
IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 289 | P a g e

An Review on Software Defect Prediction based on

Various Data Mining
Rupesh Kumar Sahu1, Rahul Kumar Chawda2

1Student of MCA, 2Assistant Professor

Department of Computer Science, Kalinga University, Raipur.

Abstract - There has been rapid growth of software

development. Due to various causes, the software comes

with many defects. In Software development process,

testing of software is the main phase which reduces the

defects of the software. If a developer or a tester can predict

the software defects properly then, it reduces the cost, time

and eff ort.

Keyword - Software defect prediction, classification
Algorithm, Confusion matrix

I. INTRODUCTION

Software Defect Prediction There has been a huge growth in

the demand for software quality during recent ages. As a

consequence, issues are related to testing, becoming

increasingly critical. The ability to measure software defect

can be extremely important for minimizing cost and

improving the overall eff ectiveness of the testing process.

The major amount of faults in a software system is found in

a few of its components. Although there is variety in the
definition of software quality, it is truly accepted that a

project with many defects lacks the quality of the software.

Knowing the causes of possible defects as well as

identifying general software process areas that may need

attention from the initialization of a project could save

money, time and working eff ort. The possibility of early

estimating the probable faultiness of software could help on

planning, controlling and executing software development

activities. A low cost method for defect analysis is learning

from past mistakes to prevent future ones. Today, there exist

several data sets that could be mined in order to discover

useful knowledge regarding defects.
Using this knowledge one should ideally be able to:–

a. Identify potential fault-prone software.

b. Estimate the distinct number of faults, and

c. Discover the possible causes of faults..

Motivation - Diff erent data mining methods have been

proposed for defect analysis in the past, but few of them

manage to deal successfully with all of the above issues.

Regression models estimates are difficult to interpret and

also provide the exact number of faults which is too risky,

especially in the beginning of a project when too little
information is available. On the other hand classification

models that predict possible faultiness can be specific, but

not so much useful to give clue about the actual number of

faults. Many researchers used many techniques with

diff erent dataset that predict faultiness. But there are so

many classification rule algorithms that can be eff ective to

predict faultiness. All these issues motivates to our research

in these field of software fault/defect prediction.

II. LITERATURE REVIEW

Poor software quality may be manifested through severe

software defects, or software maintenance may be costly

due to many defects requiring extensive eff ort to correct.

Last, we explore relevant research methods for this study.
The following digital sources were consulted: ACM Digital

Library, IEEE Xplore, and Science Direct.

Data Mining for software Engineering - To improve the

software productivity and quality, software engineers are

applying data mining algorithms to various SE tasks. Many

algorithms can help engineers figure out how to invoke API

methods provided by a complex library or framework with

insufficient documentation. In terms of maintenance, such

type of data mining algorithms can assist in determining

what code locations must be changed when another code
location is changed. Software engineers can also use data

mining algorithms to hunt for potential bugs that can cause

future in-field failures as well as identify buggy lines of

code (LOC) responsible for already-known failures. The

second and third columns of Table 2.1 list several example

data mining algorithms and the SE tasks to which engineers

apply them

Table 1: Example software engineering data, Mining

algorithm, SE task
SE Data Mining algo. SE Tasks

Sequences:

execution/

static traces,

co-changes

Frequent itemset/

sequence/ partial-

order mining,

sequence matching/

clustering/

classification

Programming,

maintenance,

bug detection,

debugging

Graphs:

dynamic/

static call

graphs,

program

dependence

graphs

Frequent subgraph

mining, graph

matching/ clustering/

classification

Bug detection,

debugging

Text: bug

reports, e-

mails, code

comments,

documentation

Text matching/

clustering/

classification

Maintenance,

bug detection,

debugging

Binary classification - In machine learning and statistics,
classification is the problem of identifying to which of a set

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 290 | P a g e

of categories (sub-populations) a new observation belongs,

on the basis of a training set of data containing observations

(or instances) whose category membership is known. Binary

or binomial classification is the task of classifying the

members of a given set of objects into two groups on the

basis of whether they have some property or not.
Data Classification is two-step process. In the first step, a

classifier is built describing a predetermined set of data

classes or concepts. This is the learning step (or training

phase), where a classification algorithm is builds the

classifier by analyzing or ”learning form” a training set

made up of database tuples and their associated class labels.

In the second step the model is used for classification.

Therefore, a test set is used, make up of test tupples and

their associated class labels.

A classification rule takes the form X=> C, where X is a set

of data items, and C is the class (label) and a predetermined

target. With such a rule, a transaction or data record t in a
given database could be classified into class C if t contains

X.

Bayesian Classification - The Naive Bayesian classifier is

based on Bayes theorem with independence assumptions

between predictors. A Naive Bayesian model is easy to

build, with no complicated iterative parameter estimation

which makes it particularly useful for very large datasets.

Despite its simplicity, the Naive Bayesian classifier often

does surprisingly well and is widely used because it often

outperforms more sophisticated classification methods.

Rule-Based Classification - Rules are a good way of

representing information or bits of knowledge. A rule-based

classifier uses a set of IF-THEN rules for classification. An

IF-THEN rule is an expression of the form

Logistic Regression - In statistics, logistic regression or

logit regression is a type of regression analysis used for

predicting the outcome of a categorical dependent variable

(a dependent variable that can take on a limited number of

values, whose magnitudes are not meaningful but whose

ordering of magnitudes may or may not be meaningful)
based on one or more predictor variables.

III. RELATED WORKS

Regression via classification - In 2006, Bibi, Tsoumakas,

Stamelos, Vlahavas, apply a machine learning approach to

the problem of estimating the number of defects called

Regression via Classification (RvC) The whole process of

Regression via Classification (RvC) comprises two

important stages:

a. The discretization of the numeric target variable in order

to learn a classification model,
b. the reverse process of transforming the class output of the

model into a numeric prediction.

Static Code Attribute - Menzies, Greenwald, and Frank

(MGF) published a study in this journal in 2007 in which

they compared the performance of two machine learning

techniques (Rule Induction and Naive Bayes) to predict

software components containing defects. To do this, they

used the NASA MDP repository, which, at the time of their

research, contained 10 separate data sets.

ANN - In 2007, Iker Gondra used a machine learning

methods for defect prediction. He used Artificial neural

network as a machine learner.

Embedded software defect prediction - In 2007, Oral and

Bener used Multilayer Perception (MLP), NB, VFI (Voting

Feature Intervals) for Embedded software defect prediction.

there they used only 7data sets for evaluation.

Association rule classification - In 2011 Baojun, Karel

used classification based association rule named CBA2 for

software defect prediction.In these research they used
assocition rule for clssafication. and they compare with

other classification rules such as C4.5 and Ripper.

Defect-proneness Prediction framework

In 2011, Song, Jia, Ying, and Liu propased a general

framework for software defect-pronness prediction. in this

research they use M*N cross validation with the

dataset(NASA, Softlab Dataset) for learning process. and

they used 3 classification algorithms(Naive baysed, OneR,

J48). and they compared with MGF framework. In 2010 a

research has been done by Chen, Sen, Du Ge, on software
defect prediction using data mining. In this research they

used probabilistic Relational model and Baysean Network.

IV. CONCLUSION

This paper reviewed the current state of software defect

management, software defect prediction models and data

mining technology briefly. Then proposed an ideal software

defect management and prediction system, researched and

analyzed several software defect prediction methods based

on data mining techniques and specific models (NB,

Logistic, PART, J48G)

V. REFERENCES

[1]. Tao Xie, Suresh Thummalapenta, David Lo, and Chao Liu.
Data mining for software engineering. Computer, 42(8):55–62,

2009.
[2]. Qinbao Song, Zihan Jia, Martin Shepperd, Shi Ying, and Jin

Liu. A general software defect-proneness prediction
framework. Software Engineering, IEEE Transactions on,
37(3):356–370, 2011.

[3]. Ma Baojun, Karel Dejaeger, Jan Vanthienen, and Bart Baesens.
Software defect prediction based on association rule
classification. Available at SSRN 1785381, 2011.

[4]. S Bibi, G Tsoumakas, I Stamelos, and I Vlahavas. Software
defect prediction using regression via classification. In IEEE
International Conference on, pages 330–336, 2006.

[5]. Tim Menzies, Jeremy Greenwald, and Art Frank. Data mining
static code attributes to learn defect predictors. Software
Engineering, IEEE Transactions on, 33(1):2–13, 2007.

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 291 | P a g e

[6]. Iker Gondra. Applying machine learning to software fault-
proneness prediction. Journal of Systems and Software,
81(2):186–195, 2008.

[7]. Atac ̧ Deniz Oral and Ay¸se Ba¸sar Bener. Defect prediction
for embedded software. In Computer and information sciences,

2007. iscis 2007. 22nd international symposium on, pages 1–6.
IEEE, 2007.

[8]. Yuan Chen, Xiang-heng Shen, Peng Du, and Bing Ge.
Research on software defect prediction based on data mining.
In Computer and Automation Engineering (ICCAE), 2010 The
2nd International Conference on, volume 1, pages 563–567.
IEEE, 2010.

[9]. Martin Shepperd, Qinbao Song, Zhongbin Sun, and Carolyn

Mair. Data quality: Some comments on the nasa software
defect data sets. 2013.

[10]. Stefan Lessmann, Bart Baesens, Christophe Mues, and Swantje
Pietsch. Benchmarking classification models for software
defect prediction: A proposed framework and novel findings.
Software Engineering, IEEE Transactions on, 34(4):485–496,
2008.

[11]. Yue Jiang, Bojan Cukic, and Tim Menzies. Fault prediction

using early lifecycle data. In Software Reliability, 2007.
ISSRE’07. The 18th IEEE International Symposium on, pages
237–246. IEEE, 2007.

[12]. Yue Jiang, Bojan Cuki, Tim Menzies, and Nick Bartlow.
Comparing design and code metrics for software quality
prediction. In Proceedings of the 4th international workshop on
Predictor models in software engineering, pages 11–18. ACM,
2008.

[13]. Hongyu Zhang, Xiuzhen Zhang, and Ming Gu. Predicting
defective software components from code complexity
measures. In Dependable Computing, 2007. PRDC 2007. 13th
Pacific Rim International Symposium on, pages 93–96. IEEE,
2007.

[14]. Gustavo EAPA Batista, Ronaldo C Prati, and Maria Carolina
Monard. A study of the behavior of several methods for
balancing machine learning training data. ACM SIGKDD
Explorations Newsletter, 6(1):20–29, 2004.

[15]. Charles E Metz, Benjamin A Herman, and Jong-Her Shen.
Maximum likelihood estimation of receiver operating
characteristic (roc) curves from continuously-distributed data.
Statistics in medicine, 17(9):1033–1053, 1998.

[16]. Qinbao Song, Martin Shepperd, Michelle Cartwright, and
Carolyn Mair. Software defect association mining and defect
correction eff ort prediction. Software Engineering, IEEE
Transactions on, 32(2):69–82, 2006.

