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Abstract— In current information technology era most of 

the business applications are depending on the software and 

their efficiency and quality are main factors. The software 

maintenance plays a vital role because there may be a chance 

of upgrade or error occurrence during the course of use. In 

such cases the details of documentation relevant to the concern 

software is very essential for the maintenance group but if it is 

not properly maintained then the process undergoes reverse 

engineering to recover the design by finding the faults 

occurred in the software. Presence of fault not only affects the 

software quality in addition it increases the development cost 

also. Due to the poor documentation about the software under 

investigation often leads to difficult in prediction of faults.  

This paper aims at developing a Meta heuristic model using 

ant colony optimization for finding faults in the given software 

systems. The proposed approach has been validated using 

experimental investigation on six software projects which are 

available in the tera-PROMISE repository. The performance 

of the proposed method is evaluated using different evaluation 

metrics and the result shows that modified Ant Colony 

Optimizaiton (ACO) model have produced more significant 

results in faults prediction accuracy 

Keywords—Ant Colony Optimization (ACO), Software 

fault prediction, software metrics, tera-PROMISE repository, 

T-test analysis 

I.  INTRODUCTION 

Software bug is a major bug in coding 

implementation since without correct code it is not possible to 

produce correct result. The software engineering team have 

bug reports which explains the type of bugs occurred in each 

module during the software development phase. If those 

documents are not perfectly handled or if those bug reports are 

missing then a need arise to develop a prediction system to 

find the occurrence of the fault in software to correct the bugs 

occurred in the software. The software bug report is known as 

problem report which can be identified using the software 

fault prediction models. This helps in allocation testing 

resources efficiently and economically. According to a survey 

[1] detection and removal of software’s faults cover around 

50% of the total project budget. Abundant research has been 

carried out in the earlier works but there are still issues that 

prevent them from becoming widely adopted in practice 

because most of the earlier software fault prediction studies 

have predicted the fault proneness of the software modules in 

terms of fault and non-faulty (binary class classification). 

There are several issues with this binary class classification 

even if the performance of the prediction model was reported 

excellent the interpretation of the finding is hard to put into the 

proper usability context i.e. identification of the number of 

faults per module.  

In order to explain the practical use of the software 

fault prediction model this work present an approach to predict 

the number of faults in a given software system using Ant 

Colony Optimization (ACO). The contribution of this paper is 

to explore the abilities of the ant colony optimization for the 

number of software fault prediction. This proposed work 

developed fault prediction models using modified ACO and 

the performance of the constructed model is evaluated using 

Error Rate , Recall and completeness measures. This research 

work indicates that ACO based fault prediction approach 

produces significant results to predict the number of faults in 

software system.  he rest of the paper is organizes as follows, 

Section 2 contains related work, Section 2 consist of overview 

of proposed approach, section 4 presents a brief description of 

the used software fault datasets, software metrics considered 

and dependent variables. In section 5, a detailed explanation of 

experimental setup along with the discussion of the evaluation 

metrics are considered. The result of the investigation is 

presented in section 6 and finally draw the conclusion about 

the performance of the proposed method is discussed in 

section 7. 

II. RELATED WORK 
There have been many existing works relevant to 

predict fault proneness of software modules in terms of the 

modules being faulty or non-faulty. But studies reporting the 

fault proneness of software modules in terms of predicting the 

fault density or the number of faults in a software module are 

very few. Jun Zheng [2] described that the software fault 

prediction model can be built with the help of threshold-

moving technique. The motive of the software developer is to 

develop the better quality software on time and inside the 

financial plan. Software fault prediction model classifies the 

modules into two classes: faulty modules and non – faulty 

modules. R.Shatnawi [3] states that the majority of the 

modules for finding the prediction performance are correct 

whereas some modules are defective. They applied technique 

to find the number of faults in the particular module. This 
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technique is called Eclipse. This technique works well on real 

world objects called Object Oriented systems. In this Object 

Oriented System, they used the existing defected data for 

eliminating the defective modules. 

Shepperd, Schofield and Kitchenham [4] discussed 

that need of cost estimation for management and software 

development organizations and give the idea of prediction and 

discuss the methods for estimation. Alsmadi and Magel [5] 

discussed that how data mining provide facility in new 

software project its quality, cost and complexity also build a 

channel between data mining and software engineering.  

Runeson and Nyholm [6] discussed that code duplication is a 

problem which is language independent. It is appearing again 

and again another problem report in software development and 

duplication arise using neural language with data mining. 

Lovedeep and Arti [7] data mining provide a specific platform 

for software engineering in which many task run easily with 

best quality and reduce the cost and high profile problems. 

Ostrand et al [8] have used negative binomial regression 

analysis to predict the fault proneness in software modules. In 

their study a NBR model was developed and used to predict 

the expected number of faults and the fault density in every 

module of the next release of the system. In another study 

Afzal et al [9] performed an empirical study to predict the 

fault count using the genetic programming. They performed 

their experiments over the three industrial projects and 

evaluated their results using some goodness of fit and 

predictive accuracy parameters. They concluded that GP is 

statistically significant and accurate to predict fault counts.  

Arvinder and Inderpreet [10] in their work used six 

machine learning models for software quality prediction on 

five open source software. Varieties of metrics have been 

evaluated for the software including C & K, Henderson & 

Sellers, McCabe etc. Results show that Random Forest and 

Bagging produce good results while Naive Bayes is least 

preferable for prediction. Dhyan and Saurabh [11] in their 

paper classified and detect software bug by J48, ID3 and 

Naïve Bayes data mining algorithms. Comparison of these 

algorithms is done to detect accuracy and time taken to build 

the model. Rohit et al [12] devised a Bayesian Regularization 

(BR) technique has been used for finding the software faults 

before the testing process. This technique helps to reduce the 

cost of software testing which reduces the cost of the software 

project. 

This proposed work differs from the previously 

mentioned studies in several ways. Firstly, most of the earlier 

studies have used industrial datasets. But this work used six 

open source datasets. Secondly the existing methods used 

change history and LOC metric of the files to determine 

number of faults, whereas this work used 20 object oriented 

metrics. Most of the prior works have used some hypothesis 

testing or goodness of fit parameters to evaluate their results. 

While this proposed work used Error Rate, Recall and 

completeness measures to perform fair evaluation of the 

proposed method results and remained consistent with these 

three set of measure for all the used dataset. In comparing the 

proposed model with the existing methods, it is found that the 

proposed fault prediction model achieved the higher recall 

value. The error rate analysis also confirmed the effectiveness 

of the proposed modified ACO prediction model. 

 

2.1 EXISTING ANT COLONY OPTIMIZATION 
It is a Meta heuristic technique which is based upon 

the natural phenomena. ACO is a probalistic technique which 

gives solution by using previous results. In this process each 

ant follow different path to reach to the destination and secrete 

pheromone liquid on the way to destination. The path which 

has the highest liquid pheromone is considered as the shortest 

path and all other ants follow the same path. So pheromone 

liquid is used to attract the other ant and update the latest 

information about the path [17. 18] 

 

III. PROPOSED METHODOLOGY OF MODIFIED 

ANT COLONY OPTIMIZATION BASED FAULT 

PREDICTION MODEL 
Ant colony optimization algorithm is a heuristic 

algorithm that mimics the behavior of ants to find the best 

food sources in this work best possible solution to perform a 

user specified task. It is a search based method which search 

for optimal solution to perform a given computation task. Ant 

Colony optimization algorithm starts with a randomly 

generated population of potential space. Subsequently, it 

iteratively transforms initial population of potential solutions 

into a new generation of the population by applying the fitness 

function. These selected individual are close to the goal and 

the whole process is continued in this manner until the 

termination condition is met, which is generally bound to the 

maximum number of generations. After the termination 

criterion is satisfied, the single best individual in the 

population is chosen as resulting solution. 

 
 

Figure Overview of the Modified ACO based Fault Prediction 

Model 

Figure 1 depicts an overview of the proposed modified Ant 

Colony Optimization fault prediction model. First requisite 

fault data of 6 projects listed in Table 1 are taken from tera-

PROMISE Repository. The data set containing fault 

information and twenty software source code metrics are also 

included. All source code metrics are normalized over the 

range between 0 to 1 using Min-Max normalization technique. 
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The normalization of source code metrics is required to adjust 

the defined range of metrics. Hence, before applying the 

machine learning algorithm and subsequent t-test analysis, the 

input metrics are normalized or standardized using min-max 

scaling. The conventional ACO algorithm [17] is modified by 

using T-test analysis to determine the significance among the 

software metrics and those metrics are considered as the best 

software metrics which have high impact on determination of 

number of faults occurred in each module of the given dataset. 

The characteristics of features to select significant sets of 

features without involving a learning algorithm T-test has 

been employed to remove insignificant features. The objective 

of this step is to test the relationship between each source code 

metric and fault proneness. In this study, t-test analysis is used 

to test the statistical significance between faulty and non-

faulty group metrics. In 2-class problems (faulty class and 

non-faulty classes), test of null hypothesis (H0) means that the 

two populations are not equal; on other words, there is a 

significant difference between their mean value and both 

features are different. It further implies that the metrics affect 

the fault prediction result. Hence, these metrics have been 

considered and those having no significant difference between 

their mean values are rejected. Therefore, it is necessary to 

accept the null hypothesis (H0) and P −value for each metric 

as a measure of how effectively it separates the groups. 

Software Metrics which have P - value smaller than 0.05 

consist of strong discrimination powers. Based on the highest 

significance of each software metrics the artificial ants 

determine the best solution in terms of number of faults 

prediction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure Flow chart of the proposed Modified ACO Model for 

fault prediction 

 

 

 

 

 

 

 

IV. ALGORITHM FOR PROPOSED METHOD OF 

MODIFIED ANT COLONY OPTIMIZATION FOR 

FAULT PREDICTION 

 

Input: Instance of Tera – PROMISE Repository Fault Dataset 

Output: Number of faults predicted in each module 

1. Begin Initialize code_mod = cmf1,cmf2, cmf3... cmfn 

2. Initialize fault_time = E1, E1, E1,….En 

3. Assign start_post pos(p) = rand(x),rand(y) 

4. Repeat 

5.   For k = 1 to m do /* for the m ants*/ 

6.  Ant k randomly selects a node s 1 

7.   for i = 1 to n-1 do 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Start Modified ACO 

Determine probabilistically 

as to which test case to visit 

next 

Locate ants randomly in modules 

from the project and store the 

current modules in a set M 

Move to next module and 

place this module in set M 

Has the 

stopping 

condition 

reached 

Have all 

Faults been 

covered 

Determine the best path till now 

and update pheromone based on 

the significance of software 

metrics  

Record the significance of each 

software metrics obtained using T-

test  

Stop the process of 

Modified ACO  
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8. Ant k selects the next node according to the equation as 

follows Where, τ ij is the pheromone 

on the edge between nodes  v i and v j , η ij is a heuristic 

function which is defined as the visibility of the edge 

(v i ,v j ). Parameters α, β determine the relative influence 

of the pheromone and the heuristic information.  

9. End for i 

10.   Calculate the fitness of the path formed by 

ant k according to the equation 

Q(S)=  

Here, Q(S) is quality of path,  d(s i )is the degree of the 

node s i, C is a positive constant 

11. End for k 

12. Update the pheromone values according to 

       τij(t+1)=ρ⋅ τij(t)+Δτij(t) 

13. Until max1 ≤ i,j ≤ n |τij (t+1)−τij (t)| ≤ ε or t > Nc; 

14.  Score = τ; 

15. Output the score matrix Score; 

16. Stop (fault cover) 

17. End loop 

18. End 

Working Example of proposed Modified Ant colony 

Optimization in number of Software fault prediction 

 

 

The above figure depicts the process of feature 

selection using ACO algorithm in a graph representation.  For 

assumption let us consider that the dataset consist of 8 

attributes the goal of the ants is to select optimal features to 

predict the number of faults in a software. In this graph each 

vertex represents the feature or attribute of the fault prediction 

dataset. The attributes are connected using edges and the 

weight of the edges signifies the correlation among attributes 

or vertex’s which are obtained using T-test significance. In 

this example the attribute1 is connected with three attributes 2, 

3 and 4. Now this graph consists of three artificial ants where 

each ant selects different edges. Let us assume that ant 1 select 

the edge between the attributes 1-2. Ant 2 selects the edge for 

traversal is 1-3. The ant 3 chooses the edge between the 

attributes 1-4. Now the pheromone trail is calculated based on 

t-test between the attributes of the selected edges and they are 

assigned as weight 

  

The table above shows the complete calculation of the graph 

shown in the figure. Here each ant traverses in three different 

directions. The Ant 1 has the probability of choosing 3 

different paths of attribute combination 1-2-5-8, 1-2-6-8 and 

1-2-7-8. The Ant 2 has the probability of selecting 3 different 

paths of attributes 1-3-5-8, 1-3-6-8 and 1-3-7-8. The Ant 3 

also has the probability of picking 3 different paths of 

attributes 1-4-5-8, 1-4-6-8 and 1-4-7-8. To choose best 

combination of attributes the corresponding weights of each 

path is calculated as shown in the above table. According to 

this example ant 3 produces the optimal features selection with 

the highest weight value it means the amount of pheromone 

deposited on this path is higher and expose that the potential 

prediction of number of faults in a software can be predicted 

more optimal using this modified ACO. 
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 Total 

Attributes 

selected 

Weight 

Calculation 

Ant 

1  

 

1-2 

2-5,  5-8 1-2-5-8 4+2+4 =10 

2-6,  6-8 1-2-6-8 4+4+2=10 

2-7 7-8 1-2-7-8 4+3+1=8 

Ant 

2 

1-3 3-5,  5-8 1-3-5-8 3+1+4=8 

3-6,  6-8 1-3-6-8 3+3+2=8 

3-7 7-8 1-3-7-8 3+2+1=6 

Ant 

3 

1-4 4-5,  5-8 1-4-5-8 5+3+4=12 

4-6,  6-8 1-4-6-8 5+2+2=9 

4-7 7-8 1-4-7-8 5+1+1=7 
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V. EXPERIMENTAL METHODOLOGY 

In this section a brief overview of the software fault 

dataset used for simulation comparison, with the information 

of independent and dependent variable are discussed. Six 

different dataset are used in this simulation in which two of 

them belong to PROP project, two are form xerces project and 

remaining two are from camel project. PROP dataset is one of 

the largest dataset that are available in tera-PROMISE 

Repository data repository [13, 14]. This dataset is collect for 

a software project that was developed in a commercial 

organization and it is written in the java language. Similarly 

Xerces is an Apache collection of software libraries used for 

parsing, validating and manipulating XML. Camel is rule 

based routing and mediation engine that offers the interfaces 

for the Enterprise Integration Patterns (EIPS). The Xerces and 

Camel both are open source projects. Each of the six fault 

dataset used in this work consist of same 20 object oriented 

metrics and number of faults information for each software 

module. The percentage of faulty modules varies between 9% 

- 55% (approx.), which makes them the good candidate for the 

experimental study. 

 

VI. SOFTWARE FAULTS DATASET DESCRIPTION 

 

6.1 Dependent and Independent Variables 

In this work, the objective is to develop a fault 

prediction model using Modified Ant Colony Optimization for 

the number of faults prediction in a given software systems. 

Therefore in this work source code metrics considered as 

dependent variables. The fault proneness of a class is the 

probability that a class contains fault, given the metrics for 

that class. Since this proposed prediction model assigned an 

expected number of faults to each module of software. 

Therefore, the number of faults is selected as depended 

variable instead of dividing them into two categories of fault 

and non-faulty. 

 

Table 1: Detail of the fault Datasets used for the Study 

OO Metric Description 

Weighted methods per 

class (WMC) 

Sum of the complexities of 

methods defined in class 

Depth of inheritance 

tree (DIT) 

Maximum height of the class 

hierarchy 

Number of children Number of immediate 

(NOC) descendants of the class 

Coupling between 

object classes (CBO) 

Number of classes coupled to a 

given class 

Response for a Class 

(RFC) 

Number of different methods that 

can be executed when an object of 

that class receives a message 

Lack of cohesion in 

methods (LCOM) 

Number of sets of methods in a 

class that are not related through 

the sharing of some of the class’s 

fields 

Afferent coupling (Ca) Number of other classes use the 

specific class 

Efferent coupling (Ce) Number of classes used by the 

specific class 

Number of public 

methods (NPM) 

Number of methods in a class that 

are declared as public. 

LCOM3 Lack of cohesion in methods 

Henderson-Sellers version 

Lines of code (LOC) Number of lines in the text of the 

source code 

Data access metric 

(DAM) 

Ratio of the number of private 

(protected) attributes to the total 

number of attributes declared in 

the class 

Measure of aggregation 

(MOA) 

Number of data declarations, 

whose types are user defined 

classes 

Measure of functional 

abstraction (MFA) 

Ratio of the number of methods 

inherited by a class to the total 

number of methods accessible by 

member methods of the class 

Cohesion among 

methods (CAM) 

Sum of number of different types 

of method parameters in every 

method divided by a 

multiplication of number of 

different method parameter types 

in whole class and number of 

methods 

Inheritance coupling 

(IC) 

Number of parent classes to 

which a given class is coupled 
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Coupling between 

methods (CBM) 

Number of methods to which all 

the inherited methods are coupled 

Average method 

complexity (AMC) 

Average method size for each 

class. 

Maximum McCabe’s 

cyclomatic complexity 

(M ax − CC) 

Maximum cyclomatic complexity 

of methods defined in a class 

Average McCabe’s 

cyclomatic complexity 

(Avg–CC) 

Average cyclomatic complexity 

of methods defined in a class 

TABLE 2: List of projects used in our experiments, 

number of modules and percentage of faulty classes 

 

 

Project  No. of 

modules 

No. of 

Faulty 

modules 

Faulty 

(%) 

prop-3  10274  1180  11.49 

prop-4 8718 840 9.64 

xerces-1.2      440 71 16.14 

xerces-1.3 453 69 15.23 

camel-1.0    339 13 3.83 

camel-1.2   608 216 35.53 

 

From the table 2 it is observed that the project prop 

consist is the largest dataset whose prop-3 consist of 10274 

classes and prop 4 consist of 8718 classes with faulty modules 

1108 and 840 respectively. Xerces project with release of 1.2 

and 1.3 consist of 440 and 453 modules respectively and they 

contain fault modules of 71 and 69. The Camel project with 

the version 1.0 and 1.2 has 339 and 608 modules respectively 

with 13 and 216 faulty modules.  

 

For each module its percentage of fault is calculated as 

follows:  

Faulty (%) =   

 

6.2 Evaluation Measure 

To find the performance of the proposed Modified 

ACO based fault prediction model this work used three types 

of performance evaluation measure. To measure the deviation 

between the predicted and actual fault values this work used 

Error rate parameters. The prediction accuracy is measure by 

using Recall and Completeness of the model is measure by 

using completeness measure. The description of each of the 

aforementioned measures is as follows: 

 

6.3 Error Rate 

 The difference among the actual fault values and 

predicted fault values is measured using the average relative 

error (ARE) is defined as 

ARE =  

Where  is the predicted value of the number of faults in a 

software model and Yi is the corresponding actual value. N is 

the number of modules. In the case of ARE, as the actual 

value of the faults may be zero, one is added to the 

denominator to make the definition always well-defined [15]. 

 

6.4 Recall 

Recall shows the fraction of relevant instances that 

are retrieved. It measures the ability of the classifier to identify 

a condition correctly. A classifier with high recall value 

insures that a high number of positive examples will be 

identified. It is defined as 

 

Recall = True Positive / (True Positive + False Negative) 

 

The used fault data is imbalance in nature. It contains 

a large number of non-fault modules compared to faulty 

modules. The main goal of the proposed Modified ACO based 

fault prediction model is to identify faulty modules as much as 

possible. So that the processes for software reverse 

engineering to recover the correctness of the software can be 

done more optimally. IF a fault remained unidentified, then it 

will require lots of resources and efforts for identification at 

later stages or may be remain unidentified and cause the sever 

effect on software performance later. For this reason, this 

proposed work select recall value as the measure to assess the 

performance of the proposed fault prediction model. 

 

6.5 Completeness 

 

Completeness measure is defined as the number of 

faults found in the modules classified as fault-prone divided 

by the total number of faults in the software system [16]. This 

parameter tells how complete the proposed fault prediction 

model is. 

Completeness =  

6.6 Results 

This section discusses about the result of the various 

evaluation parameters and assesses the accuracy and 

completeness of the fault models. For each of the dataset this 

work used 10 fold cross validation in which 90% of the 

involved training and remaining 10% is used for testing the 

model. Likewise ten iterations are performed for the whole 

dataset to train and test.  

 

Table 3 Error rates Produced by existing Genetic 

Algorithm, Decision Tree, Ant colony Optimization and 

proposed Modified Ant colony optimization for all six 

Datasets 

 

Data 

set 

Genetic 

Algorith

m 

Decisio

n Tree 

Ant Colony 

Optimizatio

n 

Modifie

d ACO 

PROP

-3 
0.11 

0.27 0.19 0.09 
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PROP

-4 
0.35 

0.48 0.37 0.25 

xerce

s-1.2 
0.39 

0.52 0.4 0.24 

xerce

s-1.3 
0.32 

0.43 0.38 0.26 

camel

-1.0 
0.19 

0.27 0.23 0.12 

camel

-1.2   
0.45 

0.59 0.48 0.32 

 

 

 

 

 

 

 
 

Figure Average Error Rate Analysis for six different Datasets 

 

Table 3 and figure shows the values of Average Error 

Rate (AER) errors for each of the used dataset. Naturally, the 

mean absolute error has been widely used in the past to report 

the errors. However, if the difference between the absolute 

value and predicted values is large, the relative error rate 

provides the much useful information. Therefore, this work 

reported the results in terms of relative error measurement 

unit. And from the obtained result it is observed that among 

the existing approaches the proposed modified ACO has 

produced low error results. For PROP 3 and prop 4 datasets, 

Modified ACO based fault perdition produced low error rate 

0.09 and 0.27 respectively. But for camel 1.2 and Xerces 1.3 

error rate is much higher which is 0.32 and 0.26 respectively. 

These result confirmed the predictive capability of the fault 

models based on the modified ACO System. 

 

Table 4 Recall Value analysis of existing Genetic 

Algorithm, Decision Tree, Ant colony Optimization with 

proposed Modified Ant colony optimization for all six 

Datasets based 

 

Data 

set 

Genetic 

Algorith

m 

Decisio

n Tree 

Ant Colony 

Optimizati

on 

Modifie

d ACO 

PROP-

3 

65 58 60 73 

PROP-

4 

46 32 42 58 

xerces-

1.2 

28 20 25 45 

xerces-

1.3 

40 29 36 62 

camel-

1.0 

32 28 30 45 

camel-

1.2 

30 25 28 37 

 

 

 

 

 

 

 

 

 
 

Figure Recall value Analysis of Six Dataset with four different 

fault prediction models 

 

Table 4 and figure illustrates the obtained recall value for all 

the four fault prediction models applied on six different 

datasets. Since proposed fault prediction model assigned an 

expected number of faults to each module of the given 

software. It is also observed that lowest recall value is 

obtained by Xerces 1.2 varies within the range of 28% to 45% 

approximately. These results also confirmed the proposed 

model predictive accuracy is higher than the other existing 

methods.  

 

Table 5 Completeness analysis of Existing Genetic 

Algorithm, Decision Tree, Ant colony Optimization and 

proposed model for all six Datasets. 

 
Data set Genetic  

Algorithm 

Deci

sion 

Tree 

Ant Colony 

Optimization 

Modified 

Ant Colony 

Optimization 

PROP-3 75 60 68 96 

PROP-4 90 78 86 98 

xerces-
1.2      

96 78 85 97 

xerces-

1.3 

86 72 80 99 

camel-1.0    92 80 86 100 

camel-1.2   89 80 85 99 
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Figure Completeness Analysis of Six Dataset with four 

different fault prediction models 

 

Table 5 and figure depicts the completeness values of the four 

fault models for all the six datasets used in this work. It is 

perceived that for most of the used datasets, the proposed 

modified ACO algorithm achieved the completeness close to 

100%. The proposed model achieves more completeness than 

the other existing approaches. 

 

 

 

 

 

 

 

 

 

 

Running Example 

 

Table 6 Example of T-test based Significance Determination among Software Metrics 

 

Attribute Coefficient Std 

Error 

Std 

Coefficient 

Tolerance t-stat p-

Value 

Code 

wmc 0.179 0.924 0.208 0.967 0.194 0.848   

cbo 13.942 2.849 25.169 0.983 4.894 0.000 **** 

lcom -3.162 0.435 -13.766 0.917 -7.263 0.000 **** 

ca -13.640 2.749 -48.166 0.983 -4.962 0 **** 

ce -3.252 0.513 -3.358 0.993 -6.336 0.000 **** 

npm 1.602 0.792 2.065 0.961 2.024 0.051 * 

loc -0.714 0.235 -0.951 0.940 -3.039 0.003 *** 

mfa 0.050 0.035 0.051 0.997 1.400 0.212   

max_cc 1.012 0.213 1.142 0.997 4.743 0.00 **** 

 

From the table 6 it is observed t − test on each 

software metric is applied and compared with their 

corresponding P -value for each metric as a measure of how 

effectively it separates the groups. In this Software metrics 

which are having P - value smaller than 0.05 have strong 

discrimination powers.  

 

TABLE 7: Sample Modules with software metrics selected to 

predict the number of faults. 

 

 

From the table 7 depicts the input to the modified ACO 

assumes a priori knowledge of the number of faults detected 

for each module based on the software metrics selected 

 

Table 8: RESULTS AFTER SAMPLE RUN  

 

 

 

 

 

 

 

Modules/ 

Software 

Metrics 

S

1 

S

2 

S

3 

S

4 

S5 S

6 

S

7 

N0.of Faults 

determined 

M1  X  X  X X X 5 

M2 X  X X X X X 6 

M3  X X     2 

M4   X X  X  3 

M5 X  X X X X X 6 

M6  X X X X X  5 

M7 X X X  X  X 5 

M8  X   X X  3 
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In this table 8, for each run the best path of all iterations are 

reported. Also the final weight on the edges and the path 

found in that run is shown. Though different paths were 

explored by artificial ants in all he runs, still they could 

converge to the optimal path. 

 

VII. CONCLUSION AND FUTURE WORK 

This paper shows the results of modified ACO based 

fault prediction model to predict the number of faults in given 

software. The experimental study was applied over six 

software fault datasets taken from the tera-PROMISE 

repository. The modified ACO determines the significance 

among the software metrics using T-test to choose the optimal 

metrics for prediction number of faults in the selected project. 

The results have been evaluated in terms of average error 

rates, recall and completeness measure. The resulting statistics 

shows that proposed fault prediction model is able to predict 

the number of faults with significant accuracy. In future, the 

work will be extended by applying Different methodologies 

will also be considered for further detailed investigation. 
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RUN Iteration  ANT  Best 

Path 

Weight on edges 

after all the 

iterations 

1,5 : 0.421441 

3,4 : 5.12349 

3,7 : 1.121931 

4,5 : 5.12349 
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Rest all edges 

have 0 weight. 

Best Path is 

found to be : 

3,4,5 
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