Math 3331 - ODEs - Sample Final Solutions

1. $\frac{d y}{d x}=(\ln y-\ln x+1) \frac{y}{x}$.

Solution: The equation is homogeneous. We re-write it as

$$
\frac{d y}{d x}=\left(\ln \frac{y}{x}+1\right) \frac{y}{x}
$$

If we let $y=x u$ so $\frac{d y}{d x}=x \frac{d u}{d x}+u$ then

$$
x \frac{d u}{d x}+u=(\ln u+1) u
$$

which separates

$$
\frac{d u}{u \ln u}=\frac{d x}{x} \Rightarrow \ln \ln u=\ln x+\ln c \Rightarrow u=e^{c x}
$$

Therefore,

$$
\frac{y}{x}=e^{c x} \quad \text { or } \quad y=x e^{c x}
$$

2. $x \frac{d y}{d x}+2 y=x^{2} y^{2}$.

Solution: The equation is Bernoulli, so we put in standard form

$$
\begin{aligned}
x \frac{d y}{d x}+2 y & =x^{2} y^{2} \\
\frac{d y}{d x}+\frac{2}{x} y & =x y^{2} \\
\frac{1}{y^{2}} \frac{d y}{d x}+\frac{2}{x} \frac{1}{y} & =x
\end{aligned}
$$

We let $u=\frac{1}{y}$ so $\frac{d u}{d x}=-\frac{1}{y^{2}} \frac{d y}{d x}$ and substituting gives

$$
\begin{aligned}
-\frac{d u}{d x}+\frac{2}{x} u & =x \\
\frac{d u}{d x}-\frac{2}{x} u & =-x, \quad\left(\text { the integrating factor is } \mu=\frac{1}{x^{2}}\right) \\
\frac{d}{d x}\left(\frac{1}{x^{2}} u\right) & =-\frac{1}{x}
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
\frac{1}{x^{2}} u & =c-\ln |x| \\
u & =x^{2}(c-\ln |x|) \\
\frac{1}{y} & =x^{2}(c-\ln |x|) \\
y & =\frac{1}{x^{2}(c-\ln |x|)}
\end{aligned}
$$

3. $\frac{d y}{d x}-y=2 e^{x}, \quad y(0)=3$.

Solution: The equation is linear and already in standard form. The integrating factor is $\mu=e^{-x}$. Thus,

$$
\begin{aligned}
\frac{d}{d x}\left(e^{-x} y\right) & =2 \\
e^{-x} y & =2 x+c, \text { from the IC } c=3 \\
e^{-x} y & =2 x+3 \\
y & =(2 x+3) e^{x}
\end{aligned}
$$

4. $\frac{d y}{d x}=\frac{1-2 x y^{2}}{1+2 x^{2} y^{\prime}}, \quad y(1)=1$.

Solution: The equation is exact. The alternate form is

$$
\left(2 x y^{2}-1\right) d x+\left(2 x^{2} y+1\right) d y=0
$$

and it is an easy matter to verify

$$
\frac{\partial M}{\partial y}=4 x y=\frac{\partial N}{\partial x}
$$

so z exists such that

$$
\begin{aligned}
& \frac{\partial z}{\partial x}=M=2 x y^{2}-1 \Rightarrow z=x^{2} y^{2}-x+A(y) \\
& \frac{\partial z}{\partial y}=N=2 x^{2} y+1 \Rightarrow z=x^{2} y^{2}+y+B(x)
\end{aligned}
$$

so we can choose A and B giving $z=x^{2} y^{2}-x+y$ and the solution as $x^{2} y^{2}-x+y=c$. Since $y(1)=1$, this give $c=1$ and the solution $x^{2} y^{2}-x+y=1$.
2. Solve the following

$$
\begin{equation*}
y^{\prime \prime}-5 y^{\prime}+6 y=0, \quad y(0)=1, \quad y^{\prime}(0)=0 \tag{i}
\end{equation*}
$$

Soln: The CE is $m^{2}-5 m+6=0$ so $(m-2)(m-3)=0$ giving $m=2, m=3$. The solution is

$$
y=c_{1} e^{2 x}+c_{2} e^{3 x}
$$

The IC's gives $c_{1}+c_{2}=1,2 c_{1}+3 c_{2}=0$. Solving gives $c_{1}=3, c_{2}=-2$ leading to the solution

$$
y=3 e^{2 x}-2 e^{3 x}
$$

(ii) $y^{\prime \prime}+2 y^{\prime}+10 y=0, \quad y(0)=-1, \quad y^{\prime}(0)=4$

Soln: The CE is $m^{2}+2 m+10=0$ giving $m=-1 \pm 3 i$. The solution is

$$
y=c_{1} e^{-x} \cos 3 x+c_{2} e^{-x} \sin 3 x
$$

The IC's gives $c_{1}=-1,-c_{1}+3 c_{2}=4$. Solving gives $c_{1}=-1, c_{2}=1$ leading to the solution

$$
y=-e^{-x} \cos 3 x+e^{-x} \sin 3 x
$$

(iii) $4 y^{\prime \prime}-4 y^{\prime}+y=0, \quad y(0)=0, \quad y^{\prime}(0)=1$

Soln: The CE is $4 m^{2}-4 m+1=0$ so $(2 m-1)(2 m-1)=0$ giving $m=1 / 2, m=1 / 2$. The solution is

$$
y=c_{1} e^{1 / 2 x}+c_{2} x e^{1 / 2 x}
$$

The IC's gives $c_{1}=0, c_{2}=1$ leading to the solution

$$
y=x e^{1 / 2 x}
$$

3. (i) Solve

$$
\left(x^{2}-2 x\right) y^{\prime \prime}-\left(x^{2}-2\right) y^{\prime}+2(x-1) y=0
$$

given that $y_{1}=x^{2}$ is one solution.

Soln: Let $y=x^{2} u$ so $y^{\prime}=x^{2} u^{\prime}+2 x u$ and $y^{\prime \prime}=x^{2} u^{\prime \prime}+4 x u^{\prime}+2 u$. Substituting and simplifying gives

$$
x(x-2) u^{\prime \prime}-\left(x^{2}-4 x+6\right) u^{\prime}=0
$$

Letting $u^{\prime}=v$ so $u^{\prime \prime}=v^{\prime}$ gives

$$
(x(x-2)) v^{\prime}-\left(x^{2}-4 x+6\right) v=0
$$

Separating gives

$$
\frac{d v}{v}=\frac{x^{2}-6 x+4}{x(x-2)}
$$

which integrates to

$$
v=\frac{(x-2) e^{x}}{x^{3}}
$$

Since $u^{\prime}=v$ this integrates once more giving

$$
u=\frac{e^{x}}{x^{2}}
$$

and since $y=x^{2} u$ we obtain the second solution $y=e^{x}$. Thus the general solution is

$$
y=c_{1} x^{2}+c_{2} e^{x}
$$

5. (ii) Solve

$$
x y^{\prime \prime}-(x+1) y^{\prime}+y=0
$$

given that $y_{1}=e^{x}$ is one solution.
Soln: Let $y=e^{x} u$ so $y^{\prime}=e^{x} u^{\prime}+e^{x} u$ and $y^{\prime \prime}=e^{x} u^{\prime \prime}+2 x^{x} u^{\prime}+e^{x} u$. Substituting and simplifying gives

$$
x u^{\prime \prime}+(x+1) u^{\prime}=0
$$

Letting $u^{\prime}=v$ so $u^{\prime \prime}=v^{\prime}$ gives

$$
x v^{\prime}+(x-1) v=0 .
$$

Separating gives

$$
\frac{d v}{v}=\frac{1-x}{x}
$$

which integrates to

$$
v=x e^{-x}
$$

Since $u^{\prime}=v$ this integrates once more giving

$$
u=-(x+1) e^{-x}
$$

and since $y=e^{x} u$ we obtain the second solution $y=-(x+1)$. Thus the general solution is

$$
y=c_{1} e^{x}+c_{2}(x+1)
$$

noting that we absorbed the -1 into \mathcal{c}_{2}.
4. Solve using any method (reduction of order, method of undetermined coefficients or variation of parameters)

$$
\text { (i) } y^{\prime \prime}-6 y^{\prime}+9 y=e^{3 x}
$$

The homogeneous equation is

$$
y^{\prime \prime}-6 y^{\prime}+9 y=0
$$

The characteristic equation for this is $m^{2}-6 m+9=0$ giving $m=3,3$. Thus, the complementary solution is

$$
y=c_{1} e^{3 x}+c_{2} x e^{3 x}
$$

If we were to use variation of parameters

$$
\begin{equation*}
y=u e^{3 x}+v x e^{3 x} . \tag{1}
\end{equation*}
$$

If we were to use reduction of order,

$$
\begin{equation*}
y=u e^{3 x} \tag{2}
\end{equation*}
$$

We will do both.

Variation of parameters

Taking the first derivative, we obtain

$$
y^{\prime}=u^{\prime} e^{3 x}+3 u e^{3 x}+v^{\prime} x e^{3 x}+(3 x+1) v e^{3 x}
$$

from which we set

$$
\begin{equation*}
u^{\prime} e^{3 x}+v^{\prime} x e^{3 x}=0 \tag{3}
\end{equation*}
$$

leaving

$$
\begin{equation*}
y^{\prime}=3 u e^{3 x}+(3 x+1) v e^{3 x} \tag{4}
\end{equation*}
$$

Calculating one more derivative gives

$$
\begin{equation*}
y^{\prime \prime}=3 u^{\prime} e^{3 x}+9 u e^{3 x}+(3 x+1) v^{\prime} e^{3 x}+(9 x+6) v e^{3 x} . \tag{5}
\end{equation*}
$$

Substituting (1), (4) and (5) into the original ODE and canceling gives

$$
\begin{array}{rlrl}
3 u^{\prime} e^{3 x} & +9 u e^{3 x}+(3 x+1) v^{\prime} e^{3 x} & +(9 x+6) v e^{3 x} \\
& -18 u e^{3 x} & -6(3 x+1) v e^{3 x} \\
& +9 u e^{3 x} & & +9 x v e^{3 x}=e^{3 x} \tag{6}
\end{array}
$$

or

$$
\begin{equation*}
3 u^{\prime} e^{3 x}+(3 x+1) v^{\prime} e^{3 x}=e^{3 x} . \tag{7}
\end{equation*}
$$

Equations (3) and (7) are two equations for u^{\prime} and v^{\prime} which we solve giving

$$
u^{\prime}=-x, \quad v^{\prime}=1
$$

Integrating each respectively gives

$$
u=-\frac{1}{2} x^{2} ; v=x
$$

and from (1) we obtain the particular solution

$$
y=\frac{1}{2} x^{2} e^{3 x}
$$

This then gives rise to the general solution

$$
y=c_{1} e^{3 x}+c_{2} x e^{3 x}+\frac{1}{2} x^{2} e^{3 x}
$$

Reduction of Order
Taking the first derivative of (2), we obtain

$$
\begin{equation*}
y^{\prime}=u^{\prime} e^{3 x}+3 u e^{3 x} \tag{8}
\end{equation*}
$$

and one more derivative

$$
\begin{equation*}
y^{\prime \prime}=u^{\prime \prime} e^{3 x}+6 u^{\prime} e^{3 x}+9 u e^{3 x} . \tag{9}
\end{equation*}
$$

Substituting (2), (8) and (9) into the original ODE and canceling gives

$$
\begin{align*}
u^{\prime \prime} e^{3 x} & +6 u^{\prime} e^{3 x}
\end{align*}+9 u e^{3 x}-6 u^{\prime} e^{3 x}-18 u e^{3 x} . ~\left(9 u e^{3 x}=e^{3 x}\right.
$$

or

$$
\begin{equation*}
u^{\prime \prime} e^{3 x}=e^{3 x} \tag{11}
\end{equation*}
$$

After we cancel the $e^{3 x}$, we integrate twice giving $u=\frac{1}{2} x^{2}$ leading to the solution

$$
\begin{equation*}
y=\frac{1}{2} x^{2} e^{3 x} \tag{12}
\end{equation*}
$$

and the general solution as given before.
4. (ii) Solve using any method (reduction of order, method of undetermined coefficients or variation of parameters)

$$
\text { (ii) } y^{\prime \prime}-y^{\prime}=2 x-3 x^{2}
$$

Soln: The homogeneous equation is $y^{\prime \prime}-y^{\prime}=0$ The associated CE is $m^{2}-m=0$ giving $m=0,1$. The two independent solutions are $y_{1}=e^{0}=1$ and $y_{2}=e^{x}$. Thus, the complementary solution is

$$
y=c_{1}+c_{2} e^{x}
$$

Here we will use the method of underdetermined coefficients. One would guess a particular solution of the form $y_{p}=A x^{2}+B x+C$ but since $y=1$ is a part of the complementary solution we need to bump the particular solution up by one. Thus, we try $y_{p}=A x^{3}+B x^{2}+C x$. Substituting into the DE and comparing coefficients gives

$$
\begin{aligned}
\left.x^{2}\right) & -3 A & =-3 \\
x) & 6 A-2 B & =2 \\
1) & 2 B-C & =0
\end{aligned}
$$

Solving gives $A=1, B=2$ and $C=4$ giving $y_{p}=x^{3}+2 x^{2}+4 x$ and the general solution as

$$
y=c_{1}+c_{2} e^{x}+x^{3}+2 x^{2}+4 x
$$

5(i)

$$
\frac{d \bar{x}}{d t}=\left(\begin{array}{ll}
1 & 1 \tag{13}\\
2 & 0
\end{array}\right) \bar{x}
$$

then the characteristic equation is

$$
\left|\begin{array}{cc}
1-\lambda & 1 \\
2 & -\lambda
\end{array}\right|=\lambda^{2}-\lambda-2=(\lambda+1)(\lambda-2)=0
$$

from which we obtain the eigenvalues $\lambda=-1$ and $\lambda=2$.

Case 1: $\lambda=-1$
In this case we have

$$
\left(\begin{array}{ll}
2 & 1 \\
2 & 1
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{0}{0}
$$

from which we obtain upon expanding $2 c_{1}+c_{2}=0$ and we deduce the eigenvector

$$
\bar{c}=\binom{1}{-2}
$$

so one solution is

$$
\bar{x}_{1}=\binom{1}{-2} e^{-t} .
$$

Case 2: $\lambda=2$
In this case we have

$$
\left(\begin{array}{rr}
-1 & 1 \\
2 & -2
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{0}{0}
$$

from which we obtain upon expanding $c_{1}-c_{2}=0$ and we deduce the eigenvector

$$
\bar{c}=\binom{1}{1}
$$

from which we obtain the other solution

$$
\bar{x}_{1}=\binom{1}{1} e^{2 t}
$$

The general solution to (13) is then given by

$$
\bar{x}=c_{1}\binom{1}{-2} e^{-t}+c_{2}\binom{1}{1} e^{2 t} .
$$

2(ii)
Consider

$$
\frac{d \bar{x}}{d t}=\left(\begin{array}{rr}
1 & -1 \tag{14}\\
1 & 3
\end{array}\right) \bar{x}, \quad \bar{x}(0)=\binom{5}{-2}
$$

then the characteristic equation is

$$
\left|\begin{array}{cc}
1-\lambda & -1 \\
1 & 3-\lambda
\end{array}\right|=\lambda^{2}-4 \lambda+9=(\lambda-2)^{2}=0
$$

from which we obtain the eigenvalues $\lambda=2$ and $\lambda=2$ - repeated. As in problem 2(i) we find the eigenvector associated with this
Case 1: $\lambda=2$
In this case we have

$$
\left(\begin{array}{rr}
-1 & -1 \\
1 & 1
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{0}{0}
$$

from which we obtain upon expanding $c_{1}+c_{2}=0$ and we deduce the eigenvector

$$
\bar{c}=\binom{1}{-1}
$$

so one solution is

$$
\bar{x}_{1}=\binom{1}{-1} e^{2 t}
$$

For the second independent solution we seek a second solution of the form

$$
\begin{equation*}
\bar{x}_{2}=\bar{u} t e^{2 t}+\bar{v} e^{2 t} . \tag{15}
\end{equation*}
$$

As shown in class, $\bar{u}=\bar{c}$ and \vec{v} satisfies

$$
\left(\begin{array}{rr}
-1 & -1 \tag{16}\\
1 & 1
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{1}{-1},
$$

or $-v_{1}-v_{2}=1$. Here, we'll choose

$$
\bar{v}=\binom{-1}{0}
$$

Therefore, the second solution is

$$
\bar{x}_{2}=\binom{1}{-1} e^{2 t}+\binom{-1}{0} e^{2 t}
$$

and the general solution

$$
\bar{x}=c_{1}\binom{1}{-1} e^{2 t}+c_{2}\left[\binom{1}{-1} t e^{2 t}+\binom{-1}{0} e^{2 t}\right],
$$

Imposing the initial condition gives

$$
c_{1}\binom{1}{-1}+c_{2}\binom{-1}{0}=\binom{5}{-2} .
$$

This gives $c_{1}-c_{2}=5$ and $-c_{1}=-2$ so $c_{1}=2$ and $c_{2}=-3$. The general solution then becomes

$$
\bar{x}=2\binom{1}{-1} e^{2 t}-3\left[\binom{1}{-1} t e^{2 t}+\binom{-1}{0} e^{2 t}\right],
$$

2(iii)

$$
\frac{d \bar{x}}{d t}=\left(\begin{array}{rr}
6 & -1 \tag{17}\\
5 & 4
\end{array}\right) \bar{x} .
$$

The characteristic equation is

$$
\left|\begin{array}{rr}
6-\lambda & -1 \\
5 & 4-\lambda
\end{array}\right|=\lambda^{2}-10 \lambda+29=0
$$

Using the quadratic formula, we obtain $\lambda=5 \pm 2 i$ (so $\alpha=5$ and $\beta=2$). For the eigenvectors, we wish to solve

$$
\left(\begin{array}{cc}
6-(5+2 i) & -1 \\
5 & 4-(5+2 i)
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{0}{0}
$$

or

$$
\left(\begin{array}{cc}
1-2 i & -1 \\
5 & -1-2 i
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{0}{0}
$$

which means solving

$$
5 v_{1}-(1+2 i) v_{2}=0
$$

One solution is

$$
\bar{v}=\binom{1+2 i}{5}=\binom{1}{5}+\binom{2}{0} i .
$$

So here

$$
\bar{A}=\binom{1}{5} \quad \vec{B}=\binom{2}{0} .
$$

With $\alpha=5$ and $\beta=2$ gives

$$
\vec{x}_{1}=\left[\binom{1}{5} \cos 2 t-\binom{2}{0} \sin 2 t\right] e^{5 t}, \quad \vec{x}_{2}=\left[\binom{1}{5} \sin 2 t+\binom{2}{0} \cos 2 t\right] e^{5 t} .
$$

The general solution is just a linear combination of these two

$$
\vec{x}=c_{1}\left[\binom{1}{5} \cos 2 t-\binom{2}{0} \sin 2 t\right] e^{5 t}+c_{2}\left[\binom{1}{5} \sin 2 t+\binom{2}{0} \cos 2 t\right] e^{5 t}
$$

6. Let $A=A(t)$ be the amount of salt at any time. Initially the tank contains pure water so $A(0)=0$. The rate in is $r_{i}=5 \mathrm{gal} / \mathrm{min}$ and rate out $r_{\mathrm{o}}=10 \mathrm{gal} / \mathrm{min}$ meaning the volume in the tank is decreasing so

$$
V=V_{0}+\left(r_{i}-r_{\mathrm{o}}\right) t=500+(5-10) t=500-5 t
$$

The change in salt at any time is given by

$$
\frac{d A}{d t}=r_{i} c_{i}-r_{\mathrm{o}} c_{\mathrm{o}}
$$

where c_{i} and c_{o} are concentrations in and out. Since we are given that $c_{i}=2 \mathrm{lb} / \mathrm{gal}$ and $c_{\mathrm{o}}=A(t) / V(t)$ then we have

$$
\begin{aligned}
\frac{d A}{d t} & =2 \cdot 5-10 \cdot \frac{A}{500-5 t} \\
& =10-\frac{2 A}{100-t}
\end{aligned}
$$

This is linear so

$$
\frac{d A}{d t}+\frac{2 A}{100-t}=10
$$

The integrating factor is $\mu=\exp \left(\int \frac{2}{100-t} d t\right)=\exp (-2 \ln |100-t|)=1 /(100-t)^{2}$ so

$$
\frac{d}{d t}\left(\frac{A}{(100-t)^{2}}\right)=\frac{10}{(100-t)^{2}}
$$

Integrating gives

$$
\frac{A}{(100-t)^{2}}=\frac{10}{(100-t)}+c
$$

The initial condition $A(0)=0$ gives $c=-1 / 10$ and finally giving the amount of salt at any time

$$
A=10(100-t)-\frac{1}{10}(100-t)^{2}
$$

When the tank is empty $V=0$ which happens at $t=100$ and $A(100)=0$.
7. Let $P=P(t)$ be the population of rabbits. The differential equation is

$$
\frac{d P}{d t}=k P(1000-P)
$$

Separating gives

$$
\frac{d P}{P(1000-P)}=k d t
$$

or

$$
\frac{1}{1000}\left(\frac{1}{P}+\frac{1}{1000-P}\right) d P=k d t
$$

and multiplying by 1000

$$
\left(\frac{1}{P}+\frac{1}{1000-P}\right) d P=1000 k d t
$$

We can absorb the 1000 into the k. Integrating gives

$$
\ln P+\ln (1000-P)=k t+\ln c
$$

or

$$
\begin{equation*}
\frac{P}{1000-P}=c e^{k t} \tag{18}
\end{equation*}
$$

Using the initial condition gives $P(0)=100$ gives $c=1 / 9$ and further $P(1)=120$ gives $k=.204794$. Solving (18) for P gives

$$
P=\frac{1000 e^{204794 t}}{e^{204794 t}+9}
$$

To answer the questions $P(2)=143.36$ so after two weeks there are 143 rabbits and the value of t when $P=900$ is $t=21.46$ or roughly 21 and a half weeks.
8. Assuming Newton's law of cooling we have

$$
\frac{d T}{d t}=k\left(T_{\infty}-T\right)
$$

subject to $T(0)=160$ and $T(20)=150$. Here $T_{\infty}=70$. Separating the DE gives

$$
\frac{d T}{70-T}=k d t
$$

which we write as

$$
\frac{d T}{T-70}=-k d t
$$

as T is greater than the room temperature 70 . Integrating gives

$$
\ln T-70=-k t+\ln c
$$

or

$$
T=70+c e^{-k t}
$$

Using $T(0)=160$ gives $c=90$ and using $T(20)=150$ gives $k=.005882$. Thus, the temperature at any time is given by

$$
T=70+90 e^{-.005882 t}
$$

