Matrix Games with Atanassov's Intuitionistic Fuzzy Variables

Deeba R. Naqvi
Department of Applied Sciences, Maharaja Surajmal Institute of Technology,
C-4 Janakpuri, New Delhi-110058, India.
Email: deeba.naqvi@msit.in

Abstract

In real life situations, the decision makers' outlook is more precisely expressed in terms of membership and non-membership expressions. Therefore, intuitionistic fuzzy terms are best suited to deal with such information to avoid any loss of information. This paper aims to investigate the matrix games with the payoffs matrix represented by Atanassov's intuitionistic fuzzy terms (IFTs). The motive behind this is to study extensively the important properties of such games and to establish the mathematical programming methodology of the IVI2TLT games. The methodology proposed develops the solution concept following Inuiguchi et al. [18] approach, to solve such games; the crisp equivalent problems of respective players' are free from binary variables. It has been established that solving such a fuzzy game is equivalent to solving a pair of (crisp) multi-objective linear programming problems using an indeterminacy function for each goal. Finally, the mathematical models are reduced to nonlinear programming problems to acquire the optimal strategies for the players. An example is illustrated to validate and applicability of the proposed technique.

Keywords intuitionistic fuzzy set • matrix games • multi-objective linear programming problems. non-linear programming problems

1 Introduction

The matrix games with single Intuitionistic fuzzy goal of each of the two players, has been studied earlier $[1,14,20]$. However, we can have a game theoretic model of a real problem with multiple objectives (like, costs, productivity, time, etc.) by making a one to one correspondence of each of the objectives for pay-offs. Since each player has multiple goals, the concept of vector optimization appears to be more suitable. But comparing the pay-offs of the players in two person zero-sum multi-objective games is much more difficult than comparing them in scalar game, and the classical optimal solution concept is no longer applicable. For this reason, a new solution concepts of Paretooptimal security strategy has been proposed in [15].
One of the earliest study to analyze the maxmin and minmax values of two person zero-sum multiobjective games is due to Zeleny [25]. By intro-
ducing a parameter vector λ, the game reduces to a parametric linear programming problem. He then discussed the concept of Pareto-optimal solutions and ideal points for two person zero-sum multi-objective games. Further, Cook [12] introduced a goal vector and formulated such games as goal programming problems, while Corley [13] presented the necessary and sufficient condition for optimal mixed strategies for the same. Ghose and Prasad [15] introduced the concept of Paretooptimal Security Strategies (POSS) for multi-objective two person zero-sum games and obtained it by scalarization of the original game. Fernandez and Puerto [16] studied the same game model as that of [15] and established an equivalence between POSS and efficient solution of a pair of multi-objective programming problems.

Though single objective two person zero-sum fuzzy matrix games have been studied extensively in the literature ([22],[9]), the results on multi-objective scenario are rather scarce. The main contribution in this direction has been the work of Sakawa and Nishizaki [22]. Their approach was to associate a fuzzy goal with respective payoff matrix and define the solution in terms of maximizing the degree of minimal goal attainment for each player. Further, Aggarwal et al. [3] has also studied multiobjective two-person zero-sum games but with different approach.

1.1 Preliminaries

For all the notations we shall be following [5-7, 14]. Using the Hurwicz's optimism-pessimism criterion [17], for a fixed $\lambda, \lambda \in[0,1]$, an I-fuzzy set \tilde{A} is transformed into a fuzzy set \tilde{A} whose mem-
bership function is described by

$$
f_{\tilde{A}}(\lambda, x)=(1-\lambda) \mu_{\tilde{A}}(x)+\lambda\left(1-v_{\tilde{A}}(x)\right), x \in X
$$

This function is called as indeterminacy resolving function of \tilde{A}. The parameter λ depicts the outlook of the decision maker towards resolving indeterminacy; $\lambda=0$, means that the decision maker resolves indeterminacy fully in favor of membership (complete optimism in resolving indeterminacy), while $\lambda=1$ indicates that the decision maker resolves indeterminacy fully in negation of the nonmembership function (complete pessimism in resolving indeterminacy).

Consider a multi-objective optimization problem with l goals and w constraints. Let the set of goals be $G_{r}, r=1,2, \ldots, l$ and let the set of constraints be $C_{w}, k=1,2, \ldots, w$, each of which can be characterized as an I-fuzzy set on the universal set X. Angelov [4] used the Bellman and Zadeh's extension principle [11] and defined the I-fuzzy decision as follows:

$$
\tilde{D}=\left(\tilde{G_{1}} \cap \tilde{G_{2}} \cap \ldots \cap \tilde{G_{l}}\right) \cap\left(\tilde{C_{1}} \cap \tilde{C_{2}} \cap \ldots \cap \tilde{C_{w}}\right)
$$

with

$$
\tilde{D}=\left\{\left\langle x, \mu_{\tilde{D}}(x), v_{\tilde{D}}(x)\right\rangle \mid x \in X\right\}
$$

where

$$
\mu_{\tilde{D}}(x)=\min _{r, k}\left\{\mu_{\tilde{G}_{r}}(x), \mu_{\tilde{C}_{k}}(x)\right\}
$$

and

$$
v_{\tilde{D}}(x)=\max _{r, k}\left\{v_{\tilde{G}_{r}}(x), v_{\tilde{C}_{k}}(x)\right\}
$$

Angelov [4] associated a value function with \tilde{D} as $V_{\tilde{D}(x)}=\mu_{\tilde{D}}(x)-v_{\tilde{D}}(x), x \in X$, and the optimal solution is defined in the sense of finding an $x^{*} \in X$ such that $V_{\tilde{D}}\left(x^{*}\right)=\max _{x \in X} V_{\tilde{D}}(x)$. Dubey et al. [14] implemented Yager's [23] idea of resolving indeterminacy in the interval uncertainity represented by I-fuzzy sets in optimization problems. It was
observed that this approach can yield a better optimal value for decision making problem than the one proposed in [4]. We briefly describe decision making approach in I-fuzzy environment as given in [14]. Let $\lambda \in[0,1]$ be fixed. Associate a fuzzy set \tilde{D}, having membership function explained as

$$
f_{\tilde{D}}(\lambda, x)=\min _{r, k}\left\{f_{\tilde{G}_{r}}(\lambda, x), f_{\tilde{C}_{k}}(\lambda, x) \mid x \in X\right\},
$$

where $f_{\tilde{G}_{r}}(\lambda, x)$ and $f_{\tilde{C}_{k}}(\lambda, x)$ are the indeterminacy resolving functions of the I-fuzzy sets representing the $r^{\text {th }}$ goal and the $k^{\text {th }}$ constraint, respectively. Then, $x^{*} \in X$ is an optimal decision, if $f_{\tilde{D}}\left(\lambda, x^{*}\right)=$ $\max _{x \in X} f_{\tilde{D}}(\lambda, x)$, that is $f_{\tilde{D}}\left(\lambda, x^{*}\right) \geq f_{\tilde{D}}(\lambda, x), \forall x \in$ X. Hence, solving an optimization problem with Atanassov's I-fuzzy goal is equivalent to solving the following optimization problem:

$\max \alpha$

subject to $f_{\tilde{G}_{r}}(\lambda, x) \geq \alpha, r=1,2, \ldots, l$

$$
\begin{aligned}
& f_{\tilde{C}_{k}}(\lambda, x) \geq \alpha, k=1,2, \ldots, w \\
& 0 \leq \alpha \leq 1, x \in X .
\end{aligned}
$$

where $\alpha=\min f_{\tilde{D}}(\lambda, x)$. Though there is no unique way to define an I-fuzzy inequality $a^{T} x \gtrsim^{I F} b$, for any $a, b \in \mathbb{R}^{n}$, the n-dimensional real space, but two natural approaches are 'the optimistic approach' and 'the pessimistic approach' as explained in details by $[1,17]$ and [14]. For a given acceptance tolerance $\hat{p}>0$, the linear membership function associated with this inequality is described as follows:
$\mu\left(a^{T} x\right)= \begin{cases}1 ; & a^{T} x \geq b \\ 1-\frac{b-a^{T} x}{\hat{p}} ; & b-\hat{p} \leq a^{T} x \leq b \\ 0 ; & a^{T} x \leq b-\hat{p} .\end{cases}$
Let $\hat{q}(0<\hat{q}<\hat{p})$ be the tolerance in rejection of the I-fuzzy inequality $a^{T} x \gtrsim^{I F} b$. The linear nonmembership function in optimistic and pessimistic ap-
proaches are defined respectively as follows:

$$
\begin{aligned}
v\left(a^{T} x\right) & =v_{\text {optimistic }}\left(a^{T} x\right) \\
& = \begin{cases}0 ; & a^{T} x \geq b \\
1-\frac{a^{T} x-b+\hat{p}+\hat{q}}{\hat{p}+\hat{q}} ; & b-\hat{p}-\hat{q} \leq a^{T} x \leq b \\
1 ; & a^{T} x \leq b-\hat{p}-\hat{q} .\end{cases} \\
v\left(a^{T} x\right) & =v_{\text {pessimistic }\left(a^{T} x\right)} \\
& = \begin{cases}0 ; & a^{T} x \geq b-\hat{p}+\hat{q} \\
1-\frac{a^{T} x-b+\hat{p}}{\hat{q}} ; & b-\hat{p} \leq a^{T} x \leq b-\hat{p}+\hat{q} \\
1 ; & a^{T} x \leq b-\hat{p} .\end{cases}
\end{aligned}
$$

The I-fuzzy inequality $a^{T} x \lesssim^{I F} b$ is treated equivalent to $(-a)^{T} x \gtrsim^{I F}(-b)$.
1.2 I-Fuzzy Multi-objective Two Person Zero-sum Game with I-Fuzzy goals

Let V_{o}^{r} and W_{o}^{r} be the scalars representing the aspiration levels of players I and Players II corresponding to r th pay-offs $\left(A^{r}, r=1,2, \ldots, l\right)$, respectively. The I-fuzzy multi-objective matrix game with Ifuzzy goals, denoted by IFMOMG, is defined as

$$
\operatorname{IFMOMG}=\left(S^{m}, S^{n}, A^{r}, V_{o}^{r}, \gtrsim_{p_{o}^{r}, q_{0}^{r}}^{I F}, W_{o}^{r},{s_{o}^{s_{0}^{r}, t_{0}^{r}}}_{I F}^{r}\right),
$$ $r=1,2, \ldots, l$, where p_{o}^{r} and q_{o}^{r} are the tolerance levels associated with the acceptance and rejection of the aspiration level V_{o}^{r} for Player I. Similarly, s_{o}^{r} and t_{o}^{r} are the tolerance associated with the acceptance and rejection of the aspiration level $W_{o}{ }^{r}$ for Player II $(\forall r=1,2, \ldots ., l)$. Now Player I problem is to find $x \in S^{m}$ such that $x^{T} A^{r} y \gtrsim_{p_{o}^{r}, q_{o}^{r}}^{I F} V_{o}{ }^{r}, \forall y \in S^{n}$, and Player II problem is to find $y \in S^{n}$ such that $x^{T} A^{r} y \unlhd_{s_{o}^{r}, t_{o}}^{I F} W_{o}^{r}, \forall x \in S^{m}, r=1,2, \ldots, l$. In other words, the Player I problem, associated with the

$r^{\text {th }}$ pay-off matrix is
(IFP-I) Find $x \in S^{m} \quad$ such that

$$
x^{T} A_{j}^{r} \gtrsim_{p_{o}^{r}, q_{o}^{r}}^{I F} V_{o}^{r} \quad j=1,2, \ldots, n .
$$

Similarly, the Player II problem, associated with the $r^{\text {th }}$ pay-off matrix is
(IFP-II) Find $y \in S^{n} \quad$ such that

$$
A_{i}^{r} y ડ_{s_{o}^{r}, t_{o}^{r}}^{I F} W_{o}^{r}, \quad i=1,2, \ldots, m
$$

Definition 1 Security level of satisfaction for

Player I For a strategy $x \in S^{m}$, the security level of satisfaction for Player I corresponding to $r^{\text {th }}$ payoffs is

$$
\alpha_{r}(x)=\min _{1 \leq j \leq n} f_{j}^{r}\left(\lambda, x^{T} A_{j}^{r}\right)
$$

Therefore, the security level for Player I is an 1tuple vector, given by

$$
\alpha(x)=\left[\alpha_{1}(x), \alpha_{2}(x), \ldots, \alpha_{l}(x)\right]
$$

Definition 2 Security level of satisfaction for

Player II For a strategy $y \in S^{n}$, the security level of satisfaction for Player II corresponding to $r^{\text {th }}$ pay-offs is

$$
\beta_{r}(x)=\min _{1 \leq i \leq m} g_{i}^{r}\left(\lambda, A_{i}^{r} y\right)
$$

Therefore, the security level for Player II is an ltuple vector, given by

$$
\beta(y)=\left[\beta_{1}(y), \beta_{2}(y), \ldots, \beta_{l}(y)\right]
$$

Definition 3 Pareto-optimal security strategy for

 Player I A strategy $x^{*} \in S^{m}$ is a Pareto-optimal security strategy (POSS) for Player I if there is no $x \in S^{m}$ such that$$
\alpha\left(x^{*}\right) \leq \alpha(x) \text { and } \alpha\left(x^{*}\right) \neq \alpha(x)
$$

Definition 4 Pareto-optimal security strategy for Player II A strategy $y^{*} \in S^{n}$ is a Pareto-optimal
security strategy (POSS) for Player II if there is no $y \in S^{n}$ such that

$$
\beta\left(y^{*}\right) \leq \beta(y) \text { and } \beta\left(y^{*}\right) \neq \beta(y)
$$

If x^{*} is a POSS for player I, then his security level is given by $\alpha^{*}=\alpha\left(x^{*}\right)$. Similarly, if y^{*} is a POSS for player II, then his security level is given by $\beta^{*}=\beta\left(y^{*}\right)$

2 Proposed Approach

2.1 Model in Optimistic Framework

Let p_{o}^{r} and q_{o}^{r} be the tolerances pre specified by Player I for accepting and rejecting the aspiration level V_{o}^{r} in (IFP $-I$) for all $r=1,2, \ldots, l$. Let $f_{j}^{r}\left(\lambda, A_{j} x\right), j=1,2, \ldots, n$, be the indeterminacy resolving functions for $r=1,2, \ldots, l$. Next, let s_{o}^{r} and t_{o}^{r} be the tolerances pre specified by Player II for accepting and rejecting the aspiration level W_{o}^{r} in (IFP - II) for all $r=1,2, \ldots, l$. Let $g_{i}^{r}\left(\lambda, A_{i} y\right)$, $i=1,2, \ldots, m$, for all $r=1,2, \ldots, l$. The membership and the non-membership functions for Player I in optimistic view with tolerances p_{o}^{r} and q_{o}^{r} for all $r=1,2, \ldots, l$ are as follows:
$\mu_{j}^{r}\left(x^{T} A_{j}^{r}\right)= \begin{cases}1 ; & x^{T} A_{j}^{r} \geq V_{o}^{r} \\ 1+\frac{x^{T} A_{j}^{r}-V_{o}^{r}}{p_{o}^{r}} ; & V_{o}^{r}-p_{o}^{r} \leq x^{T} A_{j}^{r} \leq V_{o}^{r} \\ 0 ; & x^{T} A_{j}^{r} \leq V_{o}^{r}-p_{o}^{r} .\end{cases}$
and
$v_{j}^{r}\left(x^{T} A_{j}^{r}\right)=\left\{\begin{array}{l}1 ; x^{T} A_{j}^{r} \leq V_{o}^{r}-p_{o}^{r}-q_{o}^{r}, \\ 1-\frac{x^{T} A_{j}^{r}-\left(V_{o}^{r}-p_{o}^{r}-q_{o}^{r}\right)}{p_{o}^{r}+q_{o}^{r}} ; \\ V_{o}^{r}-p_{o}^{r}-q_{o}^{r} \leq x^{T} A_{j}^{r} \leq V_{o}^{r}, \\ 0 ; x^{T} A_{j}^{r} \geq V_{o}^{r} .\end{array}\right.$

The indeterminacy functions for $f_{j}^{r}\left(\lambda, x^{T} A_{j}^{r}\right), j=$ $1,2, \ldots, n$ for Player I are as follows:
$f_{j}^{r}\left(\lambda, x^{T} A_{j}^{r}\right)=\left\{\begin{array}{c}0 ; x^{T} A_{j}^{r} \leq V_{o}^{r}-p_{o}^{r}-q_{o}^{r}, \\ f_{1 j}=\frac{\lambda\left(x^{T} A_{j}^{r}-\left(V_{o}^{r}-p_{o}^{r}-q_{o}^{r}\right)\right)}{p_{o}^{r}+q_{o}^{r}} ; \\ V_{o}^{r}-p_{o}^{r}-q_{o}^{r} \leq x^{T} A_{j}^{r} \leq V_{o}^{r}-p_{o}^{r}, \\ f_{2 j}=1+\left(x^{T} A_{j}^{r} x-V_{o}\right) \frac{p_{o}^{r}+(1-\lambda) q_{o}^{r}}{p_{0}^{r}\left(p_{o}^{r}+q_{o}^{r}\right)} ; \\ V_{o}^{r}-p_{o}^{r} \leq x^{T} A_{j}^{r} \leq V_{o}^{r}, \\ 0 ; \quad x^{T} A_{j}^{r} \geq V_{o}^{r} .\end{array}\right.$
Similarly, for Player II, the membershiip and the non-membership functions with tolerances s_{o}^{r} and t_{o}^{r} are
$\mu_{i}^{r}\left(A_{j}^{r} y\right)=\left\{\begin{array}{l}1 ; A_{i}^{r} y \leq W_{o}^{r} \\ 1+\frac{W_{o}^{r}-A_{i}^{r} y}{s_{o}^{r}} ; \quad W_{o}^{r} \leq A_{i}^{r} y \leq W_{o}^{r}+s_{o}^{r} \\ 0 ; \quad A_{i}^{r} y \geq W_{o}^{r}+s_{o}^{r},\end{array}\right.$
and
$v_{i}^{r}\left(A_{i}^{r} y\right)=\left\{\begin{array}{l}0 ; A_{i}^{r} y \leq W_{o}^{r}, \\ 1+\frac{A_{i}^{r}-\left(V_{o}^{r}-s_{o}^{r}+t_{o}^{r}\right)}{s_{o}^{r}+t_{o}^{r}} ; \\ \quad W_{o}^{r} \leq A_{i}^{r} y \leq W_{o}^{r}+s_{o}^{r}+t_{o}^{r}, \\ 1 ; A_{i}^{r} \geq W_{o}^{r}+s_{o}^{r}+t_{o r}^{r},\end{array}\right.$
respectively. The indeterminacy resolving functions $g_{i}^{r}\left(A_{i}^{r} y\right)$, for $i=1,2, . ., m$, are as follows:
$g_{i}^{r}\left(\lambda, A_{i}^{r} y\right)=\left\{\begin{array}{c}1 ; \quad A_{i}^{r} y \leq W_{o}^{r}, \\ g_{i 1}=1-\left(A_{i}^{r} y-W_{o} \frac{s_{o}^{r}+(1-\lambda) t_{o}^{r}}{s_{o}^{r}\left(s_{o}^{r}+t_{o}^{r}\right)} ;\right. \\ W_{o}^{r} \leq A_{i}^{r} y \leq W_{o}^{r}+s_{o}^{r}, \\ g_{i 2}=\frac{\lambda\left(W_{o}^{r}+s_{o}^{r}+t_{o}^{r}-A_{i}^{r} y\right)}{s_{0}^{0}+t_{o}^{o}} ; \\ W_{o}^{r}+s_{o}^{r} \leq A_{i}^{r} y \leq W_{o}^{r}+s_{o}^{r}+t_{o}^{r}, \\ 0 ; \quad A_{i}^{r} y \geq W_{o}^{r}+s_{o}^{r}+t_{o}^{r} .\end{array}\right.$
In the absence of any information about the attitude of the decision maker towards resolving indeterminacy, we continue to take $\lambda=\frac{1}{2}$ only. In this case $f_{j}^{r}\left(\lambda, A_{j}^{r} x\right)$ and $\left.g_{i}^{r}\left(\lambda, A_{i}^{r} y\right)\right)$ respectively, for all $r=1,2, \ldots, l, j=1,2, \ldots, n$ and $i=1,2, \ldots, m$, the
indeterminacy resolving functions are described as:

$$
f_{j}^{r}\left(x^{T} A_{j}^{r}\right)=\left\{\begin{array}{c}
0 ; \quad x^{T} A_{j}^{r} \leq V_{o}^{r}-p_{o}^{r}-q_{o}^{r}, \\
f_{1 j}=\frac{\left(x^{T} A_{j}^{r}-\left(V_{o}^{r}-p_{o}^{r}-q_{o}^{r}\right)\right)}{2\left(p_{o}^{r} q_{o}^{r}\right)} ; \\
V_{o}^{r}-p_{o}^{r}-q_{o}^{r} \leq x^{T} A_{j}^{r} \leq V_{o}^{r}-p_{o}^{r}, \\
f_{2 j}=1+\left(x^{T} A_{j}^{r} x-V_{o}\right) \frac{2 p_{o}^{r}+q_{o}^{r}}{2 p_{0}^{r}\left(p_{o}^{r}+q_{o}^{r}\right)} ; \\
V_{o}^{r}-p_{o}^{r} \leq x^{T} A_{j}^{r} \leq V_{o}^{r} \\
0 ; \quad x^{T} A_{j}^{r} \geq V_{o}^{r}
\end{array}\right.
$$

and

respectively. It is important to note that for all $r=1,2, \ldots, l, f_{j}^{r}\left(x^{T} A_{j}^{r}\right), j=1,2, \ldots, n$ and $g_{i}^{r}\left(A_{i}^{r} y\right)$, $i=1,2, \ldots, m$, are piecewise linear S-shaped functions with convex type break points. We follow Inuiguchi et al. [18] algorithm to convert them into piecewise linear functions with only concave break points. The procedure transformed $f_{j}^{r}\left(x^{T} A_{j}^{r}\right), j=$ $1,2, \ldots, n$ and for all $r=1,2, \ldots, l$ into piecewise linear functions $f_{j}^{r^{\prime}}\left(x^{T} A_{j}^{r}\right), j=1,2, \ldots, n$ with concave break points only. Therefore, following Yang et al. [24] method for (IFP - I) for Player I is equivalent to solving the following program Equivalent Optimistic Problem (EOP $-I$):
$(E O P-I) \quad \max \left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{l}\right)$
subject to $\quad f_{j}^{r^{\prime}}\left(x^{T} A_{j}^{r}\right) \geq \alpha_{r}, j=1,2, \ldots, n, r=1,2, \ldots, l$

$$
e^{T} x=1
$$

$$
x \geq 0, \alpha_{r} \in[0,1]
$$

Theorem 1 The strategy x^{*} and vector α^{*} are POSS and security level of satisfaction, respectively for PlayerI, iff the pair $\left(x^{*}, \alpha^{*}\right)$ is an efficient solution to the multiobjective problem (EOP - I).

Proof Let x^{*} be a POSS for Player-I. Then there is no $x \in S^{m}$ such that

$$
\alpha\left(x^{*}\right) \leq \alpha(x), \alpha\left(x^{*}\right) \neq \alpha(x) .
$$

Therefore, for all $x \in S^{m}$, either

$$
\left(\alpha_{1}\left(x^{*}\right), \alpha_{2}\left(x^{*}\right), \ldots, \alpha_{l}\left(x^{*}\right)\right)=\left(\alpha_{1}(x), \alpha_{2}(x), \ldots, \alpha_{l}(x)\right)
$$

or there exists an index $p, 1 \leq p \leq l$, depending on x such that $\alpha_{p}(x)<\alpha_{p}\left(x^{*}\right)$. i.e for any $x \in S^{m}$ and for all $r=1,2, \ldots, l$, either

$$
\min _{1 \leq j \leq n} f_{j}^{r}\left(\lambda, x^{* T} A_{j}^{r}\right)=\min _{1 \leq j \leq n} f_{j}^{r}\left(\lambda, x^{T} A_{j}^{r}\right)
$$

or there exists an index $p, 1 \leq p \leq l$, such that

$$
\min _{1 \leq j \leq n} f_{j}^{p}\left(\lambda, x^{T} A_{j}^{r}\right)<\min _{1 \leq j \leq n} f_{j}^{p}\left(\lambda, x^{* T} A_{j}^{r}\right)
$$

Hence, by the definition of efficient solution, x^{*} is an efficient solution of the multiobjective programming problem : $\max \left\{\min _{1 \leq j \leq n}\left(f_{j}^{1}\left(\lambda, x^{T} A_{j}^{1}\right)\right)\right.$, $\left.\min _{1 \leq j \leq n}\left(f_{j}^{2}\left(\lambda, x^{T} A_{j}^{2}\right)\right), \ldots, \min _{1 \leq j \leq n}\left(f_{j}^{l}\left(\lambda, x^{T} A_{j}^{l}\right)\right)\right\}$ where $\alpha_{r}(x)=$ $\min _{1 \leq j \leq n}\left(f_{j}^{r}\left(\lambda, x^{T} A_{j}^{r}\right)\right)$, for all $r=1,2, \ldots, l$. Further, using the representation of various memberships functions $\mu_{j}^{r}\left(x^{T} A_{j}^{r}\right), v_{j}^{r}\left(x^{T} A_{j}^{r}\right)$ and $f_{j}^{r}\left(x^{T} A_{j}^{r}\right)$ for all $r=$ $1,2, \ldots, l$ and using the above algorithm, we get
$(E O P-I) \max \left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{l}\right)$
subject to
$f_{j}^{r^{\prime}}\left(x^{T} A_{j}^{r}\right) \geq \alpha_{r}, j=1,2, \ldots, n, r=1,2, \ldots, l$
$e^{T} x=1$,
$x \geq 0, \alpha_{r} \in[0,1]$.
where $\alpha_{r}=\alpha_{r}(x)$, for all $r=1,2, \ldots, l$. Conversely, suppose that an efficient solution $\left(x^{*}, \alpha^{*}=\alpha\left(x^{*}\right)\right.$ of $(E O P-I)$ is not a POSS for Player I. Then, there
exists $x \in S^{m}$, such that
$\alpha\left(x^{*}\right) \leq \alpha(x), \alpha\left(x^{*}\right) \neq \alpha(x)$.
By definition of $\alpha_{r}(x)$ for $r=1,2, \ldots, l$ and $j=$ $1,2, \ldots n,(x, \alpha(x))$ is the feasible solution of (EOP I). Thus (2.1) contradicts the assumption that (x^{*}, α^{*}) is an efficient solution of $(E O P-I)$.

Similarly, following the same algorithm [18] and then following Yang et al. [24] method for (IFP - I) for Player II, is equivalent to solving the following program Equivalent Optimistic Problem (EOP II):

$$
\begin{aligned}
(E O P-I I) & \max \left(\beta_{1}, \beta_{2}, \ldots, \beta_{l}\right) \\
& \text { subject to } \\
& g_{i}^{r^{\prime}}\left(A_{i}^{r} y\right) \geq \beta_{r}, i=1,2, \ldots, m, r=1,2, \ldots, l \\
& e^{T} y=1, \\
& y \geq 0, \beta_{r} \in[0,1] .
\end{aligned}
$$

Theorem 2 The strategy y^{*} and vector β^{*} are POSS and security level of satisfaction respectively for PlayerII, iff the pair $\left(y^{*}, \beta^{*}\right)$ is an efficient solution to the multiobjective problem (EOP - II).

The proof of this theorem follows on the lines of Theorem 1.

2.2 Model in Pessimistic Framework

The decision maker has pessimistic attitude in acceptance amounting to saying that complete rejection of a criterion does not mean its full acceptance. Let p_{o}^{r} and q_{o}^{r} be the tolerances for Player I, associated with acceptance and rejection of the aspiration level V_{o}^{r} in $(I F P-I)$. Let $f_{j}^{r}\left(\lambda, x^{T} A_{j}^{r}\right), j=$ $1,2, . ., n, r=1,2, \ldots, l$ be their indeterminacy resolving functions. Similarly, let s_{o}^{r} and t_{o}^{r} be the tolerances for Player II, associated with acceptances
and rejection of the aspiration level W_{o}^{r} in (IFP-II). The membership and the non-membership functions for Player I in a pessimistic situation are described as follows:
$\mu_{j}^{r}\left(x^{T} A_{j}^{r}\right)=\left\{\begin{array}{l}1 ; x^{T} A_{j}^{r} \geq V_{o}^{r} \\ 1+\frac{x^{T} A_{j}^{r}-V_{o}^{r}}{p_{o}^{r}} ; \quad V_{o}^{r}-p_{o}^{r} \leq x^{T} A_{j}^{r} \leq V_{o}^{r}, \\ 0 ; x^{T} A_{j}^{r} \leq V_{o}^{r}-p_{o}^{r} .\end{array}\right.$
and
$v_{j}^{r}\left(x^{T} A_{j}^{r}\right)=\left\{\begin{array}{l}1 ; x^{T} A_{j}^{r} \leq V_{o}^{r}-p_{o}^{r}, \\ 1-\frac{x^{T} A_{j}^{r}-\left(V_{o}^{r}-p_{o}^{r}\right)}{q_{o}^{r}} ; \\ V_{o}^{r}-p_{o}^{r} \leq x^{T} A_{j}^{r} \leq V_{o}^{r}-p_{o}^{r}+q_{o}^{r}, \\ 0 ; \\ x^{T} A_{j}^{r} \geq V_{o}^{r}-p_{o}^{r}+q_{o}^{r} .\end{array}\right.$
The indeterminacy resolving functions for Player I, for $j=1,2, \ldots, n$ and $r=1,2, \ldots, l$ are as follows:
$f_{j}^{r}\left(\lambda, x^{T} A_{j}^{r}\right)=\left\{\begin{array}{c}0 ; x^{T} A_{j}^{r} \leq V_{o}^{r}-p_{o}^{r}, \\ f_{1 j}=\frac{p_{o}^{r} \lambda+(1-\lambda) q_{o}^{r}}{q_{o}^{r}}\left(1+\frac{x^{T} A_{j}^{r}-V_{o}^{r}}{p_{o}^{r}}\right) ; \\ V_{o}^{r}-p_{o}^{r} \leq x^{T} A_{j}^{r} \leq V_{o}^{r}-p_{o}^{r}+q_{o}^{r}, \\ f_{2 j}=1+(1-\lambda) \frac{x^{T} A_{j}^{r}-V_{o}^{r}}{p_{0}^{r}} ; \\ V_{o}^{r}-p_{o}^{r}+q_{o}^{r} \leq x^{T} A_{j}^{r} \leq V_{o}^{r}, \\ 1 ; \\ x^{T} A_{j}^{r} \geq V_{o}^{r} .\end{array}\right.$
Similarly, for Player II, the membership and the non-membership functions are as follows:
$\mu_{i}^{r}\left(A_{i}^{r} y\right)= \begin{cases}1 ; & A_{i}^{r} y \leq W_{o}^{r} \\ 1+\frac{W_{o}^{r}-A_{i}^{r} y}{s_{o}^{r}} ; & W_{o}^{r} \leq A_{i}^{r} y \leq W_{o}^{r}+s_{o}^{r}, \\ 0 ; & A_{i}^{r} y \geq W_{o}^{r}+s_{o}^{r},\end{cases}$
and
$v_{i}^{r}\left(A_{i}^{r} y\right)=\left\{\begin{array}{l}0 ; \quad A_{i}^{r} y \leq W_{o}^{r}+s_{o}^{r}-t_{o,}^{r} \\ 1+\frac{A_{i}^{r} y-\left(W_{o}^{r}+s_{o}^{r}\right)}{t_{o}^{r}} ; \\ \quad W_{o}^{r}+s_{o}^{r}-t_{o}^{r} \leq A_{i}^{r} y \leq W_{o}^{r}+s_{o}^{r}, \\ 1 ; \quad A_{i}^{r} y \geq W_{o}^{r}+s_{o}^{r},\end{array}\right.$
And the indeterminacy resolving functions $g_{i}^{r}\left(\lambda, A_{i}^{r} y\right)$, for $i=1,2, . ., m$, are as follows:
$g_{i}^{r}\left(\lambda, A_{i}^{r} y\right)=\left\{\begin{array}{c}1 ; A_{i}^{r} y \leq W_{o}^{r}, \\ g_{i 1}=1+(1-\lambda) \frac{W_{o}^{r}-A_{o}^{r} y}{s_{o}^{r}} ; \\ W_{o}^{r} \leq A_{i}^{r} y \leq W_{o}^{r}+s_{o}^{r}-t_{o}^{r}, \\ g_{i 2}=\frac{\lambda s_{o}^{r}+(1-\lambda) t_{o}^{r}}{t_{o}^{r}}\left(1+\frac{W_{o}^{r}-A_{o}^{r} y}{s_{o}^{r}}\right) ; \\ W_{o}^{r}+s_{o}^{r}-t_{o}^{r} \leq A_{i}^{r} y \leq W_{o}^{r}+s_{o}^{r}, \\ 0 ; \quad A_{i}^{r} y \geq W_{o}^{r}+s_{o}^{r} .\end{array}\right.$
In the absence of any information about the attitude of the decision maker towards resolving indeterminacy, we continue to take $\lambda=\frac{1}{2}$ only. Hence, for $j=1,2, \ldots, n$ and $i=1,2, \ldots, m$, the indeterminacy resolving functions for Player I and Player II are described as:
$f_{j}^{r}\left(\lambda, x^{T} A_{j}^{r}\right)=\left\{\begin{array}{c}0 ; x^{T} A_{j}^{r} \leq V_{o}^{r}-p_{o}^{r}, \\ f_{1 j}=\frac{p_{o}^{r}+q_{o}^{r}}{2 q_{o}^{r}}\left(1+\frac{x^{T} A_{j}^{r}-V_{o}^{r}}{p_{o}^{r}}\right) ; \\ V_{o}^{r}-p_{o}^{r} \leq x^{T} A_{j}^{r} \leq V_{o}^{r}-p_{o}^{r}+q_{o}^{r}, \\ f_{2 j}=1+\frac{x^{T} A_{j}^{r}-V_{o}^{r}}{2 p_{0}^{r}} ; \\ V_{o}^{r}-p_{o}^{r}+q_{o}^{r} \leq x^{T} A_{j}^{r} \leq V_{o,}^{r} \\ 1 ; \quad x^{T} A_{j}^{r} \geq V_{o}^{r} .\end{array}\right.$ and
$g_{i}^{r}\left(\lambda, A_{i}^{r} y\right)=\left\{\begin{array}{c}1 ; \quad A_{i}^{r} y \leq W_{o}^{r}, \\ g_{i 1}=1+\frac{W_{o}^{r}-A_{i}^{r} y}{2 s_{o}^{r}} ; \\ W_{o}^{r} \leq A_{i}^{r} y \leq W_{o}^{r}+s_{o}^{r}-t_{o}^{r}, \\ g_{i 2}=\frac{s_{o}^{r}+t_{o}^{r}}{2 t_{o}^{r}}\left(1+\frac{W_{o}^{r}-A_{i}^{r} y}{s_{o}^{r}}\right) ; \\ W_{o}^{r}+s_{o}^{r}-t_{o}^{r} \leq A_{i}^{r} y \leq W_{o}^{r}+s_{o}^{r}, \\ 0 ; \quad A_{i}^{r} y \geq W_{o}^{r}+s_{o}^{r} .\end{array}\right.$ respectively. It is important to note that for all $r=1,2, \ldots, l, f_{j}^{r}\left(x^{T} A_{j}^{r}\right), j=1,2, \ldots, n$ and $g_{i}^{r}\left(A_{i} y\right)$, $i=1,2, \ldots, m$, are piecewise linear S-shaped functions with concave type break points. Therefore solving (IFP $-I$) and (IFP - II) for Player I and

Player II are equivalent to solving the following two programs, respectively.
$(E P P-I) \max \left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{l}\right)$
subject to

$$
\begin{aligned}
& \frac{p_{o}^{r}+q_{o}^{r}}{2 q_{o}^{r}}\left(1+\frac{x^{T} A_{j}^{r}-V_{o}^{r}}{p_{o}^{r}}\right) \geq \alpha_{r}, j=1,2, \ldots, n, \\
& 1+\frac{x^{T} A_{j}^{r}-V_{o}^{r}}{2 p_{0}^{r}} \geq \alpha_{r}, j=1,2, \ldots, n \\
& e^{T} x=1 \\
& x \geq 0, \alpha_{r} \in[0,1], r=1,2, \ldots l .
\end{aligned}
$$

and
$(E P P-I I) \max \left(\beta_{1}, \beta_{2}, \ldots, \beta_{l}\right)$
subject to
$1+\frac{W_{o}^{r}-A_{i}^{r} y}{2 s_{o}^{r}} \geq \beta_{r}, i=1,2, \ldots, m$,
$\frac{s_{o}^{r}+t_{o}^{r}}{2 t_{o}^{r}}\left(1+\frac{W_{o}^{r}-A_{i}^{r} y}{s_{o}^{r}}\right) \geq \beta_{r}, i=1,2, \ldots, m$,
$e^{T} y=1$,
$y \geq 0, \beta_{r} \in[0,1], r=1,2, \ldots l$.
Note that $(E P P-I)$ and $(E P P-I I)$ are the crisps equivalent of (IFP - I) and (IFP - II), respectively. It is well understood, from section 2.1 that x^{*} is a POSS and α^{*} is the security level for Player I in the Pessimistic view, iff $\left(x^{*}, \alpha^{*}\right)$ is an efficient solution of $(E P P-I)$. The proof is similar to Theorem 1. Similarly, y^{*} is a POSS and β^{*} is the security level for Player II in the Pessimistic view iff $\left(y^{*}, \beta^{*}\right)$ is an efficient solution of $(E P P-I I)$.

2.3 Numerical Illustration

Let us consider the numerical example as taken by [3], but having intuitionistic fuzzy goals. Here, we solve all numerical problems using GAMS [21]. Consider the multi-objective matrix game having
payoff matrices

$$
A^{1}=\left[\begin{array}{ccc}
2 & 5 & 1 \\
-1 & -2 & 6 \\
0 & 3 & -1
\end{array}\right], A^{2}=\left[\begin{array}{ccc}
-3 & 7 & 2 \\
0 & -2 & 0 \\
3 & -1 & 6
\end{array}\right], A^{3}=\left[\begin{array}{ccc}
8 & 2 & 3 \\
-5 & 6 & 0 \\
-3 & 1 & 6
\end{array}\right]
$$ as the cost matrix, the time matrix and the productivity matrix, respectively.

Solution by the proposed method

We solve this problem with same parameters as in [22,3,8] so that we can compare the results.
Thus $V_{o}^{1}=\bar{a}^{1}=6, W_{o}^{1}=\underline{a}^{1}=-2, p_{o}{ }^{1}=s_{0}{ }^{1}=$ $\bar{a}^{1}-\underline{a}^{1}=8 ; V_{o}^{2}=\bar{a}^{2}=7, W_{o}^{2}=\underline{a}^{2}=-2, p_{o}{ }^{2}=$ $s_{o}^{2}=\bar{a}^{2}-\underline{a}^{2}=10 ; V_{o}^{3}=\bar{a}^{3}=8, W_{o}^{3}=\underline{a}^{3}=-5$, $p_{o}{ }^{3}=s_{o}{ }^{3}=\bar{a}^{1}-\underline{a}^{1}=10$. Also, we take $q_{o}^{1}=1$, $q_{o}^{2}=4, q_{o}^{3}=10$, and $t_{o}^{1}=6, t_{o}^{2}=4, t_{o}^{3}=7$ as in [8]. Assuming $\lambda=\frac{1}{2}$. After resolving indeterminacy, we get the piecewise linear indeterminacy resolving functions, with convex break points. Incorporating Inuiguchi et al. [18] method, we transform the indeterminacy functions with convex break points into concave break points. Thus making the problem ready to solve as a multiobjective programming problem, resolving the ambiguity. The equivalent crisp problem with constraints having concave breakpoints for Player I is given by (in optimistic sense):
(EOP-I) $\max \left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$
subject to

$$
\begin{aligned}
& 0.6691 x_{1}-0.3345 x_{2}+1.0036 \geq \alpha_{1} \\
& 0.2788 x_{1}-0.1394 x_{2}+0.7578 \geq \alpha_{1} \\
& 0.0995 x_{1}-0.4976 x_{2}+0.7014 \geq \alpha_{1} \\
& 1.674 x_{1}-0.6698 x_{2}+1.0048 x_{3}+1.0044 \geq \alpha_{1} \\
& 0.697 x_{1}-0.2788 x_{2}+0.4182 x_{3}+0.7578 \geq \alpha_{1} \\
& 0.2488 x_{1}-0.0995 x_{2}+0.1492 x_{3}+0.7014 \geq \alpha_{1} \\
& 0.3345 x_{1}-2.0072 x_{2}-0.3345 x_{3}+1.0036 \geq \alpha_{1}
\end{aligned}
$$

$0.1394 x_{1}+0.8364 x_{2}-0.1394 x_{3}+0.7578 \geq \alpha_{1}, \quad \begin{aligned} & \text { Table } 1 \text { POSS and Security levels for Player I in Optimistic } \\ & \text { Approach }\end{aligned}$							
$0.0498 x_{1}+0.2985 x_{2}-0.0497 x_{3}+0.7014 \geq \alpha_{1}$,	\#	x_{1}^{*}	x_{2}^{*}	x_{3}^{*}	α_{1}^{*}	α_{2}^{*}	α_{3}^{*}
$-0.6458 x_{1}+0.6458 x_{3}+1.5069 \geq \alpha_{2}$,	1	0.9412	0.0587	0	0.7658	0.6449	0.2928
	2	0.8727	0.0587	0.0684	0.7590	0.6598	0.2838
$-0.3038 x_{1}+0.3038 x_{3}+0.9739 \geq \alpha_{2}$,	3	0.8042	0.0587	0.1369	0.7521	0.6746	0.2748
	4	0.7357	0.0587	0.2054	0.7453	0.6895	0.2658
$-0.1084 x_{1}+0.1084 x_{3}+0.7470 \geq \alpha_{2}$,	5	0.6672	0.0587	0.2739	0.7385	0.7043	0.2569
$1.5069 x_{1}-0.4305 x_{2}-0.2152 x_{3}+1.5069 \geq \alpha_{2}$,							
$0.7089 x_{1}-0.2025 x_{2}-0.1012 x_{3}+0.8859 \geq \alpha_{2}$,		$-0.1416 y_{1}-0.354 y_{2}-0.0708 y_{3}+1.2484 \geq \beta_{1}$,					
$0.2529 x_{1}-0.0722 x_{2}-0.0361 x_{3}+0.7470 \geq \alpha_{2}$,	$-0.0556 y_{1}-0.139 y_{2}-0.0278 y_{3}+0.94318 \geq \beta_{1}$,						
$0.4304 x_{1}+1.2912 x_{3}+1.5064 \geq \alpha_{2}$,	$0.1705 y_{1}+0.341 y_{2}+1.023 y_{3}+2.046 \geq \beta_{1}$,						
$0.2024 x_{1}+0.6072 x_{3}+0.8856 \geq \alpha_{2}$,		$0.0708 y_{1}+0.1416 y_{2}-0.4248 y_{3}+1.2484 \geq \beta_{1}$,					
$0.0722 x_{1}+0.2166 x_{3}+0.747 \geq \alpha_{2}$,		$0.0278 y_{1}+0.0556 y_{2}-0.1668 y_{3}+0.9431 \geq \beta_{1}$,					
$1.0482 x_{1}-0.6551 x_{2}-0.3931 x_{3}+1.9655 \geq \alpha_{3}$,	$-0.5115 y_{2}+0.1705 y_{3}+2.046 \geq \beta_{1}$,						
$0.4977 x_{1}-0.31108 x_{2}-0.1866 x_{3}+1.1089 \geq \alpha_{3}$,		$-0.0834 y_{2}+0.0278 y_{3}+0.9431 \geq \beta_{1}$,					
$0.2031 x_{1}-0.1269 x_{2}-0.0761 x_{3}+0.7971 \geq \alpha_{3}$,	$-0.2124 y_{2}+0.0708 y_{3}+1.2484 \geq \beta_{1}$,						
$0.2620 x_{1}-0.7862 x_{2}+0.13103 x_{3} \geq \alpha_{3}$,	$0.5112 y_{1}-1.1928 y_{2}-0.1704 y_{3}+1.8744 \geq \beta_{2}$,						
$0.1244 x_{1}-0.3732 x_{2}+0.0622 x_{3}+1.1089 \geq \alpha_{3}$,		$0.0198 y_{1}-0.0462 y_{2}-0.0132 y_{3}+0.7895 \geq \beta_{2}$,					
$0.0507 x_{1}+0.1523 x_{2}+0.0253 x_{3}+0.797 \geq \alpha_{3}$,		$0.0507 y_{1}-0.1183 y_{2}-0.0338 y_{3}+0.8806 \geq \beta_{2}$,					
$0.03931 x_{1}+0.7862 x_{3}+1.9655 \geq \alpha_{3}$,	$0.0341 y_{2}+1.8747 \geq \beta_{2}$,						
$0.1866 x_{1}+0.3732 x_{3}+1.1087 \geq \alpha_{3}$,	$0.0132 y_{2}+0.7895 \geq \beta_{2}$,						
$0.0759 x_{1}+0.1518 x_{3}+0.7962 \geq \alpha_{3}$,		$0.0338 y_{2}+0.8806 \geq \beta_{2}$,					
$x_{1}+x_{2}+x_{3}=1$,		$-0.5112 y_{1}+0.1704 y_{2}-1.0224 y_{3}+1.8744 \geq \beta_{2}$,					
$0 \leq \alpha_{1}, \alpha_{2}, \alpha_{3} \leq 1$,		$-0.0198 y_{1}+0.0066 y_{2}-0.0396 y_{3}+0.7895 \geq \beta_{2}$,					
$x_{1}, x_{2}, x_{3} \geq 0$.		$-0.0507 y_{1}+0.0169 y_{2}-0.1014 y_{3}+0.8806 \geq \beta_{2}$,					
reto-optimal security strategies with corre-		$-0.9544 y_{1}-0.2386 y_{2}-0.3579 y_{3}+1.7895 \geq \beta_{3}$,					
ng security levels for Player I are depicted		$-0.3968 y_{1}-0.0992 y_{2}-0.1488 y_{3}+1.1426 \geq \beta_{3}$,					
		$-0.144 y_{1}-0.036 y_{2}-0.054 y_{3}+0.9092 \geq \beta_{3}$,					
, the equivalent crisp problem for Player		$0.5965 y_{1}-0.7158 y_{2}+1.7895 \geq \beta_{3}$,					
I) $\max \left(\beta_{1}, \beta_{2}, \beta_{3}\right)$		$0.2481 y_{1}-0.2976 y_{2}+1.1426 \geq \beta_{3}$,					
subject to	$0.09 y_{1}-0.108 y_{2}+0.9092 \geq \beta_{3}$,						
$-0.3410 y_{1}-0.8525 y_{2}-0.1705 y_{3}+2.046 \geq \beta_{1}$,	$0.3579 y_{1}-0.1193 y_{2}-0.7158 y_{3}+1.7895 \geq \beta_{3}$,						

$$
\begin{array}{lr}
0.1488 y_{1}-0.0496 y_{2}-0.2976 y_{3}+1.14267 \geq \beta_{3}, 3 \text { Conclusion } \\
0.054 y_{1}-0.018 y_{2}-0.108 y_{3}+0.9092 \geq \beta_{3}, & \text { 1. A new mod } \\
y_{1}+y_{2}+y_{3}=1, & \text { tiobjective } \\
0 \leq \beta_{1}, \beta_{2}, \beta_{3} \leq 1, y_{1}, y_{2}, y_{3} \geq 0 . & \text { with I-fuzz }
\end{array}
$$

The POSS and the corresponding security levels for Player II are depicted in Table 2. Similarly,

Table 2 POSS and Security levels for Player II in Optimistic Approach

$\#$	y_{1}^{*}	y_{2}^{*}	y_{3}^{*}	β_{1}^{*}	β_{2}^{*}	β_{3}^{*}
1	0.625	0	0.375	0.898	0.7622	0.7989
2	0.6287	0.01869	0.3525	0.8958	0.7632	0.7989
3	0.6366	0.0581	0.3052	0.8912	0.7651	0.7989
4	0.6445	0.0975	0.2579	0.8866	0.7671	0.7989
5	0.6523	0.1369	0.2106	0.8820	0.7691	0.7989

the Pareto-optimal security strategies with corresponding security levels for Player I and Player II in Pessimistic sense are depicted in Table 3 and Table 4 respectively.

Table 3 POSS and Security levels for Player I in Pessimistic Approach

$\#$	x_{1}^{*}	x_{2}^{*}	x_{3}^{*}	α_{1}^{*}	α_{2}^{*}	α_{3}^{*}
1	0.875	0.125	0	0.7265	0.1312	0.6634
2	0.8214	0.1785	0	0.7165	0.1874	0.6823
3	0.7679	0.2320	0	0.7064	0.2436	0.7013
4	0.7144	0.2855	0	0.6964	0.2998	0.7202
5	0.6609	0.3390	0	0.6864	0.3560	0.7392

Table 4 POSS and Security levels for Player II in Pessimistic Approach

$\#$	y_{1}^{*}	y_{2}^{*}	y_{3}^{*}	β_{1}^{*}	β_{2}^{*}	β_{3}^{*}
1	0.625	0	0.375	0.6380	0.5031	0.2060
2	0.6485	0	0.3514	0.6345	0.5154	0.1931
3	0.7019	0.0097	0.2883	0.6211	0.5554	0.1648
4	0.7079	0.0397	0.2522	0.6027	0.5953	0.1648
5	0.7139	0.0697	0.2162	0.5843	0.6353	0.1648

1. A new model is constructed for studying multiobjective two person zero-sum matrix games with I-fuzzy goals via resolving the indeterminacy function. Thereby extending the results of Khan et al. [20] to the multiobjective case. The game is shown equivalent to two fuzzy multiobjective fuzzy linear programming problems involving piecewise linear membership functions. The crisp equivalent programs are formulated using Yang et al. [24] and Inuiguchi et al. [18] approaches.
2. The efficient solutions of the equivalent multiobjective (crisp) problems are POSS and security levels of the I-fuzzy model.
3. Although this problem has not been much discussed in literature so far, but Bashir et al. [8] has examined the same with a different approach, using score function.
4. The security levels for Player I defined by [8] are

$$
\begin{aligned}
\alpha_{r}(x) & =\min _{1 \leq j \leq n}\left[\mu_{j}^{r}\left(x^{T} A_{j}^{r}\right), v_{j}^{r}\left(x^{T} A_{j}^{r}\right)\right] \\
& =\left[\min _{1 \leq j \leq n} \mu_{j}^{r}\left(x^{T} A_{j}^{r}\right), \max _{1 \leq j \leq n} v_{j}^{r}\left(x^{T} A_{j}^{r}\right)\right],
\end{aligned}
$$

and the security levels for Player II are defined as

$$
\begin{aligned}
\beta_{r}(x) & =\min _{1 \leq i \leq m}\left[\mu_{i}^{r}\left(A_{i}^{r} y\right), v_{i}^{r}\left(A_{i}^{r} y\right)\right] \\
& =\left[\min _{1 \leq i \leq m} \mu_{i}^{r}\left(A_{i}^{r} y\right), \max _{1 \leq j \leq m} v_{i}^{r}\left(A_{i}^{r} y\right)\right] .
\end{aligned}
$$

However, our choice of security levels are motivated by the approach of Yager [23].

There is a great scope to extend the results to multiobjective Bi-matrix games with I-fuzzy goals by resolving indeterminacy Also, it would be interesting and challenging to explore the multiobjective
two-person zero sum matrix games with I-fuzzy goals as well as I-fuzzy payoff matrix. Further discussions can be made of the problem by third approach, called mixed approach.

References

1. Aggarwal, A., Mehra, A., and Chandra, S., Application of linear programming with I-fuzzy sets to matrix games with I-fuzzy goals, Fuzzy Optimization and Decision Making, 11 (2012) 465-480.
2. Aggarwal, A., Dubey, D., Chandra, S. and Mehra, A., Application of Atanassov's I-fuzzy set theory to matrix games with fuzzy goals and fuzzy payoffs, Fuzzy Information and Engineering, 4 (2012) 401-414.
3. Aggarwal, A. and Khan, Imran, Solving multi-objective fuzzy matrix games via multi-objective linear programmming approach, Kybernetika, 52 (2016) 153-168.
4. Angelov, P. P., Optimization in an intuitionistic fuzzy environment, Fuzzy Sets and Systems, 86 (1997) 299306.
5. Atanassov, K. T., Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986) 87-96.
6. Atanassov, K. T., New operations defined over the intuitionistic fuzzy sets, Fuzzy Sets and Systems, 61 (1986) 137-14.
7. Atanassov, K. T., More on intuitionistic fuzzy sets, Fuzzy Sets and Systems, 33 (1989) 37-45.
8. Bashir, Z., Jaroslawwa, T., Rashid, T., Salabun, W. and Ali, J., Intuitionistic-Fuzzy Goals in Zero-Sum Multi Criteria Matrix Games, Symmetry, 9 (2017) 158-173.
9. Bector, C. R., and Chandra, S., Fuzzy Mathematical Programming and fuzzy matrix games, Berlin Heidelberg: Springer-Verlag, (2005).
10. Bector, C. R., Chandra, S. and Vijay, V., Matrix games with fuzzy goals and fuzzy linear programming duality, Fuzzy Optimization and Decision Making, 3 (2004) 263-277.
11. Bellman, R. E., and Zadeh, L. A., Decision-making in a fuzzy environment, Management Science, 17 (1970) 141-164.
12. Cook, W. D., Zero-sum games with multiple goals, Naval Research Logistics Quaterly 23 (1976) 615-622.
13. Corley, S.C., Games with vector payoffs, Journal of Optimization Theory and Applications, 47 (1985) 463-475.
14. Dubey D., Chandra, S. and Mehra, A., Fuzzy linear programming under interval uncertainity based on IFS representation, Fuzzy Sets and Systems, 188 (2012) 6887.
15. Ghose, D. and Prasad, U. R., Solution concepts in twoperson multicriteria games, Journal of Optimization Theory and Applications, 63 (1989) 167-189.
16. Fernandez, F. R. and Puerto, J., Vector linear programming in zero-sum multicriteria matrix games, Journal of Optimization Theory and Applications, 89 (1996) 115-127.
17. Hurwicz, L., A criterion for decision making under certainity, Technical report, Cowels Commission, 1952.
18. Inuiguchi, M., Ichihashi and H., Kume, Y., A solution algorithm for fuzzy linear programming with piecewise linear membership functions, Fuzzy Sets and Systems, 34 (1990) 15-31.
19. Khan, I., Aggarwal, A. and Mehra, A., Solving I-fuzzy Bi-matrix games with I-fuzzy goals by resolving indeterminacy, Journal of Uncertain Systems, 10 (2016) 204-222.
20. Khan, I., Aggarwal, A., Mehra, A. and Chandra, S., Solving matrix games with Atanassov's I-fuzzy goals via indeterminacy resolution approach, Journal of Information and Optimization Sciences, 38 (2017) 259287.
21. Mavrotas, G., Generation of efficient solutions in multiobjective mathematical programming problems using GAMS. Effective implementation of the ϵ-constraint method. Technical Report: http://www.gams.com/ modlib/adddocs/epscm.pdf (2007), 167-189.
22. Sakawa M. and Nishizaki, I., Max-Min solutions for fuzzy multi-objective matrix games, Fuzzy Sets and Systems, 67 (1994), 53-69.
23. Yager, R., Some aspects of intuitionistic fuzzy sets, Fuzzy Optimization and Decision Making, 8 (2009) 6790.
24. Yang, T. and Ignizio, J. P., Kim, H. J., Fuzzy programming with nonlinear memberships functions: Piecewise linear approximation, Fuzzy Sets and Systems, 41 (1991) 39-53.
25. Zeleny, M., Games with multiple payoff, International Journal of Game Theory, 4 (1975) 179-191.
