injection, Attack Detection, Attack

Prevention, DBMS, Machine Learning

.

I. INTRODUCTION

SQL Injection is "a code injection technique that exploits a

security vulnerability occurring in the database layer of an

application". In other words it's SQL code injected in as user

input inside a query. SQL Injections can manipulate data

(delete, update, add etc) and corrupt or delete tables of the

database. It is used to attack data-driven application. Lack of

input validation is a major vulnerability behind dangerous web

application attacks. By taking advantage of this, attacker scan

injects their code into applications to perform malicious tasks.

In which malicious SQL statements are into an entry field for

execution. This is a method to attack web applications that

have a data repository. The attacker would send a specially

crafted SQL statement that is designed to cause some

malicious action. Incorrectly validated or non-validated string

literals are concatenated into a dynamic SOL statement and

interpreted as code by the SQL engine. We propose modifying

– “hacking” – DBMSs to detect and block attacks in runtime

without programmer intervention. Self-Protecting to the data

inside DBMS (SEPDA). The project comprises of an online

shop that allows users to check for the different categories of

books available at the online store and can purchase books

online. The project consists of list of books displayed in

various categories. The user may browse through these

products as per categories. If the user likes a book, he/she can

add it to his/her shopping cart. Once user wishes to checkout,

he must register on the site first. He can then login using same

id password next time. Now user may pay through a Card.

Once the user makes a successful transaction admin will get

report of his bought products. Here we use HTML, CSS, JSP,

and JavaScript to make the entire frontend. The middle tier or

code behind model is designed in JAVA and SQL Serves as a

backend to store product data thus the online shopping project

brings an entire book shop online and makes it easy for both

buyer and seller to make deals. Admin can add data about

their subscribers and it will be viewed by user. The

highlighted part here is encryption of user credentials. The

email id and password will be encrypted using AES

(Advanced Encryption Standard) algorithm and then will be

stored in database.

II. LITERATURE SURVEY

In [1] named “SEPTIC: Detecting Injection Attacks and

Vulnerabilities Inside the DBMS” IEEE Transaction paper

2019 proposed by authors named as NunoNeves, Miguel

Beatriz present SEPDA (Self protecting databases from

attacks) mechanism which is used in 3 different modes such as

training, detection and prevention. In training mode the

application is trained by firing large number of queries without

performing any malicious code. The result of this is stored in

IJRECE VOL. 8 ISSUE 3 JULY.-SEPT. 2020 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 293 | P a g e

query models. For every query a ID is generated. For SQLI,

attacks are identified by comparing queries with query model

that is the queries stored in query model. If mismatch is found

the query is aborted before execution. SEPDA is implemented

by a module inside the DBMS, allowing every query to be

checked for attacks. Comparing QS with QM corresponds to

first two steps of the detection process. For detection purpose

queries are evaluated at the end of the dbms by sematic

matching before the query is executed. In prevention mode

query processing is aborted, in detection mode query is

executed. SETIC also includes incremental method which is

used in last two modes that is in detection and prevention

mode.

In [2] named “Detecting, Data Leaks via SQL Injection

Prevention on an E-Commerce” International Journal of

Scientific & Engineering Research,2018 proposed by authors

named as Karan Ray, Nitish Pol present an attempt has been

made to develop an online shop that allows users to check for

different cloths for women’s available at the online store and

can purchase cloths online. The user may browse through

these products as per categories. If the user likes a product,

he/she can add it to his/her shopping cart. Once user wishes to

checkout, he must register on the site first. Once the user

makes a successful transaction admin will get report of his

bought products. The objective of this project is to develop a

secure path for transaction done by the user. Using AES

(Advanced Encryption Standard) encryption technique, the

transaction and user account details can be made secured. AES

encryption is also used to encrypt the user’s card and

password information while transaction.

 In [3] named “SQL Injection Detection using Machine

Learning” International conference, 2014 proposed by authors

named as Anamika Joshi, Geetha V present that the web is the

firmest and most common medium of communication and

business interchange. The attackers make use of these loop

holes to gain unauthorized access by performing various

illegal activities. This may result in theft, leak of personal data

or loss of property. The proposed classifier uses combination

of Naïve Bayes machine learning algorithm and Role Based

Access Control mechanism for detection our approach detects

malicious queries with the help of classifier. The addition of

another parameter for RBAC has increased the accuracy of

detection.

In [4]named “New Strategy for Mitigating of SQL Injection

Attack” International Journal of Computer Applications,2016

proposed by authors named as Ammar Alazab, Ansam

Khresiat present a successful SQLIAs can have serious

consequences to the victimized organization that include

financial lose, reputation lose, compliance and regulatory

breach. To this end, we propose an approach based on

negative tainting along with SQL keyword analysis for

detecting and preventing SQLIA. We were able to

successfully distinguish between legitimate SQL queries and

malicious ones that had adopted various evasion methods such

as encoding, comments and white space evasion methods as

well as logical expressions and string techniques that were not

captured by commercially available detection engines.

In [5] named “Preventing SQL Injection Attack Based on

Machine Learning” International Conference paper, 2014

proposed by authors named Eun Hong Cheon, Zhongyue

Huang from this paper we studied the scenario of the different

types of attacks with descriptions and examples of how attacks

of that type could be performed and their detection &

prevention schemes. It also contains strengths and weaknesses

of various SQL injection attacks. A proposed a new approach

that is completely based on the hash method of using the SQL

queries in the web-based environment, which is much secure

and provide the prevention from the attackers SQL.

 Table 1:Literature Survey

III. SYSTEM OVERVIEW

We have developed a web application in which work of both

user and admin is mandatory. For user, to browse the list of

products and to purchase the product it is essential to create a

account or register on the application. Once user registers the

user credentials are encrypted and stored directly in the

database. Admin has to provide the user easy access to online

shopping. The overall focus is on securing user details and the

system from being attacked.

IJRECE VOL. 8 ISSUE 3 JULY.-SEPT. 2020 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 294 | P a g e

IV. SYSTEM ARCHITECTURE

 Fig 1: System architecture

V. METHODOLOGY

In this section ,we propose a method for detecting and

preventing SQL injection .Our approach detects the SQLIAs

using a well known method known as SEPTIC(Self-Protecting

database from attacks) which is combined with two algorithms

Naïve Bayes and AES respectively, to increase the efficiency

and security concerns. Machine Learning methods provide

highly accurate results on test data. They also give leverage to

larger data sets which is crucial factor in our case, because

there are many different kinds of attack for which a particular

pattern cannot be dug. The whole process from encryption of

the user credentials to the prevention of attacks is termed as

SEPDA(Self-Protecting to the data inside the DBMS).SEPDA

works as following

1. Learning Method

 Training mode:-

 In this mode database is fired with multiple numbers of

queries which are not attacks and is stored in QM. Each query

has a associated QID.

Whenever a query is fired the query is parsed, validated .In

normal operation, SEPDA generates a QS and a ID for

incoming request. For attack detection the QS is compared with

the QM that was previously learned for that ID AND then

looking for dissimilarities between them. A SQLI attack is

found if there is no match.

Notation:

QS:-Query Structure

QM:-Query Model

QID:-Query Identifier

2. Prevention of Attack

When a new query is validated with the incremental

method and if no match is found the attack is aborted, i.e the

query is dropped thus preventing the system from attack .Once

the attack is detected ,the information as the type of attack and

the ID of the attacker is stored in the log file created in the

database.

3. Encryption of User Credentials

As soon as the user registers on the application, user

credentials such as user name and password are encrypted and

stored directly in the database. This algorithm is combined with

SEPTIC method for security purpose.AES algorithm uses 126

bit key.

Input:

1. Generate an Initialization Vector (IV)

2. Generating or Loading a Secret Key.

3. Creating the Cipher.

4. Encrypting a String.

5. Decrypting Back to a String.

Output: Inserting the data into the database into an encrypted

format.

KeyExpansion(byte key[16], word w[44])

{

word temp

for(i = 0; i< 4; i + +)

w[i] = (key[4*i], key[4*i + 1], key[4*i + 2], key[4*i + 3]);

for(i = 4; i< 44; i + +)

{

temp = w[i – 1];

if (i mod 4 = 0)

temp = SubWord(RotWord(temp)) ⊕Rcon[i/4];

w[i] = w[i-4] ⊕ temp

}

}

• The key is copied into the first 4 words of the expanded key

 • Each subsequent word w[i] depends upon w[i-1] and w[i-4]

 • For words whose positions are NOT a multiple of 4 w[i] =

w[i-4] ⊕ w[i-1]

 •Otherwise w[i] = w[i-4] ⊕SubWord(RotWord(temp))

⊕Rcon[i/4]

IJRECE VOL. 8 ISSUE 3 JULY.-SEPT. 2020 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 295 | P a g e

4. Naive Bayes

Detection of SQL Injection attacks using a machine learning

algorithm called Naïve Bayes Naïve Bayes is a classification

machine learning algorithm that assumes that a particular to

and is independent of other all other incident is unrelated

incidents. Naïve Bayes classifier is used to classify between

malicious and non-malicious SQL queries.

Naïve Bayes(Test_Data_Dir, Training_Data_Dir)

{

For(each test file in test data directory)

For each class

Map<class, probability>ProbabilityMap;

For each word in test file

Wordprobability=Probability of occurance of that word in the

class

ProbabilityMap.put(className,probability*Wordprobability)

Class "TestRecord"

Holds the Test record as an object.

* String RecordId Filename of the Test File

* String fullRecord Test record as a single string.

* ArrayList<String> words words in the test record.

Class "OccurrenceProbabilties"

Used as a cache to store the probabilities of words associated

with a particular class.

* String classNameClassname

* Hashmap<String,Double> Probability of the each word

Class "MemoryFile"

Holds the training record as an object.

* String className Class name of the training file

* ArrayList<String> content Words in the class.

}

Flow of the Code:

1. Read each test file,remove stopwords, perform stemming

and load in to objects.

2. Read each training file, remove stopwords, perform

stemming and load in to objects.

3. For each test file, for each class name, for each word;

check if the probability already exist in cache.

4. Else compute the probability of each word and multiply

them to get overall probability for the test file.

5. Check which probability has maximum among the classes

for the test file which gives the class value of the file.

5. Storing details in Log file

A specific log file is generated in the database to keep the

track of possible and newly attacks detected. This log file

contains information of the type of attack and the ID of the

attacker. This also increases the security concern as the

information can be viewed at admin side .

VI. RESULT

Experiments are done by a personal computer with a

configuration: Intel (R) Core (TM) i3-2120 CPU @ 3.30GHz,

4GB memory, Windows 7, MySQL 5.1 backend database and

jdk 1.8. The application is web application used tool for

design code in Eclipse and execute on Tomcat server.

According to technology vendor application security the top

threat related to databases are SQL injection can be prevented

by the new form of mechanism of SEPTIC it also gives an

idea of catching attacks inside the DBMS and identifying the

vulnerabilities in an application code, when attacks were

detected. In future we can use the mechanism to prevent

business related confidential data so that no one can try to gain

credentials of others and exploit the victim

1. Database: Attacks detected and stored into the

database according to the type of attack.

 Fig 2:Attacks detected and type of attack

2. Data is also stored into the log file and tells which

type of attack it is.

 Fig 3: Attacks detected and Data is also Stored into

the log file

3. Database store users password in encrypted format

using AES Algorithm.

Fig 4: Users password in encrypted format is been stored

in database for security

 Algorithm Accuracy

Existing

Algorithm

Previous

Semantic

Analysis

69%

IJRECE VOL. 8 ISSUE 3 JULY.-SEPT. 2020 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 296 | P a g e

Proposed

Algorithm

SEPDA Method 93%

 Fig 5: Accuracy associated with algorithm for

 encrypting data

Fig 6:Existing and Proposed Algorithm

 VII. CONCLUSION

In this paper ,we have proposed a method (SEPDA) for

detection and prevention of SQL Injection attacks inside the

DBMS based on a well known SEPTIC method combined

with AES and Naive Bayes for extra security concerns. The

approach of using machine learning algorithm has increased

accuracy of detection. This method also provided a entry in

the log file whenever it detects malicious activity(attack). The

mechanism was experimented by adding vulnerabilities on

purpose in the application code. Experimenting this shows

increase in accuracy.

VIII. REFERENCES

[1] NunoNeves, Miguel Beatriz.” SEPTIC: Detecting Injection

Attack and Vulnerabilities inside the DBMS.

IEEE transaction paper(2019).

[2] Karan Ray, Nitish Pol, Suraj Singh Guided by Prof.

SUVARNA ARANJO , “Detecting Data Leaks via SQL

Injection Prevention on an E-Commerce”, International

Journal of Scientific & Engineering Research Volume 9, Issue

3, March-2018.

[3]Anamika Joshi, Geetha V “SQL Injection detection using

machine learning”, 2014 International Conference on Control,

Instrumentation, Communication and Computational

Technologies (ICCICCT)

[4] AmmarAlazab Al-Balqa, AnsamKhresiat, “New Strategy

for Mitigating of SQL Injection Attack”, International Journal

of Computer Applications Volume 11, November 2016.

[5] Eun Hong Cheon, Zhongyue Huang, Preventing SQL

Injection Attack Based on Machine Learning,

International conference(2014)

[6] MayankNamdev , FehreenHasan, Gaurav Shrivastav, “A

Novel Approach for SQL Injection Prevention Using Hashing

& Encryption (SQL-ENCP)”, (IJCSIT) International Journal

of Computer Science and Information Technologies, Vol. 3,

2012.

[7] Dimitris Mitropoulos, PanosLouridas,† Michalis

Polychronakis,‡ and Angelos D. Keromytis, “Defending

Against Web Application Attacks: Approaches, Challenges

and Implications”, IEEE Transactions on Dependable and

Secure Computing Volume: 16 , Issue: 2 , 2019.

[8]S.W.Boyd and AD.Keromytis, "SQLrand: Preventing SQL

Injection Attacks," Proc. the 2nd Applied Cryptography and

Network Security (ACNS)

Conference, Jun 2004.

[9] M.Howard and D.LeBlanc, “Writing Secure Code for

Windows Vidta,1sted, Microsoft Press

Redmond,WA,USA,2007.

[10] W.G.Halfond and Aorso, “AMNESIA Analysis and

Monitoring for Neutralizing SQL Injection Attacks,” Proc.

IEEE and ACM International Conference on Automatic

Software Engineering (ASE 2005), Long Beach, CA, USA,

Nov 2005.

https://ieeexplore.ieee.org/xpl/conhome/6973086/proceeding
https://ieeexplore.ieee.org/xpl/conhome/6973086/proceeding
https://ieeexplore.ieee.org/xpl/conhome/6973086/proceeding
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8858
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8858
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=8666010

