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Abstract In real life situations, the decision mak-

ers’ outlook is more precisely expressed in terms

of membership and non-membership expressions.

Therefore, intuitionistic fuzzy terms are best suited

to deal with such information to avoid any loss

of information. This paper aims to investigate the

matrix games with the payoffs matrix represented

by Atanassov’s intuitionistic fuzzy terms (IFTs).

The motive behind this is to study extensively the

important properties of such games and to estab-

lish the mathematical programming methodology

of the IVI2TLT games. The methodology proposed

develops the solution concept following Inuiguchi

et al. [18] approach, to solve such games; the crisp

equivalent problems of respective players’ are free

from binary variables. It has been established that

solving such a fuzzy game is equivalent to solving

a pair of (crisp) multi-objective linear program-

ming problems using an indeterminacy function

for each goal. Finally, the mathematical models

are reduced to nonlinear programming problems

to acquire the optimal strategies for the players.

An example is illustrated to validate and applica-

bility of the proposed technique.

Keywords intuitionistic fuzzy set ·matrix games ·

multi-objective linear programming problems ·

non-linear programming problems

1 Introduction

The matrix games with single Intuitionistic fuzzy

goal of each of the two players, has been studied

earlier [1,14,20]. However, we can have a game

theoretic model of a real problem with multiple

objectives (like, costs, productivity, time, etc.) by

making a one to one correspondence of each of

the objectives for pay-offs. Since each player has

multiple goals, the concept of vector optimization

appears to be more suitable. But comparing the

pay-offs of the players in two person zero-sum

multi-objective games is much more difficult than

comparing them in scalar game, and the classical

optimal solution concept is no longer applicable.

For this reason, a new solution concepts of Pareto-

optimal security strategy has been proposed in

[15].

One of the earliest study to analyze the maxmin

and minmax values of two person zero-sum multi-

objective games is due to Zeleny [25]. By intro-
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ducing a parameter vector λ, the game reduces

to a parametric linear programming problem. He

then discussed the concept of Pareto-optimal so-

lutions and ideal points for two person zero-sum

multi-objective games. Further, Cook [12] intro-

duced a goal vector and formulated such games

as goal programming problems, while Corley [13]

presented the necessary and sufficient condition

for optimal mixed strategies for the same. Ghose

and Prasad [15] introduced the concept of Pareto-

optimal Security Strategies (POSS) for multi-objective

two person zero-sum games and obtained it by

scalarization of the original game. Fernandez and

Puerto [16] studied the same game model as that of

[15] and established an equivalence between POSS

and efficient solution of a pair of multi-objective

programming problems.

Though single objective two person zero-sum fuzzy

matrix games have been studied extensively in the

literature ([22],[9]), the results on multi-objective

scenario are rather scarce. The main contribution

in this direction has been the work of Sakawa and

Nishizaki [22]. Their approach was to associate a

fuzzy goal with respective payoff matrix and de-

fine the solution in terms of maximizing the de-

gree of minimal goal attainment for each player.

Further, Aggarwal et al. [3] has also studied mul-

tiobjective two-person zero-sum games but with

different approach.

1.1 Preliminaries

For all the notations we shall be following [5–7,

14]. Using the Hurwicz’s optimism-pessimism cri-

terion [17], for a fixed λ, λ ∈ [0, 1], an I-fuzzy set

Ã is transformed into a fuzzy set Ã whose mem-

bership function is described by

fÃ(λ, x) = (1 − λ)µÃ(x) + λ(1 − νÃ(x)), x ∈ X.

This function is called as indeterminacy resolving

function of Ã. The parameterλdepicts the outlook

of the decision maker towards resolving indeter-

minacy; λ = 0, means that the decision maker re-

solves indeterminacy fully in favor of membership

(complete optimism in resolving indeterminacy),

while λ = 1 indicates that the decision maker re-

solves indeterminacy fully in negation of the non-

membership function (complete pessimism in re-

solving indeterminacy).

Consider a multi-objective optimization problem

with l goals and w constraints. Let the set of goals

be Gr, r = 1, 2, ..., l and let the set of constraints

be Cw, k = 1, 2, ...,w, each of which can be char-

acterized as an I-fuzzy set on the universal set X.

Angelov [4] used the Bellman and Zadeh’s exten-

sion principle [11] and defined the I-fuzzy decision

as follows:

D̃ = (G̃1 ∩ G̃2 ∩ ... ∩ G̃l) ∩ (C̃1 ∩ C̃2 ∩ ... ∩ C̃w)

with

D̃ = {〈x, µD̃(x), νD̃(x)〉|x ∈ X},

where

µD̃(x) = min
r,k
{µG̃r

(x), µC̃k
(x)}

and

νD̃(x) = max
r,k
{νG̃r

(x), νC̃k
(x)}

Angelov [4] associated a value function with D̃ as

VD̃(x) = µD̃(x) − νD̃(x), x ∈ X, and the optimal so-

lution is defined in the sense of finding an x∗ ∈ X

such that VD̃(x∗) = maxx∈X VD̃(x). Dubey et al. [14]

implemented Yager’s [23] idea of resolving inde-

terminacy in the interval uncertainity represented

by I-fuzzy sets in optimization problems. It was
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observed that this approach can yield a better op-

timal value for decision making problem than the

one proposed in [4]. We briefly describe decision

making approach in I-fuzzy environment as given

in [14]. Let λ ∈ [0, 1] be fixed. Associate a fuzzy set

D̃, having membership function explained as

fD̃(λ, x) = min
r,k
{ fG̃r

(λ, x), fC̃k
(λ, x)|x ∈ X},

where fG̃r
(λ, x) and fC̃k

(λ, x) are the indeterminacy

resolving functions of the I-fuzzy sets represent-

ing the rth goal and the kth constraint, respectively.

Then, x∗ ∈ X is an optimal decision, if fD̃(λ, x∗) =

maxx∈X fD̃(λ, x), that is fD̃(λ, x∗) ≥ fD̃(λ, x), ∀ x ∈

X. Hence, solving an optimization problem with

Atanassov’s I-fuzzy goal is equivalent to solving

the following optimization problem:

max α

subject to fG̃r
(λ, x) ≥ α, r = 1, 2, ..., l

fC̃k
(λ, x) ≥ α, k = 1, 2, ...,w

0 ≤ α ≤ 1, x ∈ X.

where α = min fD̃(λ, x). Though there is no unique

way to define an I-fuzzy inequality aTx &IF b, for

any a, b ∈ Rn, the n-dimensional real space, but two

natural approaches are ’the optimistic approach’

and ’the pessimistic approach’ as explained in de-

tails by [1,17] and [14]. For a given acceptance

tolerance p̂ > 0, the linear membership function

associated with this inequality is described as fol-

lows:

µ(aTx) =


1; aTx ≥ b

1 − b−aTx
p̂ ; b − p̂ ≤ aTx ≤ b

0; aTx ≤ b − p̂.

Let q̂ (0 < q̂ < p̂) be the tolerance in rejection of the

I-fuzzy inequality aTx &IF b. The linear nonmem-

bership function in optimistic and pessimistic ap-

proaches are defined respectively as follows:

ν(aTx) =νoptimistic(aTx)

=


0; aTx ≥ b

1 − aTx−b+p̂+q̂
p̂+q̂ ; b − p̂ − q̂ ≤ aTx ≤ b

1; aTx ≤ b − p̂ − q̂.

ν(aTx) =νpessimistic(aTx)

=


0; aTx ≥ b − p̂ + q̂

1 − aTx−b+p̂
q̂ ; b − p̂ ≤ aTx ≤ b − p̂ + q̂

1; aTx ≤ b − p̂.

The I-fuzzy inequality aTx .IF b is treated equiva-

lent to (−a)Tx &IF (−b).

1.2 I-Fuzzy Multi-objective Two Person Zero-sum

Game with I-Fuzzy goals

Let Vr
o and Wr

o be the scalars representing the aspi-

ration levels of players I and Players II correspond-

ing to rth pay-offs (Ar, r = 1, 2, ..., l), respectively.

The I-fuzzy multi-objective matrix game with I-

fuzzy goals, denoted by IFMOMG, is defined as

IFMOMG = (Sm,Sn,Ar,Vo
r,&IF

pr
o,qr

o
, Wr

o, .
IF
sr

o,tr
o
),

r = 1, 2, ..., l, where pr
o and qr

o are the tolerance lev-

els associated with the acceptance and rejection of

the aspiration level Vr
o for Player I. Similarly, sr

o

and tr
o are the tolerance associated with the accep-

tance and rejection of the aspiration level Wo
r for

Player II (∀ r = 1, 2, ...., l). Now Player I problem is

to find x ∈ Sm such that xTAry&IF
pr

o,qr
o

Vo
r, ∀ y ∈ Sn,

and Player II problem is to find y ∈ Sn such that

xTAry.IF
sr

o,tr
o
Wr

o, ∀x ∈ Sm, r = 1, 2, ..., l. In other

words, the Player I problem, associated with the
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rth pay-off matrix is

(IFP-I) Find x ∈ Sm such that

xTAr
j &

IF
pr

o,qr
o

Vr
o, j = 1, 2, ...,n.

Similarly, the Player II problem, associated with

the rth pay-off matrix is

(IFP-II) Find y ∈ Sn such that

Ar
i y .IF

sr
o,tr

o
Wr

o, i = 1, 2, ...,m.

Definition 1 Security level of satisfaction for

Player I For a strategy x ∈ Sm, the security level of

satisfaction for Player I corresponding to rth pay-

offs is

αr(x) = min
1≤ j≤n

f j
r(λ, xTA j

r)

Therefore, the security level for Player I is an l-

tuple vector, given by

α(x) = [α1(x), α2(x), ..., αl(x)].

Definition 2 Security level of satisfaction for

Player II For a strategy y ∈ Sn, the security level

of satisfaction for Player II corresponding to rth

pay-offs is

βr(x) = min
1≤i≤m

gi
r(λ,Ar

i y)

Therefore, the security level for Player II is an l-

tuple vector, given by

β(y) = [β1(y), β2(y), ..., βl(y)].

Definition 3 Pareto-optimal security strategy for

Player I A strategy x∗ ∈ Sm is a Pareto-optimal

security strategy (POSS) for Player I if there is no

x ∈ Sm such that

α(x∗) ≤ α(x) and α(x∗) , α(x)

Definition 4 Pareto-optimal security strategy for

Player II A strategy y∗ ∈ Sn is a Pareto-optimal

security strategy (POSS) for Player II if there is no

y ∈ Sn such that

β(y∗) ≤ β(y) and β(y∗) , β(y)

If x∗ is a POSS for player I, then his security level

is given by α∗ = α(x∗). Similarly, if y∗ is a POSS

for player II, then his security level is given by

β∗ = β(y∗)

2 Proposed Approach

2.1 Model in Optimistic Framework

Let pr
o and qr

o be the tolerances pre specified by

Player I for accepting and rejecting the aspira-

tion level Vr
o in (IFP − I) for all r = 1, 2, ..., l. Let

f r
j (λ, A jx), j = 1, 2, ...,n, be the indeterminacy

resolving functions for r = 1, 2, ..., l. Next, let sr
o

and tr
o be the tolerances pre specified by Player

II for accepting and rejecting the aspiration level

Wr
o in (IFP − II) for all r = 1, 2, ..., l. Let gr

i (λ,Aiy),

i = 1, 2, ...,m, for all r = 1, 2, ..., l. The membership

and the non-membership functions for Player I in

optimistic view with tolerances pr
o and qr

o for all

r = 1, 2, ..., l are as follows:

µ j
r(xTAr

j) =


1; xTAr

j ≥ Vr
o

1 +
xTAr

j−Vr
o

pr
o

; Vr
o − pr

o ≤ xTAr
j ≤ Vr

o,

0; xTAr
j ≤ Vo

r
− pr

o.

and

ν j
r(xTAr

j) =



1; xTAr
j ≤ Vr

o − pr
o − qr

o,

1 −
xTAr

j−(Vr
o−pr

o−qr
o)

pr
o+qr

o
;

Vr
o − pr

o − qr
o ≤ xTAr

j ≤ Vr
o,

0; xTAr
j ≥ Vo

r.
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The indeterminacy functions for f j
r(λ, xTAr

j), j =

1, 2, ...,n for Player I are as follows:

f j
r(λ, xTAr

j) =



0; xTAr
j ≤ Vr

o − pr
o − qr

o,

f1 j =
λ(xTAr

j−(Vr
o−pr

o−qr
o))

pr
o+qr

o
;

Vr
o − pr

o − qr
o ≤ xTAr

j ≤ Vr
o − pr

o,

f2 j = 1 + (xTAr
jx − Vo) pr

o+(1−λ)qr
o

pr
0(pr

o+qr
o) ;

Vr
o − pr

o ≤ xTAr
j ≤ Vr

o,

0; xTAr
j ≥ Vo

r.

Similarly, for Player II, the membershiip and the

non-membership functions with tolerances sr
o and

tr
o are

µi
r(Ar

j y) =


1; Ar

i y ≤Wr
o

1 +
Wr

o−Ar
i y

sr
o

; Wr
o ≤ Ar

i y ≤Wr
o + sr

o,

0; Ar
i y ≥Wo

r + sr
o,

and

νi
r(Ar

i y) =



0; Ar
i y ≤Wr

o,

1 +
Ar

i−(Vr
o−sr

o−tr
o)

sr
o+tr

o
;

Wr
o ≤ Ar

i y ≤Wr
o + sr

o + tr
o,

1; Ar
i ≥Wr

o + sr
o + tr

o,

respectively. The indeterminacy resolving func-

tions gr
i (A

r
i y), for i = 1, 2, ..,m, are as follows:

gi
r(λ,Ar

i y) =



1; Ar
i y ≤Wr

o,

gi1 = 1 − (Ar
i y −Wo) sr

o+(1−λ)tr
o

sr
o(sr

o+tr
o) ;

Wr
o ≤ Ar

i y ≤Wr
o + sr

o,

gi2 =
λ(Wr

o+sr
o+tr

o−Ar
i y)

sr
0+tr

o) ;

Wr
o + sr

o ≤ Ar
i y ≤Wr

o + sr
o + tr

o,

0; Ar
i y ≥Wr

o + sr
o + tr

o.

In the absence of any information about the atti-

tude of the decision maker towards resolving in-

determinacy, we continue to take λ = 1
2 only. In

this case f r
j (λ,Ar

jx) and gr
i (λ,A

r
i y)) respectively, for

all r = 1, 2, ..., l, j = 1, 2, ...,n and i = 1, 2, ...,m, the

indeterminacy resolving functions are described

as:

f j
r(xTAr

j) =



0; xTAr
j ≤ Vr

o − pr
o − qr

o,

f1 j =
(xTAr

j−(Vr
o−pr

o−qr
o))

2(pr
o+qr

o) ;

Vr
o − pr

o − qr
o ≤ xTAr

j ≤ Vr
o − pr

o,

f2 j = 1 + (xTAr
jx − Vo) 2pr

o+qr
o

2pr
0(pr

o+qr
o) ;

Vr
o − pr

o ≤ xTAr
j ≤ Vr

o,

0; xTAr
j ≥ Vo

r.

and

gi
r(Ar

i y) =



1; Ar
i y ≤Wr

o,

gi1 = 1 − (Ar
i y −Wo) 2sr

o+tr
o

2sr
o(sr

o+tr
o) ;

Wr
o ≤ Ar

i y ≤Wr
o + sr

o,

gi2 =
(Wr

o+sr
o+tr

o−Ar
i y)

2(sr
0+tr

o) ;

Wr
o + sr

o ≤ Ar
i y ≤Wr

o + sr
o + tr

o,

0; Ar
i y ≥Wr

o + sr
o + tr

o.

respectively. It is important to note that for all

r = 1, 2, ..., l, f r
j (xTAr

j), j = 1, 2, ...,n and gr
i (A

r
i y),

i = 1, 2, ...,m, are piecewise linear S-shaped func-

tions with convex type break points. We follow

Inuiguchi et al. [18] algorithm to convert them

into piecewise linear functions with only concave

break points. The procedure transformed f r
j (xTAr

j), j =

1, 2, ...,n and for all r = 1, 2, ..., l into piecewise lin-

ear functions f r
j
′

(xTAr
j), j = 1, 2, ...,n with concave

break points only. Therefore, following Yang et al.

[24] method for (IFP − I) for Player I is equiva-

lent to solving the following program Equivalent

Optimistic Problem (EOP − I):

(EOP − I) max(α1, α2, ..., αl)

subject to f r
j
′

(xTAr
j) ≥ αr, j = 1, 2, ...,n, r = 1, 2, ..., l

eTx = 1,

x ≥ 0, αr ∈ [0, 1].
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Theorem 1 The strategy x∗ and vector α∗ are POSS

and security level of satisfaction, respectively for Player-

I, iff the pair (x∗, α∗) is an efficient solution to the mul-

tiobjective problem (EOP − I).

Proof Let x∗ be a POSS for Player-I. Then there is

no x ∈ Sm such that

α(x∗) ≤ α(x), α(x∗) , α(x).

Therefore, for all x ∈ Sm, either

(α1(x∗), α2(x∗), . . . , αl(x∗)) = (α1(x), α2(x), . . . , αl(x))

or there exists an index p, 1 ≤ p ≤ l, depending on

x such that αp(x) < αp(x∗). i.e for any x ∈ Sm and

for all r = 1, 2, . . . , l, either

min
1≤ j≤n

f r
j (λ, x∗TAr

j) = min
1≤ j≤n

f r
j (λ, xTAr

j)

or there exists an index p, 1 ≤ p ≤ l, such that

min
1≤ j≤n

f p
j (λ, xTAr

j) < min
1≤ j≤n

f p
j (λ, x∗TAr

j)

Hence, by the definition of efficient solution, x∗

is an efficient solution of the multiobjective pro-

gramming problem : max{min
1≤ j≤n

( f 1
j (λ, xTA1

j )),

min
1≤ j≤n

( f 2
j (λ, xTA2

j )), . . ., min
1≤ j≤n

( f l
j (λ, x

TAl
j))}whereαr(x) =

min
1≤ j≤n

( f r
j (λ, xTAr

j)), for all r = 1, 2, . . . , l. Further, us-

ing the representation of various memberships func-

tions µr
j(x

TAr
j), ν

r
j(x

TAr
j) and f r

j (xTAr
j) for all r =

1, 2, . . . , l and using the above algorithm, we get

(EOP − I) max(α1, α2, ..., αl)

subject to

f r
j
′

(xTAr
j) ≥ αr, j = 1, 2, ...,n, r = 1, 2, ..., l

eTx = 1,

x ≥ 0, αr ∈ [0, 1].

where αr = αr(x), for all r = 1, 2, . . . , l. Conversely,

suppose that an efficient solution (x∗, α∗ = α(x∗) of

(EOP − I) is not a POSS for Player I. Then, there

exists x ∈ Sm, such that

α(x∗) ≤ α(x), α(x∗) , α(x). (2.1)

By definition of αr(x) for r = 1, 2, . . . , l and j =

1, 2, . . .n, (x, α(x)) is the feasible solution of (EOP−

I). Thus (2.1) contradicts the assumption that (x∗, α∗)

is an efficient solution of (EOP − I).

Similarly, following the same algorithm [18] and

then following Yang et al. [24] method for (IFP− I)

for Player II, is equivalent to solving the following

program Equivalent Optimistic Problem (EOP −

II):

(EOP − II) max(β1, β2, ..., βl)

subject to

gr
i
′

(Ar
i y) ≥ βr, i = 1, 2, ...,m, r = 1, 2, ..., l

eT y = 1,

y ≥ 0, βr ∈ [0, 1].

Theorem 2 The strategy y∗ and vector β∗ are POSS

and security level of satisfaction respectively for Player-

II, iff the pair (y∗, β∗) is an efficient solution to the

multiobjective problem (EOP − II).

The proof of this theorem follows on the lines of

Theorem 1.

2.2 Model in Pessimistic Framework

The decision maker has pessimistic attitude in ac-

ceptance amounting to saying that complete re-

jection of a criterion does not mean its full accep-

tance. Let pr
o and qr

o be the tolerances for Player

I, associated with acceptance and rejection of the

aspiration level Vr
o in (IFP − I). Let f r

j (λ, xTAr
j), j =

1, 2, ..,n, r = 1, 2, ..., l be their indeterminacy re-

solving functions. Similarly, let sr
o and tr

o be the tol-

erances for Player II, associated with acceptances
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and rejection of the aspiration level Wr
o in (IFP−II).

The membership and the non-membership func-

tions for Player I in a pessimistic situation are de-

scribed as follows:

µ j
r(xTAr

j) =


1; xTAr

j ≥ Vr
o,

1 +
xTAr

j−Vr
o

pr
o

; Vr
o − pr

o ≤ xTAr
j ≤ Vr

o,

0; xTAr
j ≤ Vo

r
− pr

o.

and

ν j
r(xTAr

j) =



1; xTAr
j ≤ Vr

o − pr
o,

1 −
xTAr

j−(Vr
o−pr

o)

qr
o

;

Vr
o − pr

o ≤ xTAr
j ≤ Vr

o − pr
o + qr

o,

0; xTAr
j ≥ Vr

o − pr
o + qr

o.

The indeterminacy resolving functions for Player

I, for j = 1, 2, ...,n and r = 1, 2, ..., l are as follows:

f j
r(λ, xTAr

j) =



0; xTAr
j ≤ Vr

o − pr
o,

f1 j =
pr

oλ+(1−λ)qr
o

qr
o

(
1 +

xTAr
j−Vr

o

pr
o

)
;

Vr
o − pr

o ≤ xTAr
j ≤ Vr

o − pr
o + qr

o,

f2 j = 1 + (1 − λ)
xTAr

j−Vr
o

pr
0

;

Vr
o − pr

o + qr
o ≤ xTAr

j ≤ Vr
o,

1; xTAr
j ≥ Vo

r.

Similarly, for Player II, the membership and the

non-membership functions are as follows:

µi
r(Ar

i y) =


1; Ar

i y ≤Wr
o

1 +
Wr

o−Ar
i y

sr
o

; Wr
o ≤ Ar

i y ≤Wr
o + sr

o,

0; Ar
i y ≥Wo

r + sr
o,

and

νi
r(Ar

i y) =



0; Ar
i y ≤Wr

o + sr
o − tr

o,

1 +
Ar

i y−(Wr
o+sr

o)
tr
o

;

Wr
o + sr

o − tr
o ≤ Ar

i y ≤Wr
o + sr

o,

1; Ar
i y ≥Wr

o + sr
o,

And the indeterminacy resolving functions gr
i (λ,A

r
i y),

for i = 1, 2, ..,m, are as follows:

gi
r(λ,Ar

i y) =



1; Ar
i y ≤Wr

o,

gi1 = 1 + (1 − λ)
Wr

o−Ar
i y

sr
o

;

Wr
o ≤ Ar

i y ≤Wr
o + sr

o − tr
o,

gi2 =
λsr

o+(1−λ)tr
o

tr
o

(
1 +

Wr
o−Ar

i y
sr

o

)
;

Wr
o + sr

o − tr
o ≤ Ar

i y ≤Wr
o + sr

o,

0; Ar
i y ≥Wr

o + sr
o.

In the absence of any information about the atti-

tude of the decision maker towards resolving inde-

terminacy, we continue to take λ = 1
2 only. Hence,

for j = 1, 2, ...,n and i = 1, 2, ...,m, the indetermi-

nacy resolving functions for Player I and Player II

are described as:

f j
r(λ, xTAr

j) =



0; xTAr
j ≤ Vr

o − pr
o,

f1 j =
pr

o+qr
o

2qr
o

(
1 +

xTAr
j−Vr

o

pr
o

)
;

Vr
o − pr

o ≤ xTAr
j ≤ Vr

o − pr
o + qr

o,

f2 j = 1 +
xTAr

j−Vr
o

2pr
0

;

Vr
o − pr

o + qr
o ≤ xTAr

j ≤ Vr
o,

1; xTAr
j ≥ Vo

r.

and

gi
r(λ,Ar

i y) =



1; Ar
i y ≤Wr

o,

gi1 = 1 +
Wr

o−Ar
i y

2sr
o

;

Wr
o ≤ Ar

i y ≤Wr
o + sr

o − tr
o,

gi2 =
sr

o+tr
o

2tr
o

(
1 +

Wr
o−Ar

i y
sr

o

)
;

Wr
o + sr

o − tr
o ≤ Ar

i y ≤Wr
o + sr

o,

0; Ar
i y ≥Wr

o + sr
o.

respectively. It is important to note that for all

r = 1, 2, ..., l, f r
j (xTAr

j), j = 1, 2, ...,n and gr
i (Aiy),

i = 1, 2, ...,m, are piecewise linear S-shaped func-

tions with concave type break points. Therefore

solving (IFP − I) and (IFP − II) for Player I and
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Player II are equivalent to solving the following

two programs, respectively.

(EPP − I) max(α1, α2, ..., αl)

subject to

pr
o + qr

o

2qr
o

1 +
xTAr

j − Vr
o

pr
o

 ≥ αr, j = 1, 2, ...,n,

1 +
xTAr

j − Vr
o

2pr
0

≥ αr, j = 1, 2, ...,n,

eTx = 1,

x ≥ 0, αr ∈ [0, 1], r = 1, 2, ...l.

and

(EPP − II) max(β1, β2, ..., βl)

subject to

1 +
Wr

o − Ar
i y

2sr
o

≥ βr, i = 1, 2, ...,m,

sr
o + tr

o

2tr
o

(
1 +

Wr
o − Ar

i y
sr

o

)
≥ βr, i = 1, 2, ...,m,

eT y = 1,

y ≥ 0, βr ∈ [0, 1], r = 1, 2, ...l.

Note that (EPP − I) and (EPP − II) are the crisps

equivalent of (IFP − I) and (IFP − II), respectively.

It is well understood, from section 2.1 that x∗ is a

POSS and α∗ is the security level for Player I in the

Pessimistic view, iff (x∗, α∗) is an efficient solution

of (EPP − I). The proof is similar to Theorem 1.

Similarly, y∗ is a POSS and β∗ is the security level

for Player II in the Pessimistic view iff (y∗, β∗) is an

efficient solution of (EPP − II).

2.3 Numerical Illustration

Let us consider the numerical example as taken

by [3], but having intuitionistic fuzzy goals. Here,

we solve all numerical problems using GAMS [21].

Consider the multi-objective matrix game having

payoff matrices

A1 =


2 5 1

−1 −2 6

0 3 −1

 , A2 =


−3 7 2

0 −2 0

3 −1 6

 , A3 =


8 2 3

−5 6 0

−3 1 6


as the cost matrix, the time matrix and the produc-

tivity matrix, respectively.

Solution by the proposed method

We solve this problem with same parameters as in

[22,3,8] so that we can compare the results.

Thus V1
o = a1

= 6, W1
o = a1 = −2, po

1 = so
1 =

a1
− a1 = 8; V2

o = a2
= 7, W2

o = a2 = −2, po
2 =

so
2 = a2

− a2 = 10; V3
o = a3

= 8, W3
o = a3 = −5,

po
3 = so

3 = a1
− a1 = 10. Also, we take q1

o = 1,

q2
o = 4, q3

o = 10, and t1
o = 6, t2

o = 4, t3
o = 7 as in [8].

Assuming λ = 1
2 . After resolving indeterminacy,

we get the piecewise linear indeterminacy resolv-

ing functions, with convex break points. Incorpo-

rating Inuiguchi et al. [18] method, we transform

the indeterminacy functions with convex break

points into concave break points. Thus making the

problem ready to solve as a multiobjective pro-

gramming problem, resolving the ambiguity. The

equivalent crisp problem with constraints having

concave breakpoints for Player I is given by (in

optimistic sense):

(EOP-I) max(α1, α2, α3)

subject to

0.6691x1 − 0.3345x2 + 1.0036 ≥ α1,

0.2788x1 − 0.1394x2 + 0.7578 ≥ α1,

0.0995x1 − 0.4976x2 + 0.7014 ≥ α1,

1.674x1 − 0.6698x2 + 1.0048x3 + 1.0044 ≥ α1,

0.697x1 − 0.2788x2 + 0.4182x3 + 0.7578 ≥ α1,

0.2488x1 − 0.0995x2 + 0.1492x3 + 0.7014 ≥ α1,

0.3345x1 − 2.0072x2 − 0.3345x3 + 1.0036 ≥ α1,
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0.1394x1 + 0.8364x2 − 0.1394x3 + 0.7578 ≥ α1,

0.0498x1 + 0.2985x2 − 0.0497x3 + 0.7014 ≥ α1,

− 0.6458x1 + 0.6458x3 + 1.5069 ≥ α2,

− 0.3038x1 + 0.3038x3 + 0.9739 ≥ α2,

− 0.1084x1 + 0.1084x3 + 0.7470 ≥ α2,

1.5069x1 − 0.4305x2 − 0.2152x3 + 1.5069 ≥ α2,

0.7089x1 − 0.2025x2 − 0.1012x3 + 0.8859 ≥ α2,

0.2529x1 − 0.0722x2 − 0.0361x3 + 0.7470 ≥ α2,

0.4304x1 + 1.2912x3 + 1.5064 ≥ α2,

0.2024x1 + 0.6072x3 + 0.8856 ≥ α2,

0.0722x1 + 0.2166x3 + 0.747 ≥ α2,

1.0482x1 − 0.6551x2 − 0.3931x3 + 1.9655 ≥ α3,

0.4977x1 − 0.31108x2 − 0.1866x3 + 1.1089 ≥ α3,

0.2031x1 − 0.1269x2 − 0.0761x3 + 0.7971 ≥ α3,

0.2620x1 − 0.7862x2 + 0.13103x3 ≥ α3,

0.1244x1 − 0.3732x2 + 0.0622x3 + 1.1089 ≥ α3,

0.0507x1 + 0.1523x2 + 0.0253x3 + 0.797 ≥ α3,

0.03931x1 + 0.7862x3 + 1.9655 ≥ α3,

0.1866x1 + 0.3732x3 + 1.1087 ≥ α3,

0.0759x1 + 0.1518x3 + 0.7962 ≥ α3,

x1 + x2 + x3 = 1,

0 ≤ α1, α2, α3 ≤ 1,

x1, x2, x3 ≥ 0.

The Pareto-optimal security strategies with corre-

sponding security levels for Player I are depicted

in Table 1.

Similarly, the equivalent crisp problem for Player

II is:

(EOP-II) max(β1, β2, β3)

subject to

− 0.3410y1 − 0.8525y2 − 0.1705y3 + 2.046 ≥ β1,

Table 1 POSS and Security levels for Player I in Optimistic
Approach

# x∗1 x∗2 x∗3 α∗1 α∗2 α∗3
1 0.9412 0.0587 0 0.7658 0.6449 0.2928
2 0.8727 0.0587 0.0684 0.7590 0.6598 0.2838
3 0.8042 0.0587 0.1369 0.7521 0.6746 0.2748
4 0.7357 0.0587 0.2054 0.7453 0.6895 0.2658
5 0.6672 0.0587 0.2739 0.7385 0.7043 0.2569

− 0.1416y1 − 0.354y2 − 0.0708y3 + 1.2484 ≥ β1,

− 0.0556y1 − 0.139y2 − 0.0278y3 + 0.94318 ≥ β1,

0.1705y1 + 0.341y2 + 1.023y3 + 2.046 ≥ β1,

0.0708y1 + 0.1416y2 − 0.4248y3 + 1.2484 ≥ β1,

0.0278y1 + 0.0556y2 − 0.1668y3 + 0.9431 ≥ β1,

− 0.5115y2 + 0.1705y3 + 2.046 ≥ β1,

− 0.0834y2 + 0.0278y3 + 0.9431 ≥ β1,

− 0.2124y2 + 0.0708y3 + 1.2484 ≥ β1,

0.5112y1 − 1.1928y2 − 0.1704y3 + 1.8744 ≥ β2,

0.0198y1 − 0.0462y2 − 0.0132y3 + 0.7895 ≥ β2,

0.0507y1 − 0.1183y2 − 0.0338y3 + 0.8806 ≥ β2,

0.0341y2 + 1.8747 ≥ β2,

0.0132y2 + 0.7895 ≥ β2,

0.0338y2 + 0.8806 ≥ β2,

− 0.5112y1 + 0.1704y2 − 1.0224y3 + 1.8744 ≥ β2,

− 0.0198y1 + 0.0066y2 − 0.0396y3 + 0.7895 ≥ β2,

− 0.0507y1 + 0.0169y2 − 0.1014y3 + 0.8806 ≥ β2,

− 0.9544y1 − 0.2386y2 − 0.3579y3 + 1.7895 ≥ β3,

− 0.3968y1 − 0.0992y2 − 0.1488y3 + 1.1426 ≥ β3,

− 0.144y1 − 0.036y2 − 0.054y3 + 0.9092 ≥ β3,

0.5965y1 − 0.7158y2 + 1.7895 ≥ β3,

0.2481y1 − 0.2976y2 + 1.1426 ≥ β3,

0.09y1 − 0.108y2 + 0.9092 ≥ β3,

0.3579y1 − 0.1193y2 − 0.7158y3 + 1.7895 ≥ β3,
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0.1488y1 − 0.0496y2 − 0.2976y3 + 1.14267 ≥ β3,

0.054y1 − 0.018y2 − 0.108y3 + 0.9092 ≥ β3,

y1 + y2 + y3 = 1,

0 ≤ β1, β2, β3 ≤ 1, y1, y2, y3 ≥ 0.

The POSS and the corresponding security levels

for Player II are depicted in Table 2. Similarly,

Table 2 POSS and Security levels for Player II in Optimistic
Approach

# y∗1 y∗2 y∗3 β∗1 β∗2 β∗3
1 0.625 0 0.375 0.898 0.7622 0.7989
2 0.6287 0.01869 0.3525 0.8958 0.7632 0.7989
3 0.6366 0.0581 0.3052 0.8912 0.7651 0.7989
4 0.6445 0.0975 0.2579 0.8866 0.7671 0.7989
5 0.6523 0.1369 0.2106 0.8820 0.7691 0.7989

the Pareto-optimal security strategies with corre-

sponding security levels for Player I and Player

II in Pessimistic sense are depicted in Table 3 and

Table 4 respectively.

Table 3 POSS and Security levels for Player I in Pessimistic
Approach

# x∗1 x∗2 x∗3 α∗1 α∗2 α∗3
1 0.875 0.125 0 0.7265 0.1312 0.6634
2 0.8214 0.1785 0 0.7165 0.1874 0.6823
3 0.7679 0.2320 0 0.7064 0.2436 0.7013
4 0.7144 0.2855 0 0.6964 0.2998 0.7202
5 0.6609 0.3390 0 0.6864 0.3560 0.7392

Table 4 POSS and Security levels for Player II in Pessimistic
Approach

# y∗1 y∗2 y∗3 β∗1 β∗2 β∗3
1 0.625 0 0.375 0.6380 0.5031 0.2060
2 0.6485 0 0.3514 0.6345 0.5154 0.1931
3 0.7019 0.0097 0.2883 0.6211 0.5554 0.1648
4 0.7079 0.0397 0.2522 0.6027 0.5953 0.1648
5 0.7139 0.0697 0.2162 0.5843 0.6353 0.1648

3 Conclusion

1. A new model is constructed for studying mul-

tiobjective two person zero-sum matrix games

with I-fuzzy goals via resolving the indetermi-

nacy function. Thereby extending the results of

Khan et al. [20] to the multiobjective case. The

game is shown equivalent to two fuzzy multi-

objective fuzzy linear programming problems

involving piecewise linear membership func-

tions. The crisp equivalent programs are for-

mulated using Yang et al. [24] and Inuiguchi et

al. [18] approaches.

2. The efficient solutions of the equivalent multi-

objective (crisp) problems are POSS and secu-

rity levels of the I-fuzzy model.

3. Although this problem has not been much dis-

cussed in literature so far, but Bashir et al. [8]

has examined the same with a different ap-

proach, using score function.

4. The security levels for Player I defined by [8]

are

αr(x) = min
1≤ j≤n

[µ j
r(xTA j

r), ν j
r(xTA j

r)]

=[min
1≤ j≤n

µ j
r(xTA j

r),max
1≤ j≤n

ν j
r(xTA j

r)],

and the security levels for Player II are defined

as

βr(x) = min
1≤i≤m

[µi
r(Ar

i y), νi
r(Ar

i y)]

=[ min
1≤i≤m

µi
r(Ar

i y), max
1≤ j≤m

νi
r(Ar

i y)].

However, our choice of security levels are mo-

tivated by the approach of Yager [23].

There is a great scope to extend the results to mul-

tiobjective Bi-matrix games with I-fuzzy goals by

resolving indeterminacy Also, it would be interest-

ing and challenging to explore the multiobjective
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two-person zero sum matrix games with I-fuzzy

goals as well as I-fuzzy payoff matrix. Further dis-

cussions can be made of the problem by third ap-

proach, called mixed approach.
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