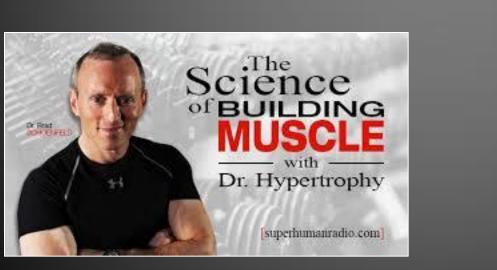
Glutes for Rehab and Performance "Building a Bigger, Better Butt"

Marc R. Bernier, DPT, MPT, CSCS, Cert DN Encore Rehabilitation, Inverness Team Physical Therapist, Legion FC

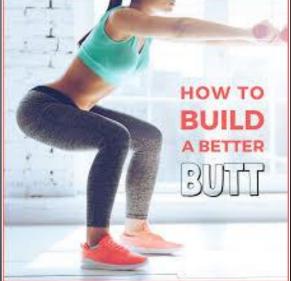
"Conflict of Interest Disclosure"

"So, I'm the only one who sees a conflict of interest here?"



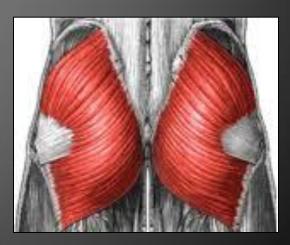
"The way I see it, if you don't have a conflict of interest, you're not really doing your job."

Bret Contreras, PhD, CSCS Brad Schoenfeld, PhD, CSCS, CSPS, FNSCA



Goals of Training?

- Performance
- Rehabilitation
 - LE pathologies (Fredericson '00, Khayambashi '12, etc.)
 LBP (Nelson-Wong '10)
- Aesthetics

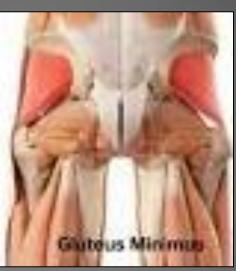


Gluteus Maximus

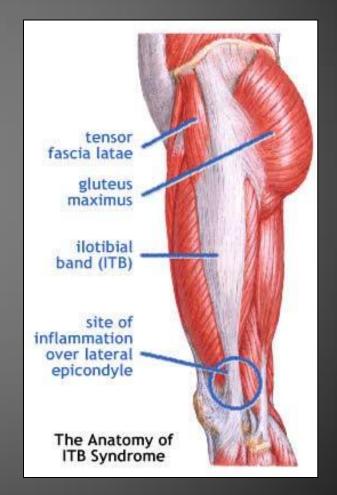
- Largest, most powerful muscle in body
- Extension, abduction, ER
- Giuteus Maximuo

• Pelvic/trunk stability

Gluteus Medius

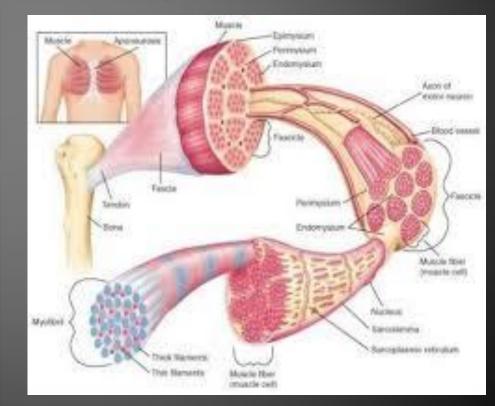

- Hip abduction
- Fiber orientation
 - Anterior: Flexion & IR
 - Posterior: Extension and ER
- Frontal/transverse plane stability

Gluteus Minimus


- Hip abduction
- Fiber orientation
 - Anterior: Flexion & IR
 - Posterior: ER (in extension)
- Flexion
- Hip stabilization

Tensor Fascia Latae (TFL)

- Primary: Hip IR
- Assist: Abduction, flexion
- Stabilization (via ITB)
 - Hip
 - Knee / Patella (?)

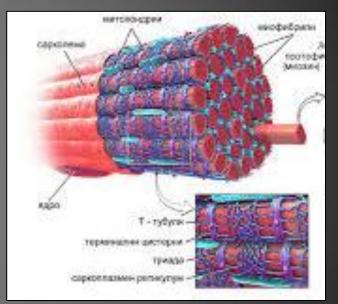

Physiology of Hypertrophy

- Muscle cross-sectional area = Muscle strength
- Training Goal =
 muscle size/mass

<u>Hyperplasia</u> Increase # of Muscle Fibers

<u>Hypertrophy</u> Increase #/size of: -Extracellular matrix

- Myofibrils
- Sarcomeres


Physiology of Hypertrophy

- Human muscle = "Post-Mitotic" tissue
- Mechanism needed to avoid apoptosis
- Hypertrophy
 - Muscle protein synthesis > protein degradation
 - Balance between
 - Mechanical stimulus
 - Rest/recovery
 - Nutrition

Physiology of Hypertrophy

• Satellite Cells

- "Mediators of Hypertrophy"
- Normal state: Quiescent
- Mechanical stimulus
 - "Activate"
 - Fuse to existing cells
 - » Creation of new myofibers
 - Precursor for repair/regrowth of muscle tissue

Research on Strength/Hypertrophy

- Inexperienced vs "Trained" Subjects?
- Differences in Methodology

Conflicting results

Muscle Tension

Metabolic Stress

Muscle Damage

MUSCLE CONFUSION

WHAT THE HELL DO I DO WITH ALL THESE WEIGHTS?

Mechanical Tension

- Force placed on a muscle
- Types
 - Active
 - Passive
- Mechanism

- Disturbs skeletal muscle integrity
- Causes mechanical/chemical response within myofibers and satellite cells
- Triggers increased rate of muscle protein synthesis

Metabolic Stress

- Cell swelling: metabolite build up
- Achieve via "training to fatigue"
 - metabolite accumulation
 - Light load = heavy load
 - A activation of higher-threshold motor units
- Lighter loads, higher reps, slower pace, short rest
 - Bodybuilders vs Powerlifters
 - Moderate intensity vs High intensity programs
 - Higher metabolic stress

Theory behind "Blood Flow Restriction" Training

- Muscle Damage
 - Initial theory
 - Eccentrics \rightarrow greater cell damage \rightarrow greater soreness
 - Eccentrics → "Greater strength gains"
 - Cell damage: must be important mechanism behind strength/hypertrophy gains

- Muscle Damage
 - Recent theories/findings (Beardsley, '18)
 - 1. Muscle damage repair probably does not enhance growth
 - 2. Reducing damaging effects of eccentrics \rightarrow limited impact on growth
 - Eccentric vs. Concentric
 - Eccentric:
 mm fiber length
 - Concentric: 🛧 fiber diameter
 - Benefit of eccentrics
 - Amount of mechanical tension generated

"No Pain No Gain"

Excessive pain

- Pain inhibition
- Impairment of growth?
- Limits workout ability

<u>Training goal?</u> Strength Hypertrophy

- High Reps (15+)
 - Low loads
 - Generation of high metabolic stress (to fatigue)
 - Insufficient loading to recruit highest number of motor units
 - Neural adaptation instead of strength?

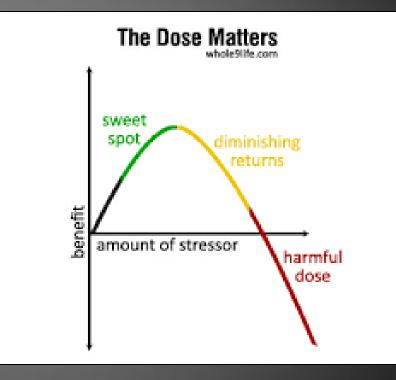
- Low reps (1-5)
 - High loads
 - Highly dependent upon mechanical tension
 - Optimizes strength potential
 - Joint stress

Is there a max threshold for mechanical tensioninduced hypertrophy, resulting in metabolic stress becoming increasingly important for further hypertrophy?

- Moderate Reps (6-12)
 - Optimal range for hypertrophic response?
 - Higher metabolic stress than low reps
 - Anaerobic glycolysis = Λ 'd metabolite build up
 - Elevated GH/testosterone
 - Facilitates remodeling of muscle tissue
 - Increased time under tension
 - **^**'d potential for microtrauma and fatigueability
 - ↓'d joint stress
 - Smilios '03
 - Greater GH levels after 4th set compared to 2nd set in "Max Hypertrophy" group vs "Max Strength" group

Training Variables Training Experience

"Trained" Lifters


 Require higher load/lower reps for optimal strength/hypertrophy gains

– "Ceiling effect"

- Progressively more difficult to increase mass
- Require more demanding resistance training programs

Training Variables Volume

- Total reps/set performed
- Higher volume better than single set program
 - Greater total mechanical tension?
 - Greater muscle damage?
 - Greater metabolic stress?
- Greater testosterone
 response
 - Schwab '93
 - Testosterone levels did not increase significantly until after the 4th set

Training Variables Exercise Selection

- Multi joint
 - Greater mm mass recruitment
 - Greater stabilization
- Single joint
 - Can selectively target underdeveloped mm
 - possibility of synergistic mm compensation

Training Variables Exercise Selection

- Directional loading (Contreras)
 - Axial (Squats)

 - Lower glutes > upper glutes
 - Aesthetic benefits
 - Horizontal (Thrusts)
 - Anterior / forward power (sprinting)
 - Equal lower and upper glutes
 - Frontal plane (Lateral)
 - Upper glutes

Training Variables Stable vs Unstable

- Unstable Surface Training
- McBride, '06
 - Squatting on dynadisc
 - Peak force: ↓ 45.6%
 - Rate of force development: 40.5%
 - $\mathbf{\Psi}$ 'd mechanical tension development
- Best utilized for core
 - Sternlicht '07, Vera-Garcia '00
 - [†] 'd activation of RA and external oblique on physioball

Training Variables Muscular Failure

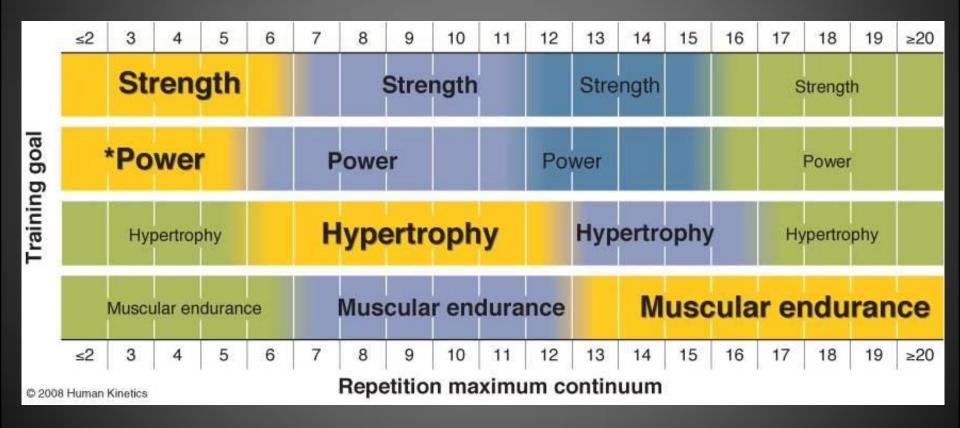
- "Necessary to maximize the hypertrophic response"
- Recruitment of greater # of motor units
- Increases metabolic stress
 - Maximizes hypertrophic response
- Linnamo, '05
 - 10RM set to failure = greater elevation in GH secretion than set not to failure
- Concern: overtraining/burnout

Putting it all together...

Hypertrophic gains

- Volume dependent
- Maximized with moderate intensity (6-12 reps)
- Maximized with higher metabolic stress
- Integrate "sets to failure"
- "Vary the Variables" (Intensity, speed, rest, ecc vs conc, specific exercises)
- Strength gains
 Load dependent (heavy)

But.....


- Schoenfeld '17 (Meta-Analysis)
 - Untrained subjects
 - Effects of high vs. low load
 - High load = 35.4% increase in 1RM
 - Low load = 28% increase in 1RM

"There is significant flexibility in the loading ranges that can be prescribed to promote muscular strength and mass (hypertrophy)." Schoenfeld, 2017

• Schoenfeld '16

- Trained subjects
- Squat 1RM
 - High load: 🛧 30%
 - Low load: 🛧 16.8%
- Bench 1RM
 - High load: **↑** 14.4%
 - Low load: 🛧 10.5%

Schoenfeld Strength-Endurance Continuum

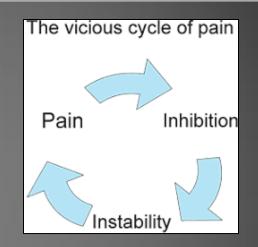
wearegymaddict @smurray_323 ways to train ~

But..... (Part II)

Untrained individuals

- Initial apparent increases in strength are probably not due to true "strength" gains
- "Neural Adaptation," "Neuromuscular Re-ed"
 - Improvements in the ability of the CNS to efficiently coordinate muscle activity
- Rehab Considerations?
 - Are we truly "strengthening" our patients?
 - What happens after neural adaptation phase is completed?

Glute Weakness....or Inhibition?


"Glute Amnesia"

-Stuart McGill

"Glute Killers"

- Pain / Injury
 - Reflex inhibition
 - May require "waking up"
- Synergistic Dominance
 - TFL
 - Hamstrings
- Quad Dominance
 - Running/sprinting
 - Squatting

"Glute Killers"

- Postural: Sitting
 - Compression
 - $\mathbf{\Psi}$ 'd vascular function
 - Inhibits nerve function
 - Hip flexor tightness
 - Inactivity
 - Ψ activation
- Postural: "Stretch Weakness"

BRACEYOURSELVES

TWOWEEK GROWTH SPL

Hip flexor tightness "Lower Cross Syndrome"

Tight

Spinae

(Facilitated)

Lumbar Erector

Weak (Inhibited)

Gluteals (Gluteus

Maximus, Medius

and Minimus)

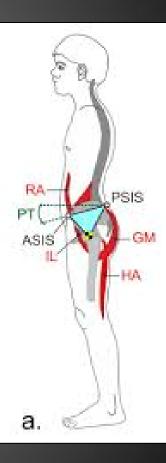
- Tight / Overfacilitated
 - Thoraco-lumbar muscles
 - Hip flexor complex
 - Iliopsoas
 - Rectus femoris
 - QL, TFL
- Reciprocal Inhibition
 - Glute Max, Med, Min
 - Rectus abdominus

Result: Anterior Pelvic Tilt

Weak

(Inhibited)

Abdominal

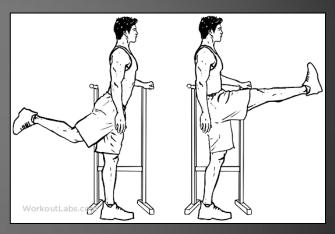

Muscles

Tight (Facilitated)

(Rectus Femoris

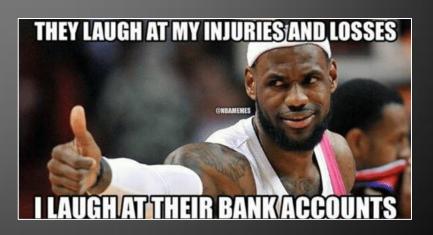
and Iliopsoas)

Hip Flexors



Rehab Programming

- Inhibit overactive mm
 STM
- Stretching
 - Dynamic
 - Static
- Glute Activation Drills -
- Strengthening

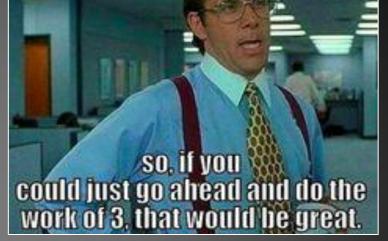


Glute Weakness Injury Considerations

- Multiple implications
 - Lumbo-sacral spine
 - Hamstrings
 - Lower extremity
 - ACL
 - PF
 - Ankle/foot
 - Upper extremity

Glute Weakness Lumbo-Sacral Spine Injury

- Stabilization of SI joint
- Control of frontal plane (via pelvic control)
- Control of anterior pelvic tilt
 - Lumbar extensor
 hypertonicity/spasm
 - Reflex inhibition of glute max, abdominals
- Spondylolysis/Spondylolisthe
 ?



Pelvis

Glute Weakness Hamstring Injury

- Synergists
- Glute weakness / fatigue
 - Compensatory HS over-activation
 - Micro-damage
 - Higher metabolic output
 - Higher mechanical loadng
 - Fatigue
 - Venergy absorption capability

FATIGUE!

yeah. we<u>'re gonna be</u> short

staffed today

Glute Weakness Hamstring Injury

- - Stretch reflex
- Tightness vs Active Tension
 - Wagner '10

- Case report: triathlete with HS cramping
- Failure of previous HS rehab
- Glute focus
- hamstring "flexibility" despite no stretching

Glute Weakness Patello-Femoral Pain

Patients with PFP may have altered glute med/max activation during functional activities such as running, jump landing, stair climbing and squatting.

Aminaka, J Electromyogr Kinesiol '11 Bolgla, Int J Sports Phys Ther '11 Brindle, Knee Surg Sports Traum Arthr '03 Cowan, Br J Sports Med '09 Souza, JOSPT '09 Wilson, Clin Biomech '11

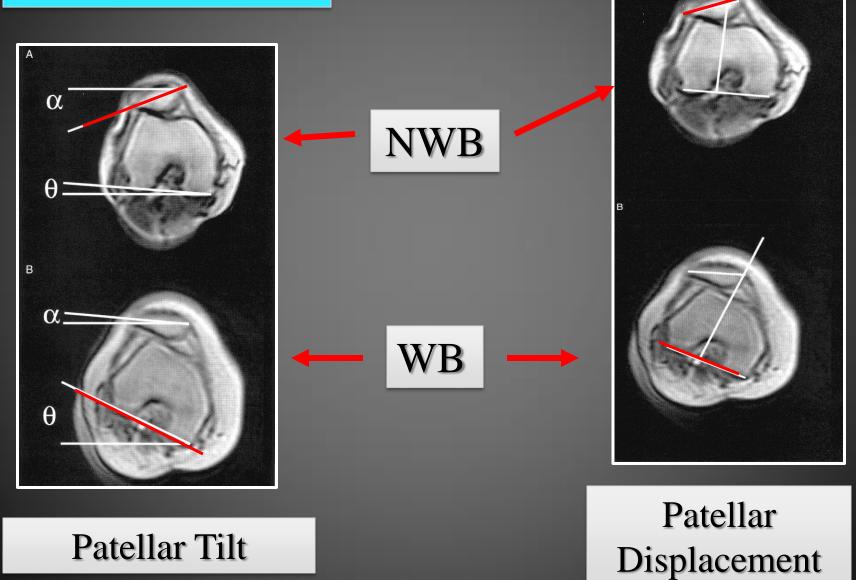
Glute Weakness Patello-Femoral Pain

JOSPT '03

Journal of C Volume 33 Number 11 November 2003	Drthopaedic	& Sports Physical Therapy
Official Publication of the Orthopaedic and Sports Physical Therapy Sections of the American Physical Therapy Association		
	Editorial	The Evolution of Rehabilitation for Patellofemoral Joint Dysfunction
	Research Reports	Patellofemoral Kinematics During Weight-Bearing and Non-Weight- Bearing Kine Extension in Persons With Lateral Sublaxation of the Patella: A Preliminary Study
		Hip Strength in Females With and Without Patellofemoral Pain
	Case Report	Management of Patellofernoral Pain Targeting Hip, Pelvis, and Trank Muscle Function: 2 Case Reports
	Clinical Commentaries	The Influence of Altered Lower-Extremity Kinematics on Patellofemoral Joint Dysfunction: A Theoretical Perspective
		The Role of Foot Orthoses as an Intervention for Patellofemoral Pain
		The Influence of Tibial and Femoral Rotation on Patellofemoral Contact Area and Pressure

Proximal Influence on P-F Joint

Powers, JOSPT '03

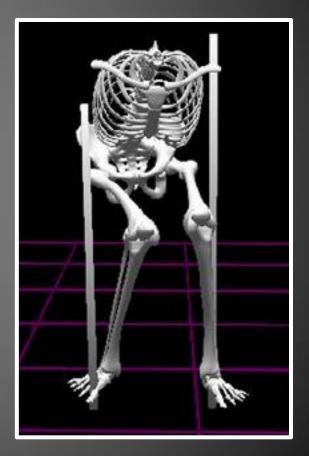

Patellofemoral Kinematics During Weight-Bearing and Non–Weight-Bearing Knee Extension in Persons With Lateral Subluxation of the Patella: A Preliminary Study

Christopher M. Powers, PT, PhD¹ Samuel R. Ward, PT² Michael Fredericson, MD³ Marc Guillet, PT, MS⁴ Frank G. Shellock, PhD⁵

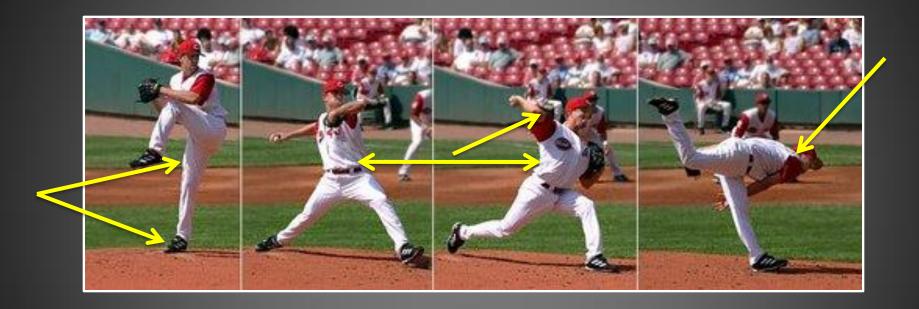
NWB

- Patella rotates and displaces on femur
- Weightbearing
 - Femur rotates under patella

Powers, JOSPT '03


A

Pathomechanics Valgus Posture


- Dynamic valgus collapse

 Most common MOI in females

 Hewett, AJSM '05
 - Female ACL subjects
 - Valgus moments 2.5x noninjured subjects
 - Primary predictor of ACL injury risk
 - Valgus angles
 - Valgus moments

Upper Extremity Injuries Kinetic Chain Principle

Development of pitching velocity begins at the ground

Goals of Kinetic Chain

- Shoulder does not function in isolation
- Lower extremity force production vital for increased ball velocity
- Alterations in previous links can significantly affect shoulder

Must assess core/glute strength!!!

Upper Extremity Injuries

Noyes, Hewett; Cincinnati Sports Medicne

• Hewett, AJSM '96; AJSM '99

- Jump retraining/plyometrics
 - 🗣 peak GRF
 - 🔹 🖖 hip abd/add moments
 - 🛧 LE mm power
 - Ψ incidence of knee injury
- Dynamic warmup
- Strength training
- Flexibility training

Initial strength levels?

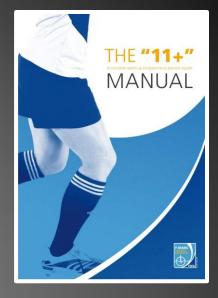
"Glute Activation Drills"

Mandelbaum, Santa Monica Sports Medicine

- Pre-game program (onfield), 15-20 minutes
- Program components
 - Warm-up
 - Stretching
 - Strengthening
 - Plyos
 - Agility
 - Jump education

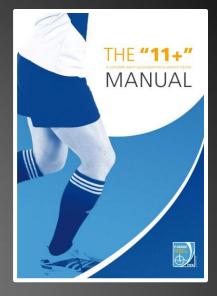
Downloadable PDF of Program: http://smsmf.org/smsf-programs/pep-program

Mandelbaum, '05 Santa Monica Sports Medicine


- 2 year study
- Trained Group: 6 ACL tears / 67,860 exp
- Untrained Groupd: 67 tears / 137,448 exp

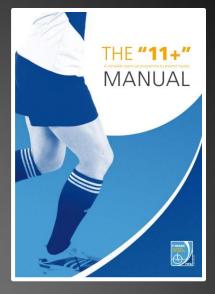
• Overall

- Year 1: 88% 🖊 risk of ACL injury
- Year 2: 75% 🕹 risk of ACL injury



- FIFA 11+ = "Activation Drills"
 Rectus abd, glute complex
- Running/jumping technique
- Strengthening: Core and Legs
- Plyos, agility, balance

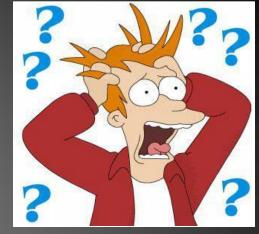
Proper N-M control at all times!



- FIFA 11+ = "Activation Drills"
 Rectus abd, glute complex
- Performance benefits
 - Daneshjoo '13
 - Quad peak torque: \uparrow 27.7%
 - Ham peak torque: 🛧 22%

- Injury Prevention
 - Silvers '15
 - \oint injury rate by 46.1%
 - Grooms '13
 - 72% 🕹 injury risk
 - Owoeye '14
 - 🖖 injury rate by 41%
- Compliance
 - Inversely correlated with injury rate

Strengthening...



...or technique?

The Best for Last...

- More confused now than before!!!
- "I heard the best exercise is...""But I just read the best exercise was..."
 - both may be correct!
- Bishop '18
 - Clams with and without resistance displayed most optimal Glute Med/TFL ratio
- McBeth '12
 - "...the rationale for performing the clam exercise is not supported by anatomical or EMG data; therefore we question the relevance of the exericse."

- Many problems with interpreting research
 - Methodology
 - "Standardized" exercise techniques?
 - Variables affecting glute activation/EMG
 - Exercise
 - Body position
 - Complexity
 - Surface
 - Electrode placement (surface)
 - Cuing
 - "Conscious" activation

- Many problems with interpreting research
 - Most functionally pertinent info?
 - Absolute glute EMG?
 - Glute/Synergist ratio?
 - Hamstrings
 - TFL
 - Subjects
 - Male vs female
 - Trained vs untrained
 - Unidentified weaknesses
 - Symptomatic or asymptomatic subjects
 - Level of cuing by investigators

Factors that can affect activation patterns

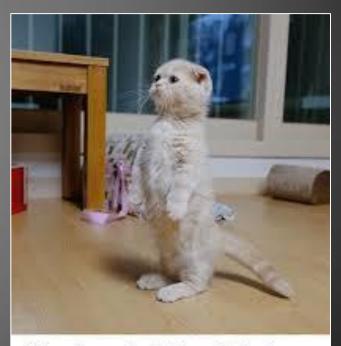
- Underlying glute weakness
- Hamstring dominance
- TFL dominance
- Quad dominance
- Hip flexor tightness
- Subtle technique flaws

EMG Thresholds

- Strength: \geq 40% MVIC

– Endurance: < 25% MVIC</p>

• Benefits of < 40% MVIC


- Treatment goals?
 - Initial strength level?
 - NM activation/motor control
 - Muscular endurance

Baseline for graduated loading program

Glute Medius EMG Results "Low" Activation

Ebert JR, Edwards PK '17 (Meta-Analysis)

Standing: 20% MVIC

"Stand up straight and don't slouch!" 😂

Gluteus Medius EMG "Moderate" Activation				
Ebert JR, Edwards PK '17 (Meta-Analysis)				
Exercise	% MVIC			
Front lunge	19-42%			
Side Lunge	39%			
Standing hip circum – WB/Unstable	38%			
Prone hip extension – Knee flexed	38%			
Standing hip abduction - NWB	28-33%			
Supine bridge	15-28%			
Prone plank – Double leg	27%			
Single leg stance - Unstable	25%			

Gluteus Medius EMG				
"High" Activation				
Ebert JR, Edwards PK '17 (Meta-Analysis)				
Exercise	% MVIC			
Single limb deadlift / hinge	56-58%			
Single leg bridge – Stable	47-55%			
Standing Glute set	48%			
Transverse lunge	48%			
Single leg bridge – Unstable	47%			
Quadruped bent knee hip ext – NWB	31-47%			
Clamshell	27-47%			
Standing hip abduction – WB	42-46%			

Gluteus Medius EMG "High" Activation

Ebert JR, Edwards PK '17 (Meta-Analysis)

Exercise	% MVIC
Single leg squat - Unstable	60%
Single limb skater squat	60%
Lateral band walk	15-58%
Pelvic drop	38-58%
Standing hip swing - WB	57%
Standing hip circum – WB / Stable	57%
Single leg wall squat	52%

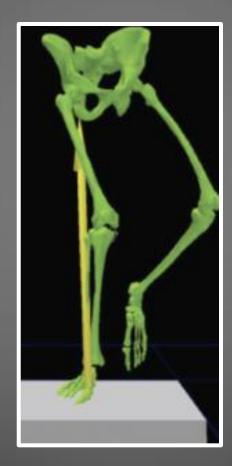
Gluteus Medius EMG "Very High" Activation

Ebert JR, Edwards PK '17 (Meta-Analysis)

Exercise	% MVIC
Sidelying abduction	42-100%
Single leg squat - Stable	42-82%
Clamshell IR	63-77%
Front step-up	44-63%
Lateral step-up	38-61%

Gluteus Medius EMG "Very High" Activation

Ebert JR, Edwards PK '17 (Meta-Analysis)


Exercise	% MVIC
Side plank w/abduction – WB	103%
Prone plank w/bent knee hip ext – WB	103%
Side plank w/abduction – NWB	89%
Prone plank w/bent knee hip ext - NWB	75%
Side plank – WB	74%

WB vs. NWB Leg

- Stabilization of pelvis
- Lateral force generation
 - Sidestepping
 - Pelvic hiking
- Stabilization for contralateral hip movement
- Control of lower extremity posture
- Contralateral carrying load

Lateral Trunk Lean

Hip Thrusts

Points to Ponder

- Activation pattern highly "pt dependent"
- "Mind Glute Connection"
- Benefits of extension to exercise technique?
- Functional difference of 10-15% EMG?
- Rotation with SLR-Abduction?
- Hip flexion angle with clams?
- Bridges: Benefit of anterior resistance
- Significance of Glute/TFL or Hamstring ratio?

"Play" with the technique!

Most important considerations...

Where does the patient "feel" the exercise?

Volitional Glute Activation

Video Analysis

Vhudl

This is a reminder that I shared a video with you. You can watch this video online or play in slow-motion using the free Hudl Technique app. Click below before the link expires:

View Your Video

This video was made using Hudl Technique.

Get the free app to analyze your sports technique in slow-motion, draw on videos, and compare yourself to downloadable pro videos.

Video Analysis

