Sample Final - Solutions

1. Find the unit tangent and unit normal vector for the following vector functions

$$
\vec{r}(t)=<t, \frac{1}{2} t^{2}>
$$

Soln.

$$
\begin{aligned}
\vec{r} & =\left\langle t, \frac{1}{2} t^{2}\right\rangle \\
\vec{r}^{\prime} & =\langle 1, t\rangle \\
\left\|\vec{r}^{\prime}\right\| & =\sqrt{t^{2}+1}
\end{aligned}
$$

so

$$
\vec{T}=\frac{\vec{r}^{\prime}}{\left\|\vec{r}^{\prime}\right\|}=\left\langle\frac{1}{\sqrt{t^{2}+1}}, \frac{t}{\sqrt{t^{2}+1}}\right\rangle
$$

Further

$$
\begin{aligned}
\vec{T}^{\prime} & =\left\langle\frac{-t}{\left(t^{2}+1\right)^{3 / 2}}, \frac{1}{\left(t^{2}+1\right)^{3 / 2}}\right\rangle \\
\left\|\vec{T}^{\prime}\right\| & =\frac{1}{t^{2}+1}
\end{aligned}
$$

so

$$
\vec{N}=\frac{\vec{T}^{\prime}}{\left\|\vec{T}^{\prime}\right\|}=\left\langle\frac{-t}{\sqrt{t^{2}+1}}, \frac{1}{\sqrt{t^{2}+1}}, 0\right\rangle
$$

2. Prove the limits either exist or do not exist. In the former case use the squeeze theorem.

$$
\text { (i) } \lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+2 y^{2}}{x^{2}+y^{2}} \quad \text { (ii) } \lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{4}}{x^{2}+y^{2}}
$$

Soln. 2 (i)
Along $\quad y=0, \lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+2 y^{2}}{x^{2}+y^{2}}=\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}}{x^{2}}=1$
Along $\quad y=x, \lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+2 y^{2}}{x^{2}+y^{2}}=\lim _{(x, y) \rightarrow(0,0)} \frac{3 x^{2}}{2 x^{2}}=\frac{3}{2}$.
Since following different paths lead to different limits, the limit DNE.

Soln. 2 (ii) From the inequalities

$$
\begin{aligned}
& -\sqrt{x^{2}+y^{2}} \leq x \leq \sqrt{x^{2}+y^{2}} \\
& -\sqrt{x^{2}+y^{2}} \leq y \leq \sqrt{x^{2}+y^{2}}
\end{aligned}
$$

we have

$$
\begin{gathered}
-\left(x^{2}+y^{2}\right) \leq x^{2} \leq\left(x^{2}+y^{2}\right) \\
-\left(x^{2}+y^{2}\right)^{2} \leq y^{4} \leq\left(x^{2}+y^{2}\right)^{2}
\end{gathered}
$$

which gives

$$
-\left(x^{2}+y^{2}\right)^{3} \leq x^{2} y^{4} \leq\left(x^{2}+y^{2}\right)^{3}
$$

Thus,

$$
-\left(x^{2}+y^{2}\right)^{2} \leq \frac{x^{2} y^{4}}{x^{2}+y^{2}} \leq\left(x^{2}+y^{2}\right)^{2}
$$

and

$$
-\lim _{(x, y) \rightarrow(0,0)}\left(x^{2}+y^{2}\right)^{2} \leq \lim _{(x, y)->(0,0)} \frac{x^{2} y^{4}}{x^{2}+y^{2}} \leq \lim _{(x, y)->(0,0)}\left(x^{2}+y^{2}\right)^{2}
$$

Since

$$
\lim _{(x, y) \rightarrow>(0,0)}\left(x^{2}+y^{2}\right)^{2}=0
$$

by the squeeze theorem

$$
\lim _{(x, y)->(0,0)} \frac{x^{2} y^{4}}{x^{2}+y^{2}}=0
$$

3. Find the equation of the tangent plane to the given surface at the specified point

$$
x^{2} y+x z+y z^{2}=3, \quad P(1,2,-1)
$$

Soln. If we define $F=x^{2} y+x z+y z^{2}-3$ then $F_{x}=2 x y+z, F_{y}=x^{2}+z^{2}$ and $F_{z}=x+2 y z$. Evaluating these at the point P gives $F_{x}=3, F_{y}=2$ and $F_{z}=-3$. The equation of the tangent plane is thus $3(x-1)+2(y-2)-3(z+1)=0$
4. Find the directional derivative of $z=x^{2}+3 x y+y^{2}$ at $(1,1)$ in the direction of $<-3,4>$.
Soln. The gradient is given by $\nabla z=<2 x+3 y, 3 x+2 y>$ and at the point $(1,1)$ it becomes $\nabla z=<5,5>$. The direction derivative is then given by

$$
\nabla z \cdot \frac{\vec{u}}{\|\vec{u}\|}=<5,5>\cdot \frac{<-3,4>}{5}=\frac{-15+20}{5}=1
$$

5. Classify the critical points for

$$
z=x^{2} y-x^{2}+y^{2}-18 y
$$

Soln. The derivatives are

$$
z_{x}=2 x y-2 x=2 x(y-1), \quad z_{y}=x^{2}+2 y-18
$$

Setting each of these to zero gives the following critical points: $(0,9),(-4,1)$, and $(4,1)$. The second derivatives are:

$$
z_{x x}=2(y-1), \quad z_{x y}=2 x, \quad z_{y y}=2
$$

giving $\Delta=z_{x x} z_{y y}-z_{x y}^{2}=4(y-1)-4 x^{2}$. We now test each critical point

$$
\begin{array}{rlll}
(0,9) & \Delta=32>0 & z_{y y}>0 & \min \\
(-4,1) & \Delta & =-64<0 & \\
(4,1) & \Delta & =-64<0 & \\
\text { saddle } \\
\text { saddle }
\end{array}
$$

6 (i). Find the volume bound by the paraboloid $z=1-x^{2}-y^{2}$ and the plane $z=0$

Soln. The two surfaces intersect when $z=0$ so $x^{2}+y^{2}=1$. The volume is then obtained from the integral

$$
\iint_{R}\left(1-x^{2}-y^{2}\right) d A
$$

As the region of integration is a circle of radius 1, we switch to polar coordinates giving

$$
\int_{0}^{2 \pi} \int_{0}^{1}\left(1-r^{2}\right) r d r d \theta=\frac{\pi}{2}
$$

6 (ii). Find the volume inside the sphere $x^{2}+y^{2}+z^{2}=2$ and the cylinder $x^{2}+y^{2}=$ 1

Soln. The surfaces intersect when $z^{2}=1$ or $z= \pm 1$. The volume is then obtained from the integral

$$
\iint_{R} 2 \sqrt{2-x^{2}-y^{2}} d A
$$

As the region of integration is a circle of radius 1 , we switch to polar coordinates giving

$$
\int_{0}^{2 \pi} \int_{0}^{1} 2 \sqrt{2-r^{2}} r d r d \theta=\frac{8 \sqrt{2}-4}{3} \pi
$$

6 (iii). Find the surface area of the plane $x+2 y+3 z=6$ for $x, y, z \geq 0$.

Soln. The general formula is

$$
\iint_{R} \sqrt{1+z_{x}^{2}+z_{y}^{2}} d A
$$

Since $z=2-\frac{1}{3} x-\frac{2}{3} y$, the $\mathrm{n} z_{x}=-1 / 3$ and $z_{y}=-2 / 3$ giving

$$
\iint_{R} \sqrt{1+\frac{1}{9}+\frac{4}{9}} d A=\frac{\sqrt{14}}{3} \iint_{R} d A
$$

Thus

$$
\frac{\sqrt{14}}{3} \int_{0}^{3} \int_{0}^{6-2 y} d x d y=3 \sqrt{14}
$$

7. Set of the triple integral $\iiint f(x, y, z) d V$ in both cylindrical and spherical coordinates for the volume inside the cone $z=\sqrt{x^{2}+y^{2}}$ and below the plane $z=1$.

Soln-Cylindrical Eliminating z between the equations gives $x^{2}+y^{2}=1$. This is the region of integration

$$
\int_{0}^{2 \pi} \int_{0}^{1} \int_{r}^{1} f(r \cos \theta, r \sin \theta, z) r d z d r d \theta
$$

Soln-Spherical From the picture we see that $\phi=0 \rightarrow \pi / 4$. Further, $\rho=0 \rightarrow$ $1 / \cos \phi$ and $\theta=0 \rightarrow 2 \pi$ so

$$
\int_{0}^{2 \pi} \int_{0}^{\pi / 4} \int_{0}^{\sec \phi} f(\rho \cos \theta \sin \phi, \rho \sin \theta \sin \phi, \rho \cos \phi,) \rho^{2} \sin \phi d \rho d \phi d \theta
$$

8. Is the following vector field conservative?

$$
\vec{F}=<y^{2}+3 y z, 2 x y+3 x z, 3 x y>
$$

Soln. Since $\nabla \times \vec{F}=0$ then yes, the vector field is conservative. Thus ϕ exists such that $\vec{F}=\vec{\nabla} f$ so

$$
\begin{array}{ll}
\phi_{x}=y^{2}+3 y z & \Rightarrow \phi=x y^{2}+3 x y z+A(y, z) \\
\phi_{y}=2 x y+3 x z & \Rightarrow \phi=x y^{2}+3 x y z+B(x, z) \\
\phi_{z}=3 x y & \Rightarrow \phi=3 x y z+C(x, y)
\end{array}
$$

Therefore we see that

$$
\phi=x y^{2}+3 x y z+c
$$

and

$$
\int_{C}\left(y^{2}+3 y z\right) d x+(2 x y+3 x z) d y+3 x y d z=x y^{2}+\left.3 x y z\right|_{(0,0,0)} ^{(1,2,3)}=22
$$

9 (i). Evaluate the following line integral $\int_{c} 2 x y d x+(x+1) d y$ where c is the counterclockwise direction around the square with vertices $(0,0),(1,0),(1,1)$ and (0.1).

Soln. Here we have 4 separate curves which we denote by C_{1}, C_{2}, C_{3} and C_{4}.
$C_{1}: \quad$ Here $y=0, d y=0$ so $\int_{\mathcal{C}_{1}} 0=0$
C_{2} : Here $x=1, d x=0$ so $\int_{0}^{1} 2 d y=2$
$C_{3}: \quad$ Here $y=1, d y=0$ so $\int_{1}^{0} 2 x d x=-1$
C_{4} : Here $x=0, d x=0$ so $\int_{1}^{0} d y=-1$
Thus $\int_{c} 2 x y d x+(x+1) d y=0+2-1-1=0$.

9 (ii). Evaluate the following line integral $\int_{c}(x-y) d x+(x+y) d y$ where c is clockwise direction around the circle of radius 2 .

Soln. Here we parameterize the curve by $x=2 \cos t, y=-2 \sin t, 0 \leq t \leq 2 \pi$. Note the -2 on the y term as we are going clockwise and not counterclockwise. So $d x=-2 \sin t d t$ and $d y=-2 \cos t d t$. Thus, the line integral becomes

$$
\int_{0}^{2 \pi}-(2 \cos t+2 \sin t) 2 \sin t d t-(2 \cos t-2 \sin t) 2 \cos t d t=-8 \pi
$$

10. Green's Theorem is

$$
\int_{C} P d x+Q d y=\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A .
$$

Verify Green's Theorem where $\vec{F}=<3 x^{2} y, x^{3}+x>$ where R is the region bound by the curves $y=x^{2}$ and $y=x$.

Soln. We have two separate curves which we denote by C_{1} and C_{2}.
$C_{1}: \quad$ Here $y=x^{2}, d y=2 x d x$ so $\int_{0}^{1} 3 x^{4} d x+\left(x^{3}+x\right) 2 x d x=5 / 3$
$C_{2}: \quad$ Here $y=x, d y=d x$ so $\int_{1}^{0} 3 x^{3} d x+\left(x^{3}+x\right) d x=-3 / 2$
so

$$
\int_{C} 3 x^{2} y d x+\left(x^{3}+x\right) d y=5 / 3-3 / 2=1 / 6
$$

For the second part, since $P=3 x^{2} y$ and $Q=x^{3}+x$ then $Q_{x}-P_{y}=3 x^{2}+1-$ $3 x^{2}=1$ so

$$
\iint_{R}\left(Q_{x}-P_{y}\right) d A=\int_{0}^{1} \int_{x^{2}}^{x} 1 d y d x=1 / 6
$$

11 (i). Evaluate $\iint_{S} x y d S$ where S is the surface of the plane $2 x+y+z=6$.

Soln. Since $z=6-2 x-y$ then $d S=\sqrt{1+z_{x}^{2}+z_{y}^{2}} d A=\sqrt{1+4+1} d A$ and thus

$$
\int_{0}^{3} \int_{0}^{6-2 x} \sqrt{6} x y d y d x=27 \sqrt{6} / 2
$$

11 (ii). Evaluate $\iint_{S}(x+z) d S$ where S is the surface of the cylinder $y^{2}+z^{2}=9$ bound between $x=0$ and $x=4$ in the first octant.

Soln. Here, we'll parameterize the surface by $x=u, y=3 \cos v$ and $z=3 \sin v$, $0 \leq u \leq 3$ and $0 \leq v \leq \pi / 2$. If we let $\vec{r}=<u, 3 \cos v, 3 \sin v>$ then $\left\|\vec{r}_{u} \times \vec{r}_{v}\right\|=3$ and we have

$$
\int_{0}^{4} \int_{0}^{\pi / 2}(u+3 \sin v) 3 d v d u=3(4 \pi+12)
$$

12. Verify the divergence theorem

$$
\iint_{S} \vec{F} \cdot \vec{n} d S=\iiint_{V} \nabla \cdot \vec{F} d V
$$

where $\vec{F}=<x+y z, y+x z, z+x y>$ and V is the volume of the tetrahedron bound by $x+y+z=1$ and the planes $x=0, y=0$ and $z=0$.

Soln. We will first deal with the surface integrals. There are 4 of them.
S_{1} : Bottom. Here $z=0$ so $\vec{F}=\langle x, y, x y>$ and $\vec{n}=<0,0,-1\rangle$.
Thus $\vec{F} \cdot \vec{n}=-x y$ and $\int_{0}^{1} \int_{0}^{1-x}-x y d y d x=-1 / 24$
$S_{2}:$ Left. Here $y=0$ so $\vec{F}=\langle x, x z, z\rangle$ and $\vec{n}=\langle 0,-1,0\rangle$.
Thus $\vec{F} \cdot \vec{n}=-x z$ and $\int_{0}^{1} \int_{0}^{1-x}-x z d z d x=-1 / 24$
S_{3} : Back. Here $x=0$ so $\vec{F}=\langle y z, y, z>$ and $\vec{n}=<-1,0,0\rangle$.
Thus $\vec{F} \cdot \vec{n}=-y z$ and $\int_{0}^{1} \int_{0}^{1-y}-y z d z d y=-1 / 24$
$S_{4}:$ Plane. Here $x+y+z=1$ and $\vec{n}=<1,1,1>/ \sqrt{3}$.
Thus $\vec{F} \cdot \vec{n}=\left(1+x+y-x^{2}-x y-y^{2}\right) / \sqrt{3}$ and

$$
\int_{0}^{1} \int_{0}^{1-x}\left(1+x+y-x^{2}-x y-y^{2}\right) d y d x=5 / 8
$$

Therefore $\iint_{S} \vec{F} \cdot \vec{n} d S=-1 / 24-1 / 24-1 / 24+5 / 8=1 / 2$.
Second part. $\nabla \cdot \vec{F}=3$ so $\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} 3 d z d y d x=1 / 2$. Verified!
13. Verify Stokes's theorem for

$$
\oint_{C} \vec{F} \cdot d \vec{r}=\iint_{S} \nabla \times \vec{F} \cdot \vec{n} d S
$$

where $\vec{F}=<x z-y, y z, 1>$ and S is the surface of the paraboloid $z=1-x^{2}-y^{2}$ for $z \geq 0$ and C is the curve where the paraboloid intersects the plane $z=0$.
Soln. We will first do the line integral. Here

$$
\oint_{C}(x z-y) d x+y z d y+d z
$$

but since we on the curve where the paraboloid intersects the plane, then $z=0$ and so we have

$$
\oint_{C}-y d x
$$

If we let $x=\cos t$ and $y=\sin t$ this integral becomes

$$
\int_{0}^{2 \pi} \sin ^{2} t d t=\pi
$$

For the second part, $\nabla \times \vec{F}=<-y, x, 1>$. On the surface of the paraboloid

$$
\vec{n}=\frac{\langle 2 x, 2 y, 1\rangle}{\sqrt{4 x^{2}+4 y^{2}+1}}
$$

and $d S=\sqrt{1+4 x^{2}+4 y^{2}} d A$ so

$$
\begin{aligned}
\iint_{S} \nabla \times \vec{F} \cdot \vec{n} d S & =\iint_{S}<-y, x, 1>\cdot \frac{<2 x, 2 y, 1>}{\sqrt{4 x^{2}+4 y^{2}+1}} \sqrt{1+4 x^{2}+4 y^{2}} d A \\
& =\iint_{S} 1 d A=\pi
\end{aligned}
$$

Verified!

