

Strategies Towards Efficient Thermoelectric Performance in Silicon

Dr Nick Bennett

Nano-Materials Lab., School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh

Why silicon?

Si

- Abundant
- o Low-cost
- o Non-toxic

Bi₂Te₃ / Sb₂Te₃ / PbTe

- Scarce (Te)
- o Expensive
- o Toxic (Pb)
- Technical know-how
 Less technically mature
- Mass manufacture
 Not manufactured at scale

Focus on devices manufactured from single-crystal wafer feedstock

Why not silicon?

Si power factor similar to Bi₂Te₃ (3-4 mW m⁻¹ K⁻²) (@300 K)

Z is figure-of-merit,
T is absolute temp,
σ is electrical conductivity,
S is Seebeck coefficient,
κ is thermal conductivity

Si comparable to ${\rm Bi_2Te_3}$ in terms of S and σ

HERIOT WATT UNIVERSITY

Why not silicon?

Si thermal conductivity is ~150 W m⁻¹ K⁻¹ (@300 K)

Z is figure-of-merit,
T is absolute temp,
σ is electrical conductivity,
S is Seebeck coefficient,
κ is thermal conductivity

Si comparable to Bi_2Te_3 in terms of S and σ but... κ is 100x larger

 \Rightarrow ZT 100x smaller

How to reduce *k*?

Nanowires

Boukai *et al.,* Nature 451 (2008) 168 Hochbaum *et al.,* Nature 451 (2008) 163

093708

Nano pores

Tang *et al.,* Nano Lett. 10 (2010) 4279

How to reduce *k*?

Nanowires

Boukai *et al.,* Nature 451 (2008) 168 Hochbaum *et al.,* Nature 451 (2008) 163

(We have shown recently that SiNWs containing dislocations have enhanced Seebeck coefficient)

Bennett *et al.,* Appl. Phys. Lett. 107 (2015) 013903

devices?

A NOMATERIALS LAB

Why vacancy defects?

Numerous molecular dynamics studies have predicted that high vacancy (V) concentrations in Si can reduce κ

1.5% V \Rightarrow 95% reduction in κ

Lee *et al.,* Phys. Rev. B 83 (2011) 125202 Huang *et al.,* Scientific World Journal (2014) 863404 Wang *et al.,* Modelling Simul. Mater. Sci. Eng. 22 (2014) 035011 Shahraki *et al.,* J. Phys. Chem. Sol. 85 (2015) 233

ERIOT

Η

Electrical properties (300K)

Thermal conductivity (300K)

HERIOT WATT UNIVERSITY

κ is significantly reduced by implantation

After RTA, κ remains low due to the excess of Vs

Thermal transport significantly affected by V

Challenge (1): Stability?

 κ rises after long (high-temp) anneal

V clustering and/or removal when exposed to increased thermal budget

Larger clusters and/or less $V \Rightarrow$ higher κ [Lee *et al.*, Phys. Rev. B 83 (2011) 125202]

Challenge (1): Stability?

TEGs must be exposed to high temp in order to work!

For low device operating temps this appears to be ok

i.e. <300°C, κ does not increase

Challenge (2): Architecture?

All properties measured in the in-plane direction

Devices likely to be formed out-ofplane

In the out-ofplane direction κ is still reduced (by a little more)

Issue (3): Scalability?

Increasing implant energy allows depth of V-rich region to be extended

Can be combined with increased fluence (blue) to maintain V concentration

Scalable for thin-films

Wight & Bennett, Solid State Phenomena 242 (2016) 344

Conclusions

- Many good reasons why Si should be used for TEs
 ... also some good reasons why not!
- Vacancy engineering a novel concept to introduce high V concentrations in Si
- Significantly reduces κ without degrading σ or S (much)
- *ZT* raised from 0.01 to 0.2
- κ stable for low temperature post-exposure (<300°C)
- V-concentrations will be optimized further
- Scalable approach for thin-film thermoelectrics
 ... (maybe bulk?)

Acknowledgements

Neil Wight, Dr Jan-Willem Bos, Dr Srinivas Popuri (HWU)

Dr Eric Don (SemiMetrics Ltd)

The School of Engineering & Physical Sciences (HWU) for financial support

ESPRC for DTA studentship

Thank you for your attention

n.bennett@hw.ac.uk